Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18659
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡睿哲(Jui-che Tsai)
dc.contributor.authorShih-Hao Tangen
dc.contributor.author唐詩皓zh_TW
dc.date.accessioned2021-06-08T01:17:43Z-
dc.date.copyright2014-09-04
dc.date.issued2014
dc.date.submitted2014-08-12
dc.identifier.citation[1] Manz, A., Graber, N., & Widmer, H. A. (1990). Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical, 1(1), 244-248.
[2] http://en.wikipedia.org/wiki/Lab-on-a-chip
[3] Xia, N., Hunt, T. P., Mayers, B. T., Alsberg, E., Whitesides, G. M., Westervelt, R. M., & Ingber, D. E. (2006). Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomedical Microdevices, 8(4), 299-308.
[4] Ahn, C. H., Allen, M. G., Trimmer, W., Jun, Y. N., & Erramilli, S. (1996). A fully integrated micromachined magnetic particle separator. Journal of Microelectromechanical Systems, 5(3), 151-158.
[5] Pamme, N., & Manz, A. (2004). On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Analytical Chemistry, 76(24), 7250-7256.
[6] Choi, J. W., Ahn, C. H., Bhansali, S., & Henderson, H. T. (2000). A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems. Sensors and Actuators B: Chemical, 68(1), 34-39.
[7] Tsai, S. S., Griffiths, I. M., & Stone, H. A. (2011). Microfluidic immunomagnetic multi-target sorting–a model for controlling deflection of paramagnetic beads. Lab on a Chip, 11(15), 2577-2582.
[8] http://en.wikipedia.org/wiki/Dielectrophoresis
[9] Pohl, H. A., & Pohl, H. A. (1978). Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields, (pp. 171-210).
[10] Huang, C. Y., Fan, S. K., & Hsu, W. Capillary electrophoresis in virtual microchannel based on dielectrophoresis.
[11] Chiou, P. Y., Ohta, A. T., & Wu, M. C. (2005). Massively parallel manipulation of single cells and microparticles using optical images. Nature, 436(7049), 370-372.
[12] Chen, H. H., Tien, W. T., Lo, H. H., Lin, C. C., & Chen, J. C. (2013, October). Optically-induced dielectrophoretic technology for particles manipulation and separation. 2013 8th International In Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), (pp. 258-259). IEEE.
[13] Cowen, A., Dudley, B., Hill, E., Walters, M., Wood, R., Johnson, S., ... & Hardy, B. (2002). MetalMUMPs design handbook. MEMSCAP Inc., Durham.
[14] Gijs, M. A. (2004). Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluidics and Nanofluidics, 1(1), 22-40.
[15] Happel, J., & Brenner, H. (Eds.). (1983). Low Reynolds number hydrodynamics: with special applications to particulate media, (Vol. 1). Springer.
[16] Abu-Nimeh, F. T., & Salem, F. M. (2013). An Integrated Open-Cavity System for Magnetic Bead Manipulation. Transactions on Biomedical Circuits and Systems, IEEE, 7(1), 31-42.
[17] 磁性/光學性質之核-殼型複合奈米粒子之合成. 2002.
[18] Chiang, H. W. Virtual Channels for Achieving a Dynamically Reconfigurable Network of Flowing Magnetic Beads. July 2013
[19] Chiang, H. W., Hsieh, M. C., Chang, Y. D., Yeh, P. F., & Tsai, J. C. (2013, June). Virtual channels for a dynamically reconfigurable network of flowing magnetic beads. The 17th International Conference on In Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), (pp. 1306-1309). IEEE.
[20] Tang, S. H., Chiang, H. W., Hsieh, M. C., Chang, Y. D., Yeh, P. F., Shieh, W. Y., & Tsai, J. C. (2014). An approach to implement virtual channels for flowing magnetic beads. Journal of Micromechanics and Microengineering, 24(7), 075016.
[21] Hsien, M. C. Virtual channels for magnetic beads in static fluid, June 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18659-
dc.description.abstract隨著科技的進步,各領域的研究都朝向微小化發展,許多研究已經將研究主題進展至微米甚至奈米大小的尺度。目前透過微機電系統製程技術,已經可以將許多大型儀器設備的功能整合在一個釐米大小的晶片上。在生物醫學領域,這類的晶片被稱為微流道晶片,可以用來做混合、操作、傳輸及分離等功能。
近年來的相關研究都將微流道以隧道形式的微管道來設計,以方便磁性粒子的運輸及操作。這類屬於「實體」通道的微流道晶片通常需要藉由幫浦來推動液體流動及粒子/細胞運輸。在液體流動的過程中,包含粒子的溶液必須不斷地注入與排出,造成溶液與粒子的浪費。此外,阻塞及污染會導致晶片在使用壽命結束後必須拋棄。
使用「虛擬」通道來控制粒子可以避免上述的問題,本研究藉由使用金屬鎳建構虛擬通道微流道晶片來試圖解決上述問題。利用鎳的鐵磁性材料特性,可以用外加磁場將其進行磁化,使用磁化的鎳所產生之磁場建構出虛擬的「磁場牆」來引導磁性粒子。此外,在本研究中,使用玻片夾在含有磁性粒子的液體及有著鎳結構的晶片中間來預防液體與有晶片直接接觸。
藉由使用金屬鎳,本研究發展了一個新穎的微流道系統建構基礎,其中包含了蒐集型流道、運輸型流道以及功能型流道。本研究亦試圖藉由模擬來了解磁鐵的擺放排列對於磁性粒子的受力之影響。此外,磁性粒子的流速與不同尺寸或形狀流道的磁場強度之關係亦有探討。
zh_TW
dc.description.abstractWith the trend towards miniaturization in many fields of research, many studies have advanced to research topics of the micrometer or even nanometer scale. The fabrication technology for micro-electro-mechanical systems (MEMS) allows us to integrate the functions of a large instrument into a centimeter-sized chip. In biomedical science, such a chip which is called microfluidic chip can be used for mixing, manipulation, transport and separation, etc.
Recent studies have devised microfluidic channels in the form of a tunnel, making it relatively easy to transport and manipulate beads. Chips with ‘‘substantial’’ channels normally require pumps for fluidic flow and particle/cell transportation. During operation the fluid flows; therefore, constant inputs and outputs of the solution containing beads are required, leading to waste of the solution and beads. Also, resulting from the clogging and contamination, the chip has a certain operational lifetime.
Utilizing ‘‘virtual’’ channels to control beads can avoid the above-mentioned problems. our work attempts to solve the above problems by using nickel to construct the virtual channels in microfluidic chips. With its own ferromagnetism, nickel can be magnetized using an external magnetic field. Additionally, the magnetic fields produced by nickel allow us to form virtual ‘‘walls’’ in order to guide the magnetic beads. In this work, a glass substrate is sandwiched between the liquid containing magnetic beads and the chip with nickel structures, preventing the liquid from directly contacting the nickel.
By using nickel, this work develops the building blocks for a novel microfluidic system, including the collecting channels, transporting channels, and function channels. This work also attempts to understand how the placement of the magnet affects the force exerted on magnetic beads by simulation. Furthermore, the correlation between the flow rate of the magnetic beads and the magnetic flux density for channels of different dimensions or geometrical configurations is obtained.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:17:43Z (GMT). No. of bitstreams: 1
ntu-103-R01941014-1.pdf: 3127516 bytes, checksum: 15d8cae35d16fd44b2be2264212bfc87 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 viii
Chapter 1 文獻回顧與研究動機 1
1.1 前言 1
1.2 磁性粒子於實體通道微流道之應用 2
1.3 虛擬通道微流道 6
1.4 研究動機 10
Chapter 2 實驗架構與原理 12
2.1 設計與製程 12
2.2 實驗架構及實驗流程 16
2.3 實驗原理 18
2.3.1 外加磁場磁化方向影響 19
2.3.2 磁性粒子在流道中受力分析 20
Chapter 3 實驗素材 24
3.1 磁性粒子 24
3.2 外加磁場 26
3.3 壓克力夾具 28
Chapter 4 實驗及模擬結果 29
4.1 外加磁場磁化方向影響之模擬效果呈現 29
4.2 外加磁場磁化方向影響之實驗效果呈現 34
4.3 虛擬流道基礎因素分析 36
4.3.1 玻片厚度之影響 36
4.4 虛擬流道設計結果分析 37
4.4.1 流道寬度影響效果測試 38
4.4.2 鎳結構寬度影響效果測試 40
4.5 虛擬流道之應用功能分析 42
4.5.1 雙穩態動態結構捕捉效果測試 43
4.5.2 磁性粒子結合生物材料 46
Chapter 5 結論與未來展望 50
5.1 結論 50
5.2 未來展望 51
REFERENCE 54
dc.language.isozh-TW
dc.title流動磁性粒子虛擬通道之實現zh_TW
dc.titleImplementation of Virtual Channels for Flowing Magnetic Beadsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫家偉(Chia-Wei Sun),呂志偉(Chih-Wei Lu)
dc.subject.keyword微流道,非實體通道,磁性粒子,鎳,釹鐵硼磁鐵,磁化現象,zh_TW
dc.subject.keywordmicrofluidic channel,virtual channel,magnetic bead,nickel,Nd-Fe-B magnet,magnetization,en
dc.relation.page55
dc.rights.note未授權
dc.date.accepted2014-08-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
3.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved