請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18680完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林劭品 | |
| dc.contributor.author | Tzu-Hao Kao | en |
| dc.contributor.author | 高資皓 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:19:00Z | - |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-11 | |
| dc.identifier.citation | Aapola, U., 2002. Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity. Nucleic Acids Res 30, 3602-3608.
Barklis, E., Mulligan, R.C., Jaenisch, R., 1986. Chromosomal position or virus mutation permits retrovirus expression in embryonal carcinoma cells. Cell 47, 391-399. Berger, S.L., 2007. The complex language of chromatin regulation during transcription. Nature 447, 407-412. Bird, A.P., 1986. CpG-rich islands and the function of DNA methylation. Nature 321, 209-213. Blazkova, J., Trejbalova, K., Gondois-Rey, F., Halfon, P., Philibert, P., Guiguen, A., Verdin, E., Olive, D., Van Lint, C., Hejnar, J., Hirsch, I., 2009. CpG methylation controls reactivation of HIV from latency. PLoS pathogens 5, e1000554. Bourc'his, D., Bestor, T.H., 2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96-99. Bourc'his, D., Xu, G.L., Lin, C.S., Bollman, B., Bestor, T.H., 2001. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536-2539. Cammas, F., Mark, M., Dolle, P., Dierich, A., Chambon, P., Losson, R., 2000. Mice lacking the transcriptional corepressor TIF1beta are defective in early postimplantation development. Development 127, 2955-2963. Campbell, L., Gumbleton, M., Griffiths, D.F., 2003. Caveolin-1 overexpression predicts poor disease-free survival of patients with clinically confined renal cell carcinoma. British journal of cancer 89, 1909-1913. Cassoni, P., Daniele, L., Maldi, E., Righi, L., Tavaglione, V., Novello, S., Volante, M., Scagliotti, G.V., Papotti, M., 2009. Caveolin-1 expression in lung carcinoma varies according to tumour histotype and is acquired de novo in brain metastases. Histopathology 55, 20-27. Cassoni, P., Senetta, R., Castellano, I., Ortolan, E., Bosco, M., Magnani, I., Ducati, A., 2007. Caveolin-1 expression is variably displayed in astroglial-derived tumors and absent in oligodendrogliomas: concrete premises for a new reliable diagnostic marker in gliomas. The American journal of surgical pathology 31, 760-769. Chen, T., Ueda, Y., Dodge, J.E., Wang, Z., Li, E., 2003. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Molecular and cellular biology 23, 5594-5605. Cherry, S.R., Biniszkiewicz, D., van Parijs, L., Baltimore, D., Jaenisch, R., 2000. Retroviral Expression in Embryonic Stem Cells and Hematopoietic Stem Cells. Molecular and cellular biology 20, 7419-7426. Deplus, R., Brenner, C., Burgers, W.A., Putmans, P., Kouzarides, T., de Launoit, Y., Fuks, F., 2002. Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res 30, 3831-3838. Ellis, J., 2005. Silencing and variegation of gammaretrovirus and lentivirus vectors. Human gene therapy 16, 1241-1246. Ellis, J., Hotta, A., Rastegar, M., 2007. Retrovirus silencing by an epigenetic TRIM. Cell 131, 13-14. Ellis, J., Yao, S., 2005. Retrovirus silencing and vector design: relevance to normal and cancer stem cells? Current gene therapy 5, 367-373. Feschotte, C., Gilbert, C., 2012. Endogenous viruses: insights into viral evolution and impact on host biology. Nature reviews. Genetics 13, 283-296. Feuer, G., Taketo, M., Hanecak, R.C., Fan, H., 1989. Two blocks in Moloney murine leukemia virus expression in undifferentiated F9 embryonal carcinoma cells as determined by transient expression assays. Journal of virology 63, 2317-2324. Fuks, F., Burgers, W.A., Godin, N., Kasai, M., Kouzarides, T., 2001. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. Embo J 20, 2536-2544. Gaudet, F., Rideout, W.M., 3rd, Meissner, A., Dausman, J., Leonhardt, H., Jaenisch, R., 2004. Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Molecular and cellular biology 24, 1640-1648. Golding, M.C., Zhang, L., Mann, M.R., 2010. Multiple epigenetic modifiers induce aggressive viral extinction in extraembryonic endoderm stem cells. Cell stem cell 6, 457-467. Greger, J.G., Katz, R.A., Ishov, A.M., Maul, G.G., Skalka, A.M., 2005. The cellular protein daxx interacts with avian sarcoma virus integrase and viral DNA to repress viral transcription. Journal of virology 79, 4610-4618. Guenatri, M., Duffie, R., Iranzo, J., Fauque, P., Bourc'his, D., 2013. Plasticity in Dnmt3L-dependent and -independent modes of de novo methylation in the developing mouse embryo. Development 140, 562-572. Haas, D.L., Lutzko, C., Logan, A.C., Cho, G.J., Skelton, D., Jin Yu, X., Pepper, K.A., Kohn, D.B., 2003. The Moloney Murine Leukemia Virus Repressor Binding Site Represses Expression in Murine and Human Hematopoietic Stem Cells. Journal of virology 77, 9439-9450. Harada, F., Peters, G.G., Dahlberg, J.E., 1979. The primer tRNA for Moloney murine leukemia virus DNA synthesis. Nucleotide sequence and aminoacylation of tRNAPro. The Journal of biological chemistry 254, 10979-10985. Hata, K., Kusumi, M., Yokomine, T., Li, E., Sasaki, H., 2006. Meiotic and epigenetic aberrations in Dnmt3L-deficient male germ cells. Molecular reproduction and development 73, 116-122. Hata, K., Okano, M., Lei, H., Li, E., 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983-1993. He, J., Yang, Q., Chang, L.J., 2005. Dynamic DNA methylation and histone modifications contribute to lentiviral transgene silencing in murine embryonic carcinoma cells. Journal of virology 79, 13497-13508. Henckel, A., Chebli, K., Kota, S.K., Arnaud, P., Feil, R., 2012. Transcription and histone methylation changes correlate with imprint acquisition in male germ cells. Embo J 31, 606-615. Henckel, A., Nakabayashi, K., Sanz, L.A., Feil, R., Hata, K., Arnaud, P., 2009. Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Human molecular genetics 18, 3375-3383. Iglesias-Platas, I., Martin-Trujillo, A., Cirillo, D., Court, F., Guillaumet-Adkins, A., Camprubi, C., Bourc'his, D., Hata, K., Feil, R., Tartaglia, G., Arnaud, P., Monk, D., 2012. Characterization of novel paternal ncRNAs at the Plagl1 locus, including Hymai, predicted to interact with regulators of active chromatin. PloS one 7, e38907. Jahner, D., Stuhlmann, H., Stewart, C.L., Harbers, K., Lohler, J., Simon, I., Jaenisch, R., 1982. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298, 623-628. Jia, D., Jurkowska, R.Z., Zhang, X., Jeltsch, A., Cheng, X., 2007. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248-251. Jurkowska, R.Z., Rajavelu, A., Anspach, N., Urbanke, C., Jankevicius, G., Ragozin, S., Nellen, W., Jeltsch, A., 2011. Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules: heterochromatic localization and role of Dnmt3L. The Journal of biological chemistry 286, 24200-24207. Kaneda, M., Okano, M., Hata, K., Sado, T., Tsujimoto, N., Li, E., Sasaki, H., 2004. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429, 900-903. Karam, J.A., Lotan, Y., Roehrborn, C.G., Ashfaq, R., Karakiewicz, P.I., Shariat, S.F., 2007. Caveolin-1 overexpression is associated with aggressive prostate cancer recurrence. The Prostate 67, 614-622. Karimi, M.M., Goyal, P., Maksakova, I.A., Bilenky, M., Leung, D., Tang, J.X., Shinkai, Y., Mager, D.L., Jones, S., Hirst, M., Lorincz, M.C., 2011. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell stem cell 8, 676-687. Kouzarides, T., 2007. Chromatin modifications and their function. Cell 128, 693-705. Kumaki, Y., Oda, M., Okano, M., 2008. QUMA: quantification tool for methylation analysis. Nucleic Acids Res 36, W170-175. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K., Jenuwein, T., 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116-120. Lei, H., Oh, S.P., Okano, M., Juttermann, R., Goss, K.A., Jaenisch, R., Li, E., 1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195-3205. Leonhardt, H., Page, A.W., Weier, H.U., Bestor, T.H., 1992. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865-873. Leung, D.C., Lorincz, M.C., 2012. Silencing of endogenous retroviruses: when and why do histone marks predominate? Trends Biochem Sci 37, 127-133. Li, H., Rauch, T., Chen, Z.X., Szabo, P.E., Riggs, A.D., Pfeifer, G.P., 2006. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. The Journal of biological chemistry 281, 19489-19500. Liang, G.G., Chan, M.F., Tomigahara, Y., Tsai, Y.C., Gonzales, F.A., Li, E., Laird, P.W., Jones, P.A., 2002. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Molecular and cellular biology 22, 480-491. Liao, H.F., Tai, K.Y., Chen, W.S., Cheng, L.C., Ho, H.N., Lin, S.P., 2012. Functions of DNA methyltransferase 3-like in germ cells and beyond. Biology of the cell / under the auspices of the European Cell Biology Organization 104, 571-587. Loh, T.P., Sievert, L.L., Scott, R.W., 1990. Evidence for a stem cell-specific repressor of Moloney murine leukemia virus expression in embryonal carcinoma cells. Molecular and cellular biology 10, 4045-4057. Macfarlan, T.S., Gifford, W.D., Agarwal, S., Driscoll, S., Lettieri, K., Wang, J., Andrews, S.E., Franco, L., Rosenfeld, M.G., Ren, B., Pfaff, S.L., 2011. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev 25, 594-607. Maksakova, I.A., Mager, D.L., Reiss, D., 2008. Keeping active endogenous retroviral-like elements in check: the epigenetic perspective. Cellular and molecular life sciences : CMLS 65, 3329-3347. Matsui, T., Leung, D., Miyashita, H., Maksakova, I.A., Miyachi, H., Kimura, H., Tachibana, M., Lorincz, M.C., Shinkai, Y., 2010. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464, 927-931. Mercer, T.R., Dinger, M.E., Mattick, J.S., 2009. Long non-coding RNAs: insights into functions. Nature Reviews Genetics 10, 155-159. Messerschmidt, D.M., de Vries, W., Ito, M., Solter, D., Ferguson-Smith, A., Knowles, B.B., 2012. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335, 1499-1502. Mizutani, T., Ito, T., Nishina, M., Yamamichi, N., Watanabe, A., Iba, H., 2002. Maintenance of integrated proviral gene expression requires Brm, a catalytic subunit of SWI/SNF complex. The Journal of biological chemistry 277, 15859-15864. Neri, F., Krepelova, A., Incarnato, D., Maldotti, M., Parlato, C., Galvagni, F., Matarese, F., Stunnenberg, H.G., Oliviero, S., 2013. Dnmt3L Antagonizes DNA Methylation at Bivalent Promoters and Favors DNA Methylation at Gene Bodies in ESCs. Cell 155, 121-134. Nielsen, A.L., Ortiz, J.A., You, J., Oulad-Abdelghani, M., Khechumian, R., Gansmuller, A., Chambon, P., Losson, R., 1999. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. Embo J 18, 6385-6395. Niles, K.M., Chan, D., La Salle, S., Oakes, C.C., Trasler, J.M., 2011. Critical period of nonpromoter DNA methylation acquisition during prenatal male germ cell development. PloS one 6, e24156. Okano, M., Bell, D.W., Haber, D.A., Li, E., 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257. Ooi, S.K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., Erdjument-Bromage, H., Tempst, P., Lin, S.P., Allis, C.D., Cheng, X., Bestor, T.H., 2007. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714-717. Ooi, S.K., Wolf, D., Hartung, O., Agarwal, S., Daley, G.Q., Goff, S.P., Bestor, T.H., 2010. Dynamic instability of genomic methylation patterns in pluripotent stem cells. Epigenetics & chromatin 3, 17. Otani, J., Nankumo, T., Arita, K., Inamoto, S., Ariyoshi, M., Shirakawa, M., 2009. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO reports 10, 1235-1241. Pannell, D., Osborne, C.S., Yao, S.Y., Sukonnik, T., Pasceri, P., Karaiskakis, A., Okano, M., Li, E., Lipshitz, H.D., Ellis, J., 2000. Retrovirus vector silencing is de novo methylase independent and marked by a repressive histone code. Embo J 19, 5884-5894. Petersen, R., Kempler, G., Barklis, E., 1991. A stem cell-specific silencer in the primer-binding site of a retrovirus. Molecular and cellular biology 11, 1214-1221. Plasschaert, R.N., Vigneau, S., Tempera, I., Gupta, R., Maksimoska, J., Everett, L., Davuluri, R., Mamorstein, R., Lieberman, P.M., Schultz, D., Hannenhalli, S., Bartolomei, M.S., 2013. CTCF binding site sequence differences are associated with unique regulatory and functional trends during embryonic stem cell differentiation. Nucleic Acids Res. Quenneville, S., Verde, G., Corsinotti, A., Kapopoulou, A., Jakobsson, J., Offner, S., Baglivo, I., Pedone, P.V., Grimaldi, G., Riccio, A., Trono, D., 2011. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Molecular cell 44, 361-372. Reik, W., 2007. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425-432. Rowe, H.M., Friedli, M., Offner, S., Verp, S., Mesnard, D., Marquis, J., Aktas, T., Trono, D., 2013. De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET. Development 140, 519-529. Rowe, H.M., Jakobsson, J., Mesnard, D., Rougemont, J., Reynard, S., Aktas, T., Maillard, P.V., Layard-Liesching, H., Verp, S., Marquis, J., Spitz, F., Constam, D.B., Trono, D., 2010. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237-240. Rowe, H.M., Trono, D., 2011. Dynamic control of endogenous retroviruses during development. Virology 411, 273-287. Ryan, R.F., Schultz, D.C., Ayyanathan, K., Singh, P.B., Friedman, J.R., Fredericks, W.J., Rauscher, F.J., 3rd, 1999. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Molecular and cellular biology 19, 4366-4378. Sakai, Y., Suetake, I., Shinozaki, F., Yamashina, S., Tajima, S., 2004. Co-expression of de novo DNA methyltransferases Dnmt3a2 and Dnmt3L in gonocytes of mouse embryos. Gene expression patterns : GEP 5, 231-237. Savage, K., Lambros, M.B., Robertson, D., Jones, R.L., Jones, C., Mackay, A., James, M., Hornick, J.L., Pereira, E.M., Milanezi, F., Fletcher, C.D., Schmitt, F.C., Ashworth, A., Reis-Filho, J.S., 2007. Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clinical cancer research : an official journal of the American Association for Cancer Research 13, 90-101. Schlesinger, S., Goff, S.P., 2013. Silencing of proviruses in embryonic cells: efficiency, stability and chromatin modifications. EMBO reports 14, 73-79. Schlesinger, S., Lee, A.H., Wang, G.Z., Green, L., Goff, S.P., 2013. Proviral silencing in embryonic cells is regulated by Yin Yang 1. Cell reports 4, 50-58. Schultz, D.C., Ayyanathan, K., Negorev, D., Maul, G.G., Rauscher, F.J., 2002. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Gene Dev 16, 919-932. Schultz, D.C., Friedman, J.R., Rauscher, F.J., 3rd, 2001. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev 15, 428-443. Senetta, R., Stella, G., Pozzi, E., Sturli, N., Massi, D., Cassoni, P., 2013. Caveolin-1 as a promoter of tumour spreading: when, how, where and why. Journal of cellular and molecular medicine 17, 325-336. Smallwood, S.A., Tomizawa, S., Krueger, F., Ruf, N., Carli, N., Segonds-Pichon, A., Sato, S., Hata, K., Andrews, S.R., Kelsey, G., 2011. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43, 811-814. Sripathy, S.P., Stevens, J., Schultz, D.C., 2006. The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Molecular and cellular biology 26, 8623-8638. Swindle, C.S., Klug, C.A., 2002. Mechanisms that regulate silencing of gene expression from retroviral vectors. Journal of hematotherapy & stem cell research 11, 449-456. Tang, Y., Luo, Y., Jiang, Z., Ma, Y., Lin, C.J., Kim, C., Carter, M.G., Amano, T., Park, J., Kish, S., Tian, X.C., 2012. Jak/Stat3 signaling promotes somatic cell reprogramming by epigenetic regulation. Stem cells 30, 2645-2656. Teich, N.M., Weiss, R.A., Martin, G.R., Lowy, D.R., 1977. Virus infection of murine teratocarcinoma stem cell lines. Cell 12, 973-982. Volkel, P., Angrand, P.O., 2007. The control of histone lysine methylation in epigenetic regulation. Biochimie 89, 1-20. Walsh, C.P., Chaillet, J.R., Bestor, T.H., 1998. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20, 116-117. Webster, K.E., O'Bryan, M.K., Fletcher, S., Crewther, P.E., Aapola, U., Craig, J., Harrison, D.K., Aung, H., Phutikanit, N., Lyle, R., Meachem, S.J., Antonarakis, S.E., de Kretser, D.M., Hedger, M.P., Peterson, P., Carroll, B.J., Scott, H.S., 2005. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America 102, 4068-4073. Wolf, D., Cammas, F., Losson, R., Goff, S.P., 2008. Primer binding site-dependent restriction of murine leukemia virus requires HP1 binding by TRIM28. Journal of virology 82, 4675-4679. Wolf, D., Goff, S.P., 2007. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell 131, 46-57. Wolf, D., Goff, S.P., 2009. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458, 1201-1204. Zhang, Y., Jurkowska, R., Soeroes, S., Rajavelu, A., Dhayalan, A., Bock, I., Rathert, P., Brandt, O., Reinhardt, R., Fischle, W., Jeltsch, A., 2010. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res 38, 4246-4253. Zhang, Z.B., Cai, L., Zheng, S.G., Xiong, Y., Dong, J.H., 2009. Overexpression of caveolin-1 in hepatocellular carcinoma with metastasis and worse prognosis: correlation with vascular endothelial growth factor, microvessel density and unpaired artery. Pathology oncology research : POR 15, 495-502. Zuo, X., Sheng, J., Lau, H.T., McDonald, C.M., Andrade, M., Cullen, D.E., Bell, F.T., Iacovino, M., Kyba, M., Xu, G., Li, X., 2012. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. The Journal of biological chemistry 287, 2107-2118. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18680 | - |
| dc.description.abstract | 哺乳類動物的基因組序列中包含許多反轉錄跳躍子 (retrotransposable elements),類3號DNA甲基化酶(DNMT3L)在精細胞發育過程中對抑制內源性的反轉錄跳躍子(retrotransposon)扮演重要角色,Dnmt3L也專一性表現在未分化的胚幹細胞中,但已分化的體細胞則無法偵測其表現,反轉錄病毒的活性在胚幹細胞中會受強烈地抑制,但體細胞卻無此抑制活性。DNMT3L的交互作用蛋白KAP1可招募上位遺傳調控蛋白HDAC1和SETDB1以抑制反轉錄跳躍子。本研究旨在闡明DNMT3L在胚幹細胞或體細胞中對新感染病毒是否具有抑制作用,是否可藉由DNMT3L在胚幹細胞反轉錄病毒的抑制效果,外源性表現DNMT3L在體細胞,作為抗病毒的應用。本研究以Mo-MuLV為反轉錄病毒材料感染細胞進而偵測病毒甲基化情形或表現活性,結果顯示DNMT3L和KAP1對於胚幹細胞中新嵌插病毒DNA序列的甲基化與抑制基因表現扮演重要功能。外源性大量表現DNMT3L在體細胞3T3與MEF (Mouse embryonic fibroblast)中,雖然無法使體細胞具有甲基化病毒序列的能力,然而卻可誘導體細胞抗反轉錄病毒活性,此活性已藉由點突變分析證實DNMT3L只有在能夠結合到組蛋白H3,或能與DNMT3A正確交互作用時才具有抗反轉錄病毒活性,且此活性依附KAP1抑制機制路徑,由此結果推論DNMT3L是藉由引起與KAP1交互作用的蛋白達成反轉錄病毒抑制。本研究之細胞染色結果顯示外源性表現DNMT3L於MEF中可誘使大部分表現在細胞質的HDAC1移至細胞核,蛋白免疫共沉澱分析結果顯示外源性表現DNMT3L於MEF中可促進KAP1 、HDAC1和SETDB1蛋白複合體的形成,染色質免疫沉澱分析發現外源性表現DNMT3L於MEF中可誘導KAP1 、HDAC1和SETDB1蛋白結合到新嵌插的病毒DNA序列以進行靜默修飾作用。外源性表現DNMT3L可使MEF細胞持續繼代40次以上,經由長時間培養後發現MEF細胞型態發生轉型且可偵測到Oct4表現且伴隨強烈的反轉錄病毒抑制活性。本研究結果顯示DNMT3L具有體細胞抗反轉錄病毒應用的潛力,未來將有利於體細胞抗病毒相關研究之進展。 | zh_TW |
| dc.description.abstract | Mammalian genomes are replete with retrotranspoable elements including endogenous retroviruses. DNA methyltransferase 3-like (DNMT3L), an epigenetic regulator highly expressed in germ cells and embryonic stem (ES) cells, is crucial for the long-term suppression of endogenous retrotransposons. Here we demonstrate that DNMT3L enhances the interaction of repressive epigenetic modifiers including histone deacetylase 1 (HDAC1), SET domain, bifurcated 1 (SETDB1), DNA methylatransfearse 3A (DNMT3A), and tripartite motif-containing protein 28 (TRIM28)/ KRAB-associated protein 1 (KAP1) in ES cells, and orchestrates retroviral-silencing activity with TRIM28 by mechanisms including but not limited to facilitating de novo DNA methylation. Gain of function studies by the introduction of ectopic DNMT3L into somatic cells demonstrate its DNA-methylation independent retroviral silencing activity by recruitment of the TRIM28/HDAC1/SETDB1/DNMT3A/DNMT3L complex to the newly infected Moloney-Murine Leukemia Virus (Mo-MuLV). Concurrent with this recruitment, we also observe the accumulation of histone H3 lysine 9 trimethylation (H3K9me3) and heterochromatin protein 1 gamma, as well as reduced H3K9 and H3K27 acetylation at newly integrated Mo-MuLV proviral sequences. Ectopic DNMT3L also re-distributes cytoplasmically localized HDAC1 to the nucleus in late passage mouse embryonic fibroblasts (MEFs) and 3T3 cell line. Formation of this epigenetic modifying complex formation requires Dnmt3L interaction with DNMT3A as well as with histone H3 tail. In fetal testes at embryonic day 17.5, endogenous DNMT3L also enhanced the binding between TRIM28, DNMT3A, SETDB1, and HDAC1. We have therefore uncovered a potential histone-level epigenetic silencing activity of DNMT3L, and this activity is beyond the known scope of DNMT3L in facilitating de novo DNA methylation and interpretation of histone modifications and chromatin context. We propose that DNMT3L may be involved in initiating a cascade of repressive epigenetic modifications by assisting in the preparation of a chromatin context that further attracts DNMT3A-DNMT3L binding and installs longer-term DNA methylation marks on endogenous retrotransposons and imprinting control regions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:19:00Z (GMT). No. of bitstreams: 1 ntu-103-D95642003-1.pdf: 3309727 bytes, checksum: 2c45a8b1019588dc532111a747d3552e (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES xiii LIST OF TABLES xv General Introduction 1 Chapter 1 DNMT3L and TRIM28 are required for Mo-MuLV proviral silencing in ES cells 12 1.1 INTRODUCTION 12 1.2 MATERIAL AND METHODS 13 1.2.1 Ethics Statement 13 1.2.2 Cell culture and sample preparation 13 1.2.3 Construction of expression vectors containing wild-type and mutant Dnmt3l 14 1.2.4 Cell transfection 15 1.2.5 Retroviral preparation and infection 15 1.2.6 Luciferase activity assay 16 1.2.7 DNA Methylation analysis 17 1.2.8 Oligonucleotides for PCR amplification of bisulfite-treated DNA 18 1.2.9 Antibodies 18 1.2.10 Immunoprecipitation 19 1.2.11 Dnmt3l KO fetal testes preparation 19 1.3 RESULTS 21 1.3.1 DNMT3L and TRIM28 are required for efficient de novo DNA methylation of newly-integrated Mo-MuLV proviral sequences in 129S4/SvJae ES cells 21 1.3.2 DNMT3L and TRIM28 are required for efficient de novo DNA methylation of newly-integrated Mo-MuLV proviral sequences in ES cells 24 1.3.3 DNMT3A and TRIM28 are required for efficient de novo DNA methylation of newly-integrated Mo-MuLV proviral sequences 30 1.3.4 DNMT3L is required for HDAC1/TRIM28/DNMT3A/SETDB1 protein complex formation in ES cells 33 1.3.5 DNMT3L-repressive chromatin modifier complex is present in fetal gonads 35 1.4 DISCUSSIONS 37 1.4.1 DNMT3L and TRIM28 synergistically silence proviral sequences in ES cells through multiple mechanisms 37 Chapter 2 DNMT3L induced viral silencing in somatic cells 39 2.1 INTRODUCTION 39 2.2 MATERIAL AND METHODS 40 2.2.1 Cell culture and sample preparation 40 2.2.2 Cell transfection 40 2.2.3 Retroviral preparation and infection 40 2.2.4 Luciferase activity assay 41 2.2.5 DNA Methylation analysis 42 2.2.6 Oligonucleotides for PCR amplification of bisulfite-treated DNA 43 2.2.7 Antibodies 43 2.2.8 Immunoprecipitation 44 2.2.9 Chromatin immunoprecipitation 44 2.3 RESULTS 46 2.3.1 Ectopic Dnmt3L induces modest retroviral silencing activity in later-passage MEFs 46 2.3.2 Dnmt3L can induce retroviral silencing activity in 3T3 51 2.3.3 Dnmt3L cannot induce retroviral silencing in RAT2 cell which lack of TRIM28-mediated silencing mechanism 54 2.3.4 Ectopic DNMT3L induces the formation of a repressive chromatin modifier complex to introduce repressive histone modifications at Mo-MuLV proviral DNA in DNMT3L-expressing MEFs 56 2.3.5 Ectopic DNMT3L induces the formation of a repressive chromatin modifier complex to introduce repressive histone modifications at ERVs in DNMT3L-expressing MEFs 58 2.3.6 Ectopic DNMT3L induces the formation of a repressive chromatin modifier complex in DNMT3L-expressing MEFs 61 2.3.7 DNMT3L induces HDAC1 translocation into the nucleus 64 2.4 DISCUSSION 70 2.4.1 Methylation-independent retroviral silencing by ectopic DNMT3L in somatic cells 70 2.4.2 DNMT3L-induced retroviral silencing does not rely on DNA methylation of proviruses in somatic cells 75 2.4.3 DNMT3L induces HDAC1 translocation into nucleus in later-passage MEFs 77 Chapter 3 DNMT3L overexpression induced cell fate changes in MEFs and 3T3 78 3.1 INTRODUCTION 78 3.2 MATERIAL AND METHODS 80 3.2.1 Cell culture of Dnmt3l-transfected MEFs 80 3.2.2 Immunocytochemistry 80 3.2.3 iTRAQ 81 3.3 RESULTS 83 3.3.1 DNMT3L induced accumulation effect of retroviral silencing activity in long-term cultured morphology changed MEFs 83 3.3.2 DNMT3L is sufficient for inducing strong retroviral silencing activity in long-term cultured MEFs 86 3.3.3 DNMT3L expression can induce morphological changes and mimic partial reprogramming in MEFs 90 3.3.4 Dnmt3L transfection can induce cell congregation in 3T3 cells 92 3.3.5 iTRAQ analysis of Dnmt3l-overexpression 3T3s 94 3.4 DISCUSSION 98 3.4.1 DNMT3L induces cell proliferation and pluripotent marks expression in later-passage MEFs 98 3.4.2 The roles of caveolin-1 in cancer initiation and progression 99 Chapter 4 General discussion 100 Methylation-independent retroviral silencing by DNMT3L 100 DNMT3L induces HDAC1 translocation into the nucleus 101 Host factors expression levels for retroviral silencing 102 DNMT3L-dependent chromatin-modifying activity may explain the necessity of DNMT3L activity in germ cell development 103 Conclusion …………………………………………………………………………106 References …………………………………………………………………………108 | |
| dc.language.iso | en | |
| dc.title | 類3號DNA甲基化酶促進形成表觀基因修飾蛋白複合體抑制反轉錄病毒活性 | zh_TW |
| dc.title | DNMT3L facilitates assembly of a repressive epigenetic modifying complex for retroviral silencing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李宣書,陳全木,張麗冠,岳嶽 | |
| dc.subject.keyword | 上位遺傳,甲基化,反轉錄病毒,抗病毒,胚幹細胞, | zh_TW |
| dc.subject.keyword | epigenetic,DNA methylation,stem cell, | en |
| dc.relation.page | 122 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物科技研究所 | zh_TW |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
