Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18684
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張雅雯(Ya-Wen Chang)
dc.contributor.authorTzu-Ting Chenen
dc.contributor.author陳姿廷zh_TW
dc.date.accessioned2021-06-08T01:19:15Z-
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-11
dc.identifier.citationAbello, P.A., Fidler, S.A., and Buchman, T.G. (1994). Thiol reducing agents modulate induced apoptosis in porcine endothelial cells. Shock (Augusta, Ga) 2, 79-83.
Allan Butterfield, D., Di Domenico, F., and Barone, E. (2014). Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain. Biochimica et biophysica acta.
Avery, A.M., and Avery, S.V. (2001). Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. Journal of Biological Chemistry 276, 33730-33735.
Azad, G.K., Singh, V., Mandal, P., Singh, P., Golla, U., Baranwal, S., Chauhan, S., and Tomar, R.S. (2014). Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target. FEBS open bio 4, 77-89.
Barja, G. (1999). Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. Journal of bioenergetics and biomembranes 31, 347-366.
Benaroudj, N., Lee, D.H., and Goldberg, A.L. (2001). Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. Journal of Biological Chemistry 276, 24261-24267.
Benjaphokee, S., Koedrith, P., Auesukaree, C., Asvarak, T., Sugiyama, M., Kaneko, Y., Boonchird, C., and Harashima, S. (2012). CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae. New biotechnology 29, 166-176.
Bolton, J.L., Trush, M.A., Penning, T.M., Dryhurst, G., and Monks, T.J. (2000). Role of quinones in toxicology. Chemical research in toxicology 13, 135-160.
Branco, M.R., Marinho, H.S., Cyrne, L., and Antunes, F. (2004). Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae. The Journal of biological chemistry 279, 6501-6506.
Causton, H.C., Ren, B., Koh, S.S., Harbison, C.T., Kanin, E., Jennings, E.G., Lee, T.I., True, H.L., Lander, E.S., and Young, R.A. (2001). Remodeling of yeast genome expression in response to environmental changes. Molecular biology of the cell 12, 323-337.
Chance, B., Sies, H., and Boveris, A. (1979). Hydroperoxide metabolism in mammalian organs. Physiol Rev 59, 527-605.
Cimolai, N., Gill, M., and Church, D. (1987). Saccharomyces cerevisiae fungemia: Case report and review of the literature. Diagnostic microbiology and infectious disease 8, 113-117.
Clemons, K.V., McCusker, J.H., Davis, R.W., and Stevens, D.A. (1994). Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae. The Journal of infectious diseases 169, 859-867.
Culotta, V.C., Yang, M., and O'Halloran, T.V. (2006). Activation of superoxide dismutases: putting the metal to the pedal. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1763, 747-758.
Cummings, B.S., Angeles, R., McCauley, R.B., and Lash, L.H. (2000). Role of voltage-dependent anion channels in glutathione transport into yeast mitochondria. Biochemical and biophysical research communications 276, 940-944.
de Oliveira, I.M., Zanotto-Filho, A., Moreira, J.C., Bonatto, D., and Henriques, J.A. (2010). The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae. Yeast 27, 89-102.
Devasagayam, T.P., Tilak, J.C., Boloor, K.K., Sane, K.S., Ghaskadbi, S.S., and Lele, R.D. (2004). Free radicals and antioxidants in human health: current status and future prospects. The Journal of the Association of Physicians of India 52, 794-804.
Diaz, G., Polonelli, L., Conti, S., Messana, I., Cabras, T., Putzolu, M., Falchi, A.M., Fadda, M.E., Cosentino, S., and Isola, R. (2005). Mitochondrial alterations and autofluorescent conversion of Candida albicans induced by histatins. Microscopy research and technique 66, 219-228.
Dringen, R. (2000). Metabolism and functions of glutathione in brain. Progress in neurobiology 62, 649-671.
Egelius, N., Jonsson, E., and Sundblad, L. (1956). Studies of hyaluronic acid in rheumatoid arthritis. Annals of the rheumatic diseases 15, 357-363.
Elledge, S.J., and Davis, R.W. (1990). Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes & development 4, 740-751.
Elledge, S.J., Zhou, Z., Allen, J.B., and Navas, T.A. (1993). DNA damage and cell cycle regulation of ribonucleotide reductase. Bioessays 15, 333-339.
Enache-Angoulvant, A., and Hennequin, C. (2005). Invasive Saccharomyces infection: a comprehensive review. Clinical Infectious Diseases 41, 1559-1568.
Esterbauer, H., Schaur, R.J., and Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free radical Biology and medicine 11, 81-128.
Evans, P., and Halliwell, B. (2001). Micronutrients: oxidant/antioxidant status. The British journal of nutrition 85 Suppl 2, S67-74.
Flattery-O'Brien, J.A., and Dawes, I.W. (1998). Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. The Journal of biological chemistry 273, 8564-8571.
Furukawa, Y., Torres, A.S., and O'Halloran, T.V. (2004). Oxygen‐induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. The EMBO journal 23, 2872-2881.
Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the cell 11, 4241-4257.
Gibney, P.A., Lu, C., Caudy, A.A., Hess, D.C., and Botstein, D. (2013). Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes. Proceedings of the National Academy of Sciences of the United States of America 110, E4393-4402.
Gimeno, C.J., Ljungdahl, P.O., Styles, C.A., and Fink, G.R. (1992). Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation and< i> RAS</i>. Cell 68, 1077-1090.
Grant, C.M. (2001). Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Molecular microbiology 39, 533-541.
Halliwell, B., and Whiteman, M. (2004). Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? British journal of pharmacology 142, 231-255.
Hennings, L., Kaufmann, Y., Griffin, R., Siegel, E., Novak, P., Corry, P., Moros, E.G., and Shafirstein, G. (2009). Dead or alive? Autofluorescence distinguishes heat-fixed from viable cells. International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group 25, 355-363.
Herrero, E., Ros, J., Belli, G., and Cabiscol, E. (2008). Redox control and oxidative stress in yeast cells. Biochimica et biophysica acta 1780, 1217-1235.
Hiltunen, J.K., Mursula, A.M., Rottensteiner, H., Wierenga, R.K., Kastaniotis, A.J., and Gurvitz, A. (2003). The biochemistry of peroxisomal β‐oxidation in the yeast Saccharomyces cerevisiae. FEMS microbiology reviews 27, 35-64.
Hirata, Y., Andoh, T., Asahara, T., and Kikuchi, A. (2003). Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes. Mol Biol Cell 14, 302-312.
Inoue, Y., Matsuda, T., Sugiyama, K.-i., Izawa, S., and Kimura, A. (1999). Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. Journal of Biological Chemistry 274, 27002-27009.
Izawa, S., Ikeda, K., Ohdate, T., and Inoue, Y. (2007). Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast. Biochemical and biophysical research communications 352, 750-755.
Kaminishi, H., Miyaguchi, H., Tamaki, T., Suenaga, N., Hisamatsu, M., Mihashi, I., Matsumoto, H., Maeda, H., and Hagihara, Y. (1995). Degradation of humoral host defense by Candida albicans proteinase. Infection and immunity 63, 984-988.
Kanki, T., Klionsky, D.J., and Okamoto, K. (2011). Mitochondria autophagy in yeast. Antioxidants & redox signaling 14, 1989-2001.
Kim, I., Moon, H., Yun, H., and Jin, I. (2006). Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377. Journal of microbiology-seoul- 44, 492.
Kobayashi, N., McClanahan, T.K., Simon, J.R., Treger, J.M., and McEntee, K. (1996). Structure and functional analysis of the multistress response gene DDR2 from Saccharomyces cerevisiae. Biochemical and biophysical research communications 229, 540-547.
Konecny, P., Drummond, F.M., Tish, K.N., and Tapsall, J.W. (1999). Saccharomyces cerevisiae oesophagitis in an HIV-infected patient. International journal of STD & AIDS 10, 821-822.
Kron, S.J., Styles, C.A., and Fink, G.R. (1994). Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Molecular biology of the cell 5, 1003-1022.
Kwolek-Mirek, M., Zadrag-Tecza, R., and Bartosz, G. (2012). Ascorbate and thiol antioxidants abolish sensitivity of yeast Saccharomyces cerevisiae to disulfiram. Cell biology and toxicology 28, 1-9.
Kwon-Chung, K.J., Polacheck, I., and Popkin, T.J. (1982). Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. Journal of bacteriology 150, 1414-1421.
Lopez-Mirabal, H.R., and Winther, J.R. (2008). Redox characteristics of the eukaryotic cytosol. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1783, 629-640.
Landolfo, S., Politi, H., Angelozzi, D., and Mannazzu, I. (2008). ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochimica et biophysica acta 1780, 892-898.
Lopes da Rosa, J., Holik, J., Green, E.M., Rando, O.J., and Kaufman, P.D. (2011). Overlapping regulation of CenH3 localization and histone H3 turnover by CAF-1 and HIR proteins in Saccharomyces cerevisiae. Genetics 187, 9-19.
Luk, E., Yang, M., Jensen, L.T., Bourbonnais, Y., and Culotta, V.C. (2005). Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae. Journal of Biological Chemistry 280, 22715-22720.
Madamanchi, N.R., Li, S., Patterson, C., and Runge, M.S. (2001). Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arteriosclerosis, thrombosis, and vascular biology 21, 321-326.
Madeo, F., Frohlich, E., Ligr, M., Grey, M., Sigrist, S.J., Wolf, D.H., and Frohlich, K.-U. (1999). Oxygen stress: a regulator of apoptosis in yeast. The Journal of cell biology 145, 757-767.
Mahmud, S.A., Hirasawa, T., and Shimizu, H. (2010). Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. Journal of bioscience and bioengineering 109, 262-266.
Martinez-Pastor, M.T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H., and Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). The EMBO journal 15, 2227-2235.
Mascarenhas, C., Edwards-Ingram, L.C., Zeef, L., Shenton, D., Ashe, M.P., and Grant, C.M. (2008). Gcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae. Mol Biol Cell 19, 2995-3007.
McCusker, J.H., Clemons, K.V., Stevens, D.A., and Davis, R.W. (1994). Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 degrees C and form pseudohyphae. Infection and immunity 62, 5447-5455.
Medoff, G., Maresca, B., Lambowitz, A., Kobayashi, G., Painter, A., Sacco, M., and Carratu, L. (1986). Correlation between pathogenicity and temperature sensitivity in different strains of Histoplasma capsulatum. Journal of Clinical Investigation 78, 1638.
Moradas-Ferreira, P., Costa, V., Piper, P., and Mager, W. (1996). The molecular defences against reactive oxygen species in yeast. Molecular microbiology 19, 651-658.
Moraitis, C., and Curran, B.P. (2004). Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Yeast 21, 313-323.
Morano, K.A., Grant, C.M., and Moye-Rowley, W.S. (2012). The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190, 1157-1195.
Murphy, A., and Kavanagh, K. (1999). Emergence of Saccharomyces cerevisiae as a human pathogen: Implications for biotechnology. Enzyme and microbial technology 25, 551-557.
Nauseef, W.M. (2008). Biological roles for the NOX family NADPH oxidases. Journal of Biological Chemistry 283, 16961-16965.
Nishizawa, J., Nakai, A., Matsuda, K., Komeda, M., Ban, T., and Nagata, K. (1999). Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 99, 934-941.
Pan, X., Harashima, T., and Heitman, J. (2000). Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Current opinion in microbiology 3, 567-572.
Parts, L., Cubillos, F.A., Warringer, J., Jain, K., Salinas, F., Bumpstead, S.J., Molin, M., Zia, A., Simpson, J.T., and Quail, M.A. (2011). Revealing the genetic structure of a trait by sequencing a population under selection. Genome research 21, 1131-1138.
Poljsak, B., Gazdag, Z., Jenko-Brinovec, S., Fujs, S., Pesti, M., Belagyi, J., Plesnicar, S., and Raspor, P. (2005). Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach. Journal of applied toxicology : JAT 25, 535-548.
Porras, A., Olson, J., and Palmer, G. (1981). The reaction of reduced xanthine oxidase with oxygen. Kinetics of peroxide and superoxide formation. Journal of Biological Chemistry 256, 9096-9103.
Querfurth, H.W., and LaFerla, F.M. (2010). Alzheimer's disease. The New England journal of medicine 362, 329-344.
Ragan, C., and Meyer, K. (1949). The hyaluronic acid of synovial fluid in rheumatoid arthritis. Journal of Clinical Investigation 28, 56.
Raha, S., and Robinson, B.H. (2000). Mitochondria, oxygen free radicals, disease and ageing. Trends in biochemical sciences 25, 502-508.
Raitt, D.C., Johnson, A.L., Erkine, A.M., Makino, K., Morgan, B., Gross, D.S., and Johnston, L.H. (2000). The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol Biol Cell 11, 2335-2347.
Ribeiro, G.F., Corte-Real, M., and Johansson, B. (2006). Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Molecular biology of the cell 17, 4584-4591.
Rinnerthaler, M., Buttner, S., Laun, P., Heeren, G., Felder, T.K., Klinger, H., Weinberger, M., Stolze, K., Grousl, T., Hasek, J., et al. (2012). Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. Proceedings of the National Academy of Sciences of the United States of America 109, 8658-8663.
Salonen, J., Richardson, M., Gallacher, K., Issakainen, J., Helenius, H., Lehtonen, O.-P., and Nikoskelainen, J. (2000). Fungal colonization of haematological patients receiving cytotoxic chemotherapy: emergence of azole-resistant Saccharomyces cerevisiae. Journal of Hospital Infection 45, 293-301.
Sinha, H., David, L., Pascon, R.C., Clauder-Munster, S., Krishnakumar, S., Nguyen, M., Shi, G., Dean, J., Davis, R.W., and Oefner, P.J. (2008). Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 180, 1661-1670.
Sinha, H., Nicholson, B.P., Steinmetz, L.M., and McCusker, J.H. (2006). Complex genetic interactions in a quantitative trait locus. PLoS Genet 2, e13.
Smith, D.L. (1996). Brewer's yeast as a cause of infection. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 22, 201.
Sobel, J.D., Vazquez, J., Lynch, M., Meriwether, C., and Zervos, M.J. (1993). Vaginitis due to Saccharomyces cerevisiae: epidemiology, clinical aspects, and therapy. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 16, 93-99.
Steinmetz, L.M., Sinha, H., Richards, D.R., Spiegelman, J.I., Oefner, P.J., McCusker, J.H., and Davis, R.W. (2002). Dissecting the architecture of a quantitative trait locus in yeast. Nature 416, 326-330.
Temple, M.D., Perrone, G.G., and Dawes, I.W. (2005). Complex cellular responses to reactive oxygen species. Trends in cell biology 15, 319-326.
Toledano, M.B., Delaunay, A., Biteau, B., Spector, D., and Azevedo, D. (2003). Oxidative stress responses in yeast. In Yeast stress responses (Springer), pp. 241-303.
Treger, J.M., Magee, T.R., and McEntee, K. (1998). Functional analysis of the stress response element and its role in the multistress response of Saccharomyces cerevisiae. Biochemical and biophysical research communications 243, 13-19.
Tsan, M., White, J.E., and Rosano, C.L. (1989). Modulation of endothelial GSH concentrations: effect of exogenous GSH and GSH monoethyl ester. J Appl Physiol 66, 1029-1034.
Wu, M.J., O'Doherty, P.J., Fernandez, H.R., Lyons, V., Rogers, P.J., Dawes, I.W., and Higgins, V.J. (2011). An antioxidant screening assay based on oxidant-induced growth arrest in Saccharomyces cerevisiae. FEMS yeast research 11, 379-387.
Wun, B.P., Tao, Q., and Lyle, S. (2005). Autofluorescence in the stem cell region of the hair follicle bulge. The Journal of investigative dermatology 124, 860-862.
Yamamoto, N., Maeda, Y., Ikeda, A., and Sakurai, H. (2008). Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae. Eukaryotic cell 7, 783-790.
Zhao, H., Kalivendi, S., Zhang, H., Joseph, J., Nithipatikom, K., Vasquez-Vivar, J., and Kalyanaraman, B. (2003). Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free radical biology & medicine 34, 1359-1368.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18684-
dc.description.abstract酵母菌Saccharomyces cerevisiae在過去一直被認定為安全且不具感染性的單細胞真菌,也廣泛用於釀酒及麵包發酵等食品工業上,然而自從1980年代起,在免疫力低落及癌症等病人身上陸續發現有S. cerevisiae菌株感染的案例,1990年起也有研究團隊針對菌株在小鼠中的感染能力區分菌株的致病性,1994年研究也發現菌株的致病性與其能否高溫生長有高度的相關,然而對於這些臨床具感染性菌株為何具有42℃高溫生長特性至今仍未清楚證實,因此本次研究利用兩個台大臨床分離株的子菌株(YYC870/YY871)與實驗室菌株(YYC861)進行一系列高溫生長相關性狀及基因表現的探討,期望從中找出臨床致病菌株高溫生長調控標的以作為後續臨床檢測及治療之應用。我們從固態培養基5天42℃培養的結果證實臨床菌株可在42℃下生長,而實驗室菌株則否,過去研究也指出高溫引發的氧化壓力可能是影響細胞生長及生存的重要因素,因此,我們將高溫培養的菌株以DHE (Dihydroethidium)分析菌株累積活性氧的情形 我們發現經持續高溫培養,臨床菌株相較於實驗室菌株累積較低的活性氧,此外,以抗氧化劑(NAC, N-Acetyl-L-cysteine)作用於實驗室菌株也看到活性氧累積降低及恢復高溫生長的性狀,以上實驗結果證實高溫下持續累積的活性氧將使菌株高溫生長受到抑制進一步危及到菌株的生存,從過去研究得知,活性氧累積一方面會啟動細胞抗氧化機制以降低活性氧持續累積,另一方面,過度累積的活性氧也會破壞細胞的脂質、蛋白質、DNA結構及功能,促使細胞啟動相關的修復機制以維持正常生理功能。因此,我們藉由TUNEL assay的方式分析菌株在高溫生下DNA斷裂的情形,實驗結果發現在高溫培養5天實驗室菌株DNA斷裂情形明顯高於臨床菌株,另外,也根據實驗室過去對於臨床菌株及實驗室菌株,37℃高溫生長相較於30℃生長下,以Tiling array比較結果中發現,DDR2 (DNA Damage Responsive)這個基因在臨床菌株高溫下誘發的表現量高於實驗室菌株,DDR2在過去研究指出在具氧化及高溫壓力下會高度表現,由以上結果我們推論DDR2在臨床菌株高溫下的高表現可能具有較高的修復能力,使臨床菌株得以維持細胞正常生理功能。總結以上結果,本研究證實臨床菌株與實驗室菌株在高溫下活性氧累積的差異及誘發細胞基因表現的不同可作為分析臨床菌株高溫生長差異、致病性與否的重要依據。zh_TW
dc.description.abstractThe yeast Saccharomyces cerevisiae has been identified as safe and non-pathogenicity fungus in the past, also widely used in the brewing , fermentation of bread and other food industries. However, since 1980s, S. cerevisiae have been discovered in cases with low immunity or in cancer patients. Since 1990, some research teams focused on the infectivity of S. cerevisiae in mice to distinguish pathogenic and non- pathogenic strains. In1994, some studies also found high correlation of strain pathogenicity and the ability of high temperature growth. However, it is not yet clear that why these infective clinical strains has high temperature growth ability at 42 ℃. In this study, we investigated a series of high-temperature growth-related traits and gene expression by characterizing the differences between two segregants of NTU clinical isolates (YYC870/YY871).We expect to find out the target of high temperature growth regulation in clinical pathogenic strains as the application of subsequent clinical diagnosis and treatment. First, we confirmed the different ability to grow at 42 ℃ between clinical isolates and laboratory strains. The results from culture on the solid medium for 5 days at 42 ℃ indicated that clinical strains grow at 42 ℃ but laboratory strains don’t. Previous study pointed out that high-temperature-induced oxidative stress may be an important factor affecting cell growth and survival. Therefore, we analyzed reactive oxygen species accumulation in cells growing at high temperature. In addition, treating antioxidants (NAC, n-Acetyl-L-cysteine) reduced reactive oxygen species accumulation and restored high temperature growth in the laboratory strain. According to the results , we confirmed that ROS accumulation at high temperature inhibited strains growth and further threaten their survival. Previous study also showed that cells activate antioxidant mechanisms to reduce accumulation of reactive oxygen species when growing at high temperature; on the other hand, excessive accumulation of reactive oxygen species also damage lipids, proteins, or DNA structure and promote cell repair mechanisms to maintain normal physiological function. Therefore, we analyzed DNA fragmentation in cells at high temperature by TUNEL assay. The experimental results showed that DNA fragmentation levels were significantly higher in laboratory strains than clinical isolates for 5 days cultured at high temperature. In addition, based on the previous Tiling array data, we found induced higher expression of DDR2 (DNA Damage Responsive) in clinical isolates than in laboratory strains. Previous studies showed DDR2 expression was significantly increased in oxidative stress or at high temperature .We assumed DDR2 in clinical strains may be the key player for repair. Therefore, clinical isolates maintain the normal physiological function under high temperatures .Summing up the above findings, our study confirmed the differences between clinical isolates and laboratory strains in reactive oxygen species accumulation and gene expression. This can be a basis on analysis of clinical strains of high temperature growth and their pathogenicity.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:19:15Z (GMT). No. of bitstreams: 1
ntu-103-R01424028-1.pdf: 2609361 bytes, checksum: 28bdf646ea8fa5815c5dfc26a215cb6f (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 I
英文摘要 III
圖目錄 VII
表目錄 VIII
附 錄 IX
第一章 緒 論 1
1.1臨床分離株的特性: 蛋白酶的分泌(protease secretion),假菌絲形成(pseudohyphal formation)及高溫生長 2
1.2活性氧&細胞的破壞 3
1.3高溫生長誘發活性氧累積 6
1.4修復細胞破壞的機制(DDR2) 8
第二章 材 料 與 方 法 10
2.1實驗菌株與培養方式 10
2.2高溫生長試驗(high temperature growth) 10
2.3細胞內活性氧化自由基累積的程度(Cellular ROS accumulation level) 11
2.4敏感性、存活率試驗 13
2.5 DNA斷裂程度試驗(TUNEL assay) 14
第三章 實 驗 結 果 17
3.1 S. cerevisiae臨床菌株42℃高溫生長表現型 17
3.2 S. cerevisiae臨床菌株42℃高溫生長下活性氧累積 17
3.3 高溫培養下之生存率 18
3.4 實驗室菌株高溫經抗氧化劑GSH/DTT/NAC作用下細胞內活性氧累積程度 19
3.5 實驗室菌株經抗氧化劑NAC/GSH/DTT作用下42℃高溫生長的性狀 20
3.6過氧化氫作用之耐受度及活性氧累積 21
3.7 高溫生長下細胞內DNA斷裂程度 21
第四章 討 論 23
4.1實驗室菌株活性氧累積變化 24
4.2 臨床菌株對DNA損傷有較高的耐受度 25
4.3 抗氧化劑種類(GHS/DTT/NAC) 25
4.4高溫培養環境 26
4.5高溫下, 細胞自發螢光產生螢光背景值 26
4.6致命高溫與不致命高溫誘發基因的差異 27
4.7其它清除活性氧或修復機制機制基因 28
第五章 圖 30
第六章 表 43
第七章 參 考 文 獻 45
附 錄 56
dc.language.isozh-TW
dc.title酵母菌臨床分離株高溫生長的調控機制zh_TW
dc.titleThe regulatory mechanism of high temperature growth in clinical isolates of Saccharomyces cerevisiaeen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee方偉宏(Woei-Horng Fang),胡忠怡(Chung-Yi Hu),吳瑞菁(Jui-ching Wu)
dc.subject.keywordSaccharomyces cerevisiae,致病性,高溫生長,活性氧,DDR2,zh_TW
dc.subject.keywordSaccharomyces cerevisiae,pathogenicity,high temperature growth,reactive oxygen species,DDR2,en
dc.relation.page62
dc.rights.note未授權
dc.date.accepted2014-08-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
2.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved