Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18671
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡懷楨
dc.contributor.authorYu-Fan Chuehen
dc.contributor.author闕郁帆zh_TW
dc.date.accessioned2021-06-08T01:18:27Z-
dc.date.copyright2014-09-04
dc.date.issued2014
dc.date.submitted2014-08-11
dc.identifier.citationChen, S.W.(2011). Cell-type specific response to ER-associated stress in brain of zebrafish embryos. 國立台灣大學生命科學院分子與細胞生物學研究所碩士論文
Back S.H., Lee K., Vink E., and Kaufman R.J. (2006). Cytoplasmic IRE1alpha-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress. J Biol Chem 281,18691-18706.
Barone M.V., Crozat A., Tabaee A., Philipson L., and Ron D. (1994). CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev 8,453-464
Bertolotti A., Zhang Y., Hendershot L.M., Harding H.P., and Ron D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2,326-332
Bi M., Naczki C., Koritzinsky M., Fels D., Blais J., Hu N., Harding H., Novoa I., Varia M., Raleigh J., Scheuner D., Kaufman R.J., Bell J., Ron D., Wouters B.G., and Koumenis C. (2005). ER stress-regulated translation increases tolerance to extreme
hypoxia and promotes tumorgrowth. EMBO J 24,3470-3481
Birkenmeier E.H., Gwynn B., Howard S., Jerry J., Gordon J.I., Landschulz W.H., and McKnight S.L. (1989). Tissue-specific expression, developmental regulation, and genetic mapping of the gene encoding CCAAT/enhancer binding protein. Genes Dev 3,1146-1156
Bonilla M., Nastase K.K., and Cunningham K.W. (2002). Essential role of calcineurin
in response to endoplasmic reticulum stress. EMBO J 21,2343-2353.
Burd C.G. and Dreyfuss G. (1994). Conserved structures and diversity of functions of RNA-binding proteins. Science 265,615-621
Calvo S.E., Pagliarini D.J., and Mootha V.K. (2009). Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci USA 106,7507-7512
Cao Z., Umek R.M., and McKnight S.L. (1991). Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5,1538-1552
Caspersen C., Pedersen P.S., and Treiman M. (2000). The sarco/endoplasmic reticulum calcium-ATPase 2b is an endoplasmic reticulum stress-inducible protein. J Biol Chem 275,22363-22372
Chen B.P., Wolfgang C.D., and Hai T. (1996). Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol 16,1157-1168
Chen T., and Richard S. (1998). Structure-function analysis of Qk1: a lethal point mutation in mouse quaking prevents homodimerization. Mol Cell Biol 18,4863-4871
Cnop M., Ladriere L., Hekerman P., Ortis F., Cardozo A.K., Dogusan Z, Flamez D, Boyce M, Yuan J, and Eizirik DL. (2007). Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis. J Biol Chem 292,3989-3997
Dassi E., Zuccotti P., Leo S., Provenzani A., Assfalg M., D'Onofrio M., Riva P., and Quattrone A. (2013). Hyper conserved elements in vertebrate mRNA 3'-UTRs reveal a translational network of RNA-binding proteins controlled by HuR. Nucleic Acids Res. 41, 3201-3216
Deng J., Lu P.D., Zhang Y., Scheuner D., Kaufman R.J., Sonenberg N., Harding H.P., and Ron D. (2004). Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24,10161-10168
Ellgaard L., and Helenius A. (2003). Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4,181-191
Engin F., and Hotamisligil G.S. (2010). Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes Obes Metab 12,108-115
Faustino N.A., and Cooper T.A. (2005). Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. Mol Cell Biol 25,879-887.
Fawcett T.W., Martindale J.L., Guyton K.Z., Hai T., and Holbrook N.J. (1999). Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339,135-141
Good P.J., Chen Q., Warner S.J., and Herring D.C. (2000). A family of human RNA-binding proteins related to the Drosophila Bruno translational regulator. J Biol Chem 275, 28583-28592
Gopfert U., Kullmann M., and Hengst L. (2003). Cell cycle-dependent translation of p27 involves a responsive element in its 5'-UTR that overlaps with a uORF. Hum Mol Genet 12,1797-1779
Gould D.B., Marchant J.K., Savinova O.V., Smith R.S., and John S.W. (2007). Col4a1 mutation causes endoplasmic reticulum stress and genetically modifiable oculardysgenesis. Hum Mol Genet 16,798-807
Haze K., Yoshida H., Yanagi H., Yura T., and Mori K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10,3787-3799
Harding H.P., Zhang Y., and Ron D. (1999). Protein translation and folding are coupled
by an endoplasmic-reticulum-resident kinase. Nature 397,271-274
Harding H.P., Zhang Y., Zeng H., Novoa I., Lu P.D., Calfon M., Sadri N., Yun C., Popko B., Paules R., Stojdl D.F., Bell J.C., Hettmann T., Leiden J.M., and Ron D. (2003). An integrated stress response regulates amino acid metabolism and resistance to
oxidative stress. Mol Cell 11,619-633
Hetz C., Bernasconi P., Fisher J., Lee A.H., Bassik M.C., Antonsson B., Brandt G.S., Iwakoshi N.N., Schinzel A., Glimcher L.H., and Korsmeyer S.J. (2006). Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312,572-576
Hock J., Weinmann L., Ender C., Rudel S., Kremmer E., Raabe M., Urlaub H., and Meister G. (2007). Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep 8,1052-1060
Jarosch E., Geiss-Friedlander R., Meusser B., Walter J., and Sommer T. (2002). Protein dislocation from the endoplasmic reticulum--pulling out the suspect. Traffic 3,530-536
Jiang H.Y., Wek S.A., McGrath B.C., Scheuner D., Kaufman R.J., Cavener D.R., and Wek R.C. (2003). Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 23,5651-5663
Jousse C., Bruhat A., Carraro V., Urano F., Ferrara M., Ron D., and Fafournoux P. (2001). Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5'UTR. Nucleic Acids Res 29,4341-4351
Jousse C., Oyadomari S., Novoa I., Lu P., Zhang Y., Harding H.P., and Ron D. (2003). Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP,
promotes survival of stressed cells. J Cell Biol 163,767-775
Katayama T., Imaizumi K., Manabe T., Hitomi J., Kudo T., and Tohyama M. (2004). Induction of neuronal death by ER stress in Alzheimer's disease. J Chem Neuroanat 28,67-78
Kojima S., Matsumoto K., Hirose M., Shimada M., Nagano M., Shigeyoshi Y., Hoshino S., Ui-Tei K., Saigo K., Green C.B., Sakaki Y., and Tei H. (2007). LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1. Proc Natl Acad Sci USA 104,1859-1864
Koritzinsky M., Rouschop K.M., van den Beucken T., Magagnin M.G., Savelkouls K., Lambin P., and Wouters B.G. (2007). Phosphorylation of eIF2alpha is required for mRNA translation inhibition and survival during moderate hypoxia. Radiother Oncol 83,353-361
Koritzinsky M., Magagnin M.G., van den Beucken T., Seigneuric R., Savelkouls K., Dostie J., Pyronnet S., Kaufman R.J., Weppler S.A., Voncken J.W., Lambin P., Koumenis C., Sonenberg N., and Wouters B.G. (2006). Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J 25,1114-1125
Korner C., Knauer R., Holzbach U., Hanefeld F., Lehle L., and von Figura K. (1998). Carbohydrate-deficient glycoprotein syndrome type V: deficiency of
dolichyl-P-Glc:Man9GlcNAc2-PP-dolichyl glucosyltransferase. Proc Natl Acad Sci USA 95,13200-13205
Koumenis C., Naczki C., Koritzinsky M., Rastani S., Diehl A., Sonenberg N., Koromilas A., and Wouters B.G. (2002). Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22,7405-7416
Ladd A.N., Stenberg M.G., Swanson M.S., and Cooper T.A. (2005). Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Dev Dyn 233,783-793
Ladd A.N., Taffet G., Hartley C., Kearney D.L., and Cooper T.A. (2005). Cardiac tissue-specific repression of CELF activity disrupts alternative splicing and causes cardiomyopathy. Mol Cell Biol 25,6267-6278
Lai M.C., Kuo H.W., Chang W.C., and Tarn W.Y. (2003). A novel splicing regulator shares a nuclear import pathway with SR proteins. EMBO J 22,1359-1369
Lee H.C., Chen Y.J., Liu Y.W., Lin K.Y., Chen S.W., Lin C.Y., Lu Y.C., Hsu P.C., Lee S.C., and Tsai H.J. (2011). Transgenic zebrafish model to study translational control mediated by upstream open reading frame of human chop gene. Nucleic Acids Res 39,e139
Lin JC, Hsu M, and Tarn WY. (2007). Cell stress modulates the function of splicing regulatory protein RBM4 in translation control. Proc Natl Acad Sci USA 104,2235-2240
Lin J.C., and Tarn W.Y. (2005). Exon selection in alpha-tropomyosin mRNA is regulated by the antagonistic action of RBM4 and PTB. Mol Cell Biol 25,10111-10121
Lobo M.K., Karsten S.L., Gray M., Geschwind D.H., and Yang X.W. (2006). FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nat Neurosci 9,443-452
Lukong K.E., and Richard S. (2003). Sam68, the KH domain-containing superSTAR. Biochim Biophys Acta 1653,443-452
Ma Y., and Hendershot L.M. (2003). Delineation of a negative feedback regulatory
loop that controls protein translation during endoplasmic reticulum stress. J Biol Chem 278,34864-34873
Makeyev A.V., and Liebhaber S.A. (2002). The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA 8, 265-278
Mazan-Mamczarz K., Lal A., Martindale J.L., Kawai T., and Gorospe M. (2006). Translational repression by RNA-binding protein TIAR. Mol Cell Biol 26, 2716-2727
Markus M.A., and Morris B.J. (2009). RBM4: a multifunctional RNA-binding protein. Int J Biochem Cell Biol 41, 740-743
Margittai E., Banhegyi G., Kiss A., Nagy G., Mandl J., Schaff Z., and Csala M. (2005). Scurvy leads to endoplasmic reticulum stress and apoptosis in the liver of Guinea pigs. J Nutr 135,2530-2534
McCullough KD, Martindale JL, Klotz LO, Aw TY, and Holbrook NJ. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21,1249-1259
Mori K., Kawahara T., Yoshida H., Yanagi H., and Yura T. (1996). Signalling from
endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells 1,803-817
Mukhopadhyay D., Houchen C.W., Kennedy S., Dieckgraefe B.K., and Anant S. (2003). Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol Cell 11,113-126
Nakagawa T., Zhu H., Morishima N., Li E., Xu J., Yankner B.A., and Yuan J. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403,98-103
Ness SA. (2006). Basic microarray analysis: strategies for successful experiments. Methods Mol Biol 316,13-33
Novoa I., Zeng H., Harding H.P., and Ron D. (2001). Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153,1011-1022
Okada T., Yoshida H., Akazawa R., Negishi M., and Mori K. (2002). Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 366,585-594
Ogawa S., Kitao Y., and Hori O. (2007). Ischemia-induced neuronal cell death and stress response. Antioxid Redox Signal 9,573-587
Palam L.R., Baird T.D., and Wek R.C. (2011). Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J Biol Chem 286,10939-10949
Papa F.R., Zhang C., Shokat K., and Walter P. (2003). Bypassing a kinase activity with an ATP-competitive drug. Science 302,1533-1537
Parsons J.T., Churn S.B., and DeLorenzo R.J. (1997). Ischemia-induced inhibition of calcium uptake into rat brain microsomes mediated by Mg2+/Ca2+ ATPase. J Neurochem 68,1124-1134
Paschen W., Aufenberg C., Hotop S., and Mengesdorf T. (2003). Transient cerebral ischemia activates processing of xbp1 messenger RNA indicative of endoplasmic reticulum stress. J Cereb Blood Flow Metab 23,449-461
Paschen W., Gissel C., Linden T., Althausen S., and Doutheil J. (1998). Activation of gadd153 expression through transient cerebral ischemia: evidence that ischemia causes endoplasmic reticulum dysfunction. Brain Res Mol Brain Res 60,115-122
Romero-Ramirez L., Cao H., Nelson D., Hammond E., Lee A.H., Yoshida H., Mori K., Glimcher L.H., Denko N.C., Giaccia A.J., Le Q.T., and Koong A.C. (2004). XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 64,5943-5947
Ron D., and Habener J.F. (1992). CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 6,439-453
Ron D., and Walter P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8,519-529
Scorrano L., Oakes S.A., Opferman J.T., Cheng E.H., Sorcinelli M.D., Pozzan T., and Korsmeyer S.J. (2003). BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300,135-139
Scheuner D., Song B., McEwen E., Liu C., Laybutt R., Gillespie P., Saunders T., Bonner-Weir S., and Kaufman R.J. (2001). Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7,1165-1176
Schmitt-Ney M. and Habener J.F. (2000). CHOP/GADD153 gene expression response to cellular stresses inhibited by prior exposure to ultraviolet light wavelength band C (UVC). Inhibitory sequence mediating the UVC response localized to exon 1. J Biol Chem 275,40839-40845
Schroder M., and Kaufman R.J. (2005). The mammalian unfolded protein response. Annu Rev Biochem 74,739-789
Shamu C.E., and Walter P. (1996). Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J 15,3028-3039
Shen J., Chen X., Hendershot L., and Prywes R. (2002). ER stress regulation of ATF6
localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization
signals. Dev Cell 3,99-111
Sidrauski C., Cox J.S., and Walter P. (1996). tRNA ligase is required for regulated
mRNA splicing in the unfolded protein response. Cell 87,405-413
Stevens F.J., and Argon Y. (1999). Protein folding in the ER. Semin Cell Dev Biol 10,443-454
Subramaniam D., Natarajan G., Ramalingam S., Ramachandran I., May R., Queimado L., Houchen C.W., and Anant S. (2008). Translation inhibition during cell cycle arrest and apoptosis: Mcl-1 is a novel target for RNA binding protein CUGBP2. Am J Physiol Gastrointest Liver Physiol. 294, G1025-1032
Sureban S.M., Murmu N., Rodriguez P., May R., Maheshwari R., Dieckgraefe B.K., Houchen C.W., and Anant S. (2007). Functional antagonism between RNA binding proteins HuR and CUGBP2 determines the fate of COX-2 mRNA translation. Gastroenterology. 132, 1055-1065
Szabat M., Kalynyak T.B., Lim G.E., Chu K.Y., Yang Y.H., Asadi A., Gage B.K., Ao Z., Warnock G.L., Piret J.M., Kieffer T.J., and Johnson J.D. (2011). Musashi expression in β-cells coordinates insulin expression, apoptosis and proliferation in response to endoplasmic reticulum stress in diabetes. Cell Death Dis 2, e232
Ubeda M., Wang X.Z., Zinszner H., Wu I., Habener J.F., and Ron D. (1996). Stress-induced binding of the transcriptional factor CHOP to a novel DNA control element. Mol Cell Biol 16,1479-1489
Umek R.M., Friedman A.D., and McKnight S.L. (1991). CCAAT-enhancer binding protein: a component of a differentiation switch. Science 251,288-292
Urano F., Wang X., Bertolotti A., Zhang Y., Chung P., Harding H.P., and Ron D. (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287,664-666
Vattem K.M., and Wek R.C. (2004). Reinitiation involving upstream ORFs regulates
ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci USA 101,11269-11274
Vernia S., Rubio T., Heredia M., Rodriguez de Cordoba S., and Sanz P. (2009). Increased endoplasmic reticulum stress and decreased proteasomal function in lafora disease models lacking the phosphatase laforin. PLoS One 4,e5907
Walter P., and Ron D. (2011). The unfolded protein response: from stress pathway
to homeostatic regulation. Science 334,1081-1086
Wouters B.G., and Koritzinsky M. (2008). Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 8,851-864
Xu C., Bailly-Maitre B., and Reed J.C. (2005). Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115,2656-2664
Ye J., Rawson R.B., Komuro R., Chen X., Dave U.P., Prywes R., Brown M.S., and Goldstein J.L. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6,1355-1364
Yoneda T., Imaizumi K., Oono K., Yui D., Gomi F., Katayama T., and Tohyama M. (2001). Activation of caspase-12,an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism
in response to the ER stress. J Biol Chem 276,13935-13940
Yoshida H., Matsui T., Hosokawa N., Kaufman R.J., Nagata K., and Mori K. (2003). A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4,265-271
Yoshida H., Matsui T., Yamamoto A., Okada T., and Mori K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107,881-891
Yoshida H., Okada T., Haze K., Yanagi H., Yura T., Negishi M., and Mori K. (2000). ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20,6755-6767
Zhang W., Liu H., Han K., and Grabowski P.J. (2002). Region-specific alternative splicing in the nervous system: implications for regulation by the RNA-binding protein NAPOR. RNA 8,671-685
Zinszner H., Kuroda M., Wang X., Batchvarova N., Lightfoot R.T., Remotti H., Stevens J.L., and Ron D. (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12,982-985
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18671-
dc.description.abstract在in vitro的情況下,已知細胞受到外界壓力刺激,如hypoxia,會促使內質網壓力(Endoplasmic reticulum stress, ER stress)產生,以應對外界壓力。此外,ER stress也發現和人類的神經疾病,如帕金森氏症或阿茲海默症等有所相關。但是ER stress在疾病或發育過程中的具體角色並不明朗,因此探討ER stress在in vivo中的調控是一個急待探討的領域。其中在ER stress的下游基因,DNA damage-inducible transcript 3, 又被稱作C/EBP homologous protein (CHOP),其5’ 端的untranslated region(5’ UTR)中的upstream open reading frame (uORF)卻主導了本身基因轉譯的調控。然而對於ER stress如何造成chop uORF主導轉譯抑制能力的失效,其分子機制仍舊不清楚。因此本研究利用帶有人類chop uORF (huORFchop)與GFP reporter gene的基因轉殖斑馬魚品系(huORFZ)作為實驗動物,經hypoxia處理後會誘導huORF的translational inhibition功能失效,而促使GFP轉譯而產生螢光。並且表現在中樞神經系統。藉由Fluorescence-activated cell sorting將細胞群體區分為GFP(+)和GFP(-),再用microarray偵測這兩個細胞群體中的transcriptome上的變化量偵測。結果顯示,significant up的基因有1295個,而significant down有3018個。接著,我們利用The Database for Annotation, Visualization and Integrated Discovery的分析軟體,將microarray中有著顯著下降差異的基因進行功能性分群後,以RNA binding群組作為本研究對象。我們鎖定其中的兩個基因,celf2和rbm4.1,因為其基因表現量(microarray中的A值)大於8以上;並且這兩個基因皆擁有對mRNA轉譯調控的功能。若用whole mount in situ hybridization偵測這兩個基因在胚胎受到ER stress和在正常狀態的表現相比,發現celf2表現量下降符合microarray結果而rbm4.1表現量上昇和microarray不同。而在in vitro transcription後,將celf2和rbm4.1 mRNA分別注射至huORFZ胚胎內以增加mRNA的表現,結果(1)注射celf2的胚胎有GFP表現,但與施加stress後的胚胎GFP表現率並沒有減少,表示celf2可能沒有減弱huORFchop轉譯抑制的功能。(2)注射rbm4.1的胚胎在沒有施加stress下,卻會在眼睛和(或)軀幹轉譯出GFP,表示過量表現rbm4.1會降低了huORFchop轉譯抑制的能力。因此我們推測rbm4.1基因可能參與在ER stress時,huORFchop序列失去轉譯抑制能力而開啟下游coding sequence的功能。zh_TW
dc.description.abstractIn vitro, for example, hypoxia, cells response endoplasmic reticulum stress(ER stress) to compromise the unbalance homeostasis. In vivo, ER stress has an important role with human neurodegenerative disease, for example, Alzheimer’s and Parkinson’s. However, it’s not clear about the mechanism in disease or development affecting by ER stress in vivo. The downstream gene in unfolded protein response of ER stress, chop, is regulated by its own uORF of 5’UTR. However, the regulation mechanism of the uORFchop translation inhibition is not clear. This research, we use a transgenic zebrafish line, called huORFZ carried with human chop uORF and a GFP reporter gene, to selection the candidate gene to regulation the uORFchop by inducing hypoxia to create ER stress. Using hypoxia, it’s proved that the function of uORFchop translation inhibition is inactivated and translates GFP at central nerve system. By embryos cell suspension and Fluorescence-activated cell sorting (FACS), we collect two kinds of cell population, GFP+ and GFP- cells to run microarray. By comparing the transcriptome of these two groups with a microarray, we could select the candidate gene for regulation the uORFchop. There is 1295 genes for significant up and 3018 for down in microarray. Next, we use the analysis software, the Database for Annotation, Visualization and Integrated Discovery (DAVID), to analyze the significant down expressed genes of the microarray described above. By selecting the RNA binding chart, the gene annotation clustering result by DAVID, we conclude two potential gene, celf2 and rbm4.1 because these two genes’ the average intensity number (A) of microarray are higher than 8. And these two genes have the ability for regulating specific mRNA translation. In WISH, we find celf2 has a down expression pattern but rbm4.1 is opposed comparing with the no hypoxia induced embryos. In the end, we use microinjection to overexpress these two genes in huORFZ. In 96 hpf, we find (1) celf2 expresses a weak pattern of GFP in huORFZ but these injected embryos gets the same GFP express ratio with controls. Therefore we suggest that celf2 may not participate in inhibition of huORFchop translation inhibition. (2) rbm4.1 overexpression in huORFZs expresses GFP at eyes and(or) trunk with no any stress. This result shows overdose of rbm4.1 can depress the translation inhibition ability of huORFchop. In conclusion, we suggest that rbm4.1 has a role in regulating the huORFchop translation inhibition during ER stress.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:18:27Z (GMT). No. of bitstreams: 1
ntu-103-R99b43027-1.pdf: 4686745 bytes, checksum: 8dd72f6577e582a55c3f817ccdd12840 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 1
Abstract 3
文獻回顧 5
前言 14
實驗材料與方法 16
結果 26
討論 31
結論 34
參考文獻 35
圖表 50
附錄 64
dc.language.isozh-TW
dc.titleRBM4.1參與降低human chop uORF序列所主導的轉譯抑制的能力zh_TW
dc.titleRBM4.1 is involved in repressing the translation inhibition mediated by human chop uORF sequenceen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹文雄,劉逸軒
dc.subject.keyword內質網壓力,內質網相關壓力,缺氧,chop,upstream open reading frame,zh_TW
dc.subject.keywordER stress,ER-associated stress,Hypoxia,chop,upstream open reading frame,en
dc.relation.page70
dc.rights.note未授權
dc.date.accepted2014-08-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved