Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18620
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭如忠(Ru-Jong Jeng)
dc.contributor.authorChia-Hsuan Linen
dc.contributor.author林佳萱zh_TW
dc.date.accessioned2021-06-08T01:15:21Z-
dc.date.copyright2021-02-23
dc.date.issued2021
dc.date.submitted2021-02-05
dc.identifier.citation1.Geyer, R.; Jambeck, J. R.; Law, K. L., Production, use, and fate of all plastics ever made. Science Advances 2017, 3 (7), e1700782.
2.Coates, G. W.; Getzler, Y. D. Y. L., Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials 2020, 5 (7), 501-516.
3.Fukuoka, S.; Tojo, M.; Hachiya, H.; Aminaka, M.; Hasegawa, K., Green and sustainable chemistry in practice: development and industrialization of a novel process for polycarbonate production from CO2 without using phosgene. Polymer Journal 2007, 39 (2), 91-114.
4.Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S., A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem. 2003, 5 (5), 497-507.
5.Elmaghor, F.; Zhang, L.; Fan, R.; Li, H., Recycling of polycarbonate by blending with maleic anhydride grafted ABS. Polymer 2004, 45 (19), 6719-6724.
6.Montaudo, G.; Puglisi, C.; Rapisardi, R.; Samperi, F., Further studies on the thermal decomposition processes in polycarbonates. Polymer Degradation and Stability 1991, 31 (2), 229-246.
7.Montaudo, G.; Carroccio, S.; Puglisi, C., Thermal and themoxidative degradation processes in poly(bisphenol a carbonate). Journal of Analytical and Applied Pyrolysis 2002, 64 (2), 229-247.
8.Antonakou, E. V.; Achilias, D. S., Recent advances in polycarbonate recycling: a review of degradation methods and their mechanisms. Waste and Biomass Valorization 2012, 4 (1), 9-21.
9.Sivalingam, G.; Nagaveni, K.; Madras, G.; Hegde, M. S., Kinetics of catalytic degradation of polycarbonate in benzene. Industrial Engineering Chemistry Research 2003, 42 (4), 687-691.
10.Chiu, S. J.; Chen, S. H.; Tsai, C. T., Effect of metal chlorides on thermal degradation of (waste) polycarbonate. Waste Manag 2006, 26 (3), 252-9.
11.Tagaya, H.; Katoh, K.; Kadokawa, J.-i.; Chiba, K., Decomposition of polycarbonate in subcritical and supercritical water. Polymer Degradation and Stability 1999, 64 (2), 289-292.
12.Oku, A.; Tanaka, S.; Hata, S., Chemical conversion of poly(carbonate) to bis(hydroxyethyl) ether of bisphenol A. An approach to the chemical recycling of plastic wastes as monomers. Polymer 2000, 41 (18), 6749-6753.
13. Kim, J. G., Chemical recycling of poly(bisphenol A carbonate). Polymer Chemistry 2020, 11 (30), 4830-4849.
14.Lin, C.-H.; Lin, H.-Y.; Liao, W.-Z.; Dai, S. A., Novel chemical recycling of polycarbonate (PC) waste into bis-hydroxyalkyl ethers of bisphenol A for use as PU raw materials. Green Chem. 2007, 9 (1), 38-43.
15.Hata, S.; Goto, H.; Yamada, E.; Oku, A., Chemical conversion of poly (carbonate) to 1, 3-dimethyl-2-imidazolidinone (DMI) and bisphenol A: a practical approach to the chemical recycling of plastic wastes. Polymer 2002, 43 (7), 2109-2116.
16.Lin, W.-H.; Guo, Y.-S.; Dai, S. A., An efficient one-pot synthesis of aliphatic diisocyanate from diamine and aiphenyl carbonate. Journal of the Taiwan Institute of Chemical Engineers 2015, 50, 322-327.
17.Wu, C.-H.; Chen, L.-Y.; Jeng, R.-J.; Dai, S. A., 100% atom-economy efficiency of recycling polycarbonate into versatile intermediates. ACS Sustainable Chemistry Engineering 2018, 6 (7), 8964-8975.
18.Bayer, O., Das di‐isocyanat‐polyadditionsverfahren (polyurethane). Angewandte Chemie 1947, 59 (9), 257-272.
19.Szycher, M., Szycher's handbook of polyurethanes. CRC press: 1999.
20.Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H., Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem Rev 2015, 115 (22), 12407-39.
21.Zhang, D.; Zhang, Y.; Fan, Y.; Rager, M.-N.; Guérineau, V.; Bouteiller, L.; Li, M.-H.; Thomas, C. M., Polymerization of cyclic carbamates: a practical route to aliphatic polyurethanes. Macromolecules 2019, 52 (7), 2719-2724.
22.Groszos, S. J.; Drechsel, E. K., Method of preparing a polyurethane. Google Patents: 1957.
23.Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud, F., On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 2013, 113 (1), 80-118.
24.Benyahya, S.; Habas, J.-P.; Auvergne, R.; Lapinte, V.; Caillol, S., Structure-property relationships in polyhydroxyurethanes produced from terephthaloyl dicyclocarbonate with various polyamines. Polymer International 2012, 61 (11), 1666-1674.
25.Nohra, B.; Candy, L.; Blanco, J.-F.; Raoul, Y.; Mouloungui, Z., Synthesis of five and six-membered cyclic glycerilic carbonates bearing exocyclic urethane functions. European Journal of Lipid Science and Technology 2013, 115 (1), 111-122.
26.Steblyanko, A.; Choi, W.; Sanda, F.; Endo, T., Addition of five‐membered cyclic carbonate with amine and its application to polymer synthesis. Journal of Polymer Science Part A: Polymer Chemistry 2000, 38 (13), 2375-2380.
27.Kim, M. R.; Kim, H. S.; Ha, C. S.; Park, D. W.; Lee, J. K., Syntheses and thermal properties of poly (hydroxy) urethanes by polyaddition reaction of bis (cyclic carbonate) and diamines. Journal of applied polymer science 2001, 81 (11), 2735-2743.
28.Kihara, N.; Endo, T., Synthesis and properties of poly (hydroxyurethane) s. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31 (11), 2765-2773.
29.Sheng, X.; Ren, G.; Qin, Y.; Chen, X.; Wang, X.; Wang, F., Quantitative synthesis of bis(cyclic carbonate)s by iron catalyst for non-isocyanate polyurethane synthesis. Green Chemistry 2015, 17 (1), 373-379.
30.Besse, V.; Camara, F.; Méchin, F.; Fleury, E.; Caillol, S.; Pascault, J.-P.; Boutevin, B., How to explain low molar masses in PolyHydroxyUrethanes (PHUs). European Polymer Journal 2015, 71, 1-11.
31.Romano, U.; Tesel, R.; Mauri, M. M.; Rebora, P., Synthesis of dimethyl carbonate from methanol, carbon monoxide, and oxygen catalyzed by copper compounds. Industrial Engineering Chemistry Product Research and Development 1980, 19 (3), 396-403.
32.Huang, S.; Yan, B.; Wang, S.; Ma, X., Recent advances in dialkyl carbonates synthesis and applications. Chem Soc Rev 2015, 44 (10), 3079-116.
33.Duval, C.; Kébir, N.; Charvet, A.; Martin, A.; Burel, F., Synthesis and properties of renewable nonisocyanate polyurethanes (NIPUs) from dimethylcarbonate. Journal of Polymer Science Part A: Polymer Chemistry 2015, 53 (11), 1351-1359.
34.Kumar, S.; Jain, S. L., l-Proline–TBAB-catalyzed phosgene free synthesis of methyl carbamates from amines and dimethyl carbonate. New Journal of Chemistry 2013, 37 (9).
35.Distaso, M.; Quaranta, E., Highly selective carbamation of aliphatic diamines under mild conditions using Sc(OTf)3 as catalyst and dimethyl carbonate as a phosgene substitute. Applied Catalysis B: Environmental 2006, 66 (1-2), 72-80.
36. Li, S.; Zhao, J.; Zhang, Z.; Zhang, J.; Yang, W., Synthesis and characterization of aliphatic segmented poly(ether amide urethane)s through a non-isocyanate route. RSC Advances 2014, 4 (45).
37.Sharma, B.; Keul, H.; Höcker, H.; Loontjens, T.; Benthem, R. v., Synthesis and characterization of alternating poly(amide urethane)s from ε-caprolactone, diamines and diphenyl carbonate. Polymer 2005, 46 (6), 1775-1783.
38.Kamps, J. H.; Hoeks, T.; Kung, E.; Lens, J. P.; McCloskey, P. J.; Noordover, B. A. J.; Heuts, J. P. A., Activated carbonates: enabling the synthesis of differentiated polycarbonate resins via melt transcarbonation. Polymer Chemistry 2016, 7 (33), 5294-5303.
39.Katsarava, R.; Kartvelishvili, T.; Kharadze, D.; Zaalishvili, M.; Patsuriya, M., Synthesis of polyurethanes by polycondensation of activated diol biscarbonates with diamines in mild conditions. Polymer Science USSR 1987, 29 (10), 2268-2275.
40.Sardon, H.; Engler, A. C.; Chan, J. M. W.; Coady, D. J.; O'Brien, J. M.; Mecerreyes, D.; Yang, Y. Y.; Hedrick, J. L., Homogeneous isocyanate- and catalyst-free synthesis of polyurethanes in aqueous media. Green Chemistry 2013, 15 (5).
41.Neffgen, S.; Keul, H.; Höcker, H., Ring‐opening polymerization of cyclic urethanes and ring‐closing depolymerization of the respective polyurethanes. Macromolecular rapid communications 1996, 17 (6), 373-382.
42.Neffgen, S.; Keul, H.; Höcker, H., Cationic ring-opening polymerization of trimethylene urethane: A mechanistic study. Macromolecules 1997, 30 (5), 1289-1297.
43.Neffgen, S.; Keul, H.; Höcker, H., Poly (tetrahydrofuran)‐block‐poly (trimethylene urethane): synthesis and characterization. Macromolecular rapid communications 1999, 20 (4), 194-199.
44.Kušan, J.; Keul, H.; Höcker, H., Cationic ring-opening polymerization of tetramethylene urethane. Macromolecules 2001, 34 (3), 389-395.
45.Lebedev, B.; Veridusova, V.; Höcker, H.; Keul, H., Thermodynamics of aliphatic cyclic urethanes, of their ring‐opening polymerization, and of corresponding polyurethanes. Macromolecular Chemistry and Physics 2002, 203 (8), 1114-1125.
46.Juarez, R.; Concepcion, P.; Corma, A.; Garcia, H., Ceria nanoparticles as heterogeneous catalyst for CO2 fixation by omega-aminoalcohols. Chem Commun (Camb) 2010, 46 (23), 4181-3.
47.Petzold, D.; Nitschke, P.; Brandl, F.; Scheidler, V.; Dick, B.; Gschwind, R. M.; Konig, B., Visible-light-mediated liberation and in situ conversion of fluorophosgene. Chemistry 2019, 25 (1), 361-366.
48.Caplow, M., Kinetics of carbamate formation and breakdown. Journal of the American Chemical Society 1968, 90 (24), 6795-6803.
49.Yang, W.; Macosko, C.; Wellinghoff, S., Thermal degradation of urethanes based on 4, 4′-diphenylmethane diisocyanate and 1, 4-butanediol (MDI/BDO). Polymer 1986, 27 (8), 1235-1240.
50.Lu, Q.-W.; Hoye, T. R.; Macosko, C. W., Reactivity of common functional groups with urethanes: models for reactive compatibilization of thermoplastic polyurethane blends. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40 (14), 2310-2328.
51.Illuminati, G.; Mandolini, L., Ring closure reactions of bifunctional chain molecules. Accounts of Chemical Research 1981, 14 (4), 95-102.
52.Simon, J.; Barla, F.; Kelemen-Haller, A.; Farkas, F.; Kraxner, M., Thermal stability of polyurethanes. Chromatographia 1988, 25 (2), 99-106.
53.Neffgen, S.; Kušan, J.; Fey, T.; Keul, H.; Höcker, H., Synthesis and thermal properties of [n]‐polyurethanes. Macromolecular Chemistry and Physics 2000, 201 (16), 2108-2114.
54.Fernández, C.; Bermúdez, M.; Muñoz-Guerra, S.; León, S.; Versteegen, R.; Meijer, E., Crystal structure and morphology of linear aliphatic n-polyurethanes. Macromolecules 2010, 43 (9), 4161-4171.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18620-
dc.description.abstract本研究以回收聚碳酸酯 (Polycarbonate, PC)為原料,利用不同碳鏈長度之醇胺進行PC胺解,製成含胺基甲酸酯官能基之中間體,由於分子結構的設計,此中間體透過裂解能夠依據所使用的醇胺之碳鏈長度,成功製備五元、六元及七元環狀胺基甲酸酯。此製程相較於傳統備環狀胺基甲酸酯之方法,有無須添加觸媒、步驟較為簡單之優勢。由於此製程為兩步法,本研究亦使用了傅立葉轉換紅外光譜儀(Fourier Transform Infrared Spectroscopy, FT-IR),搭配熱力學數據及核磁共振(Nuclear Magnetic Resonance Spectrometer, NMR) 探討兩製程步驟之化學反應機制,結果顯示,環化反應與分子內作用力及環狀胺基甲酸酯之穩定性有關。
以開環聚合製備氨酯(Polyurethane, PU)為非光氣法製備聚氨酯的方法之一,本研究所製備之環狀胺基甲酸酯經由陽離子開環聚合製備出線性 PU,再使用NMR、熱重分析儀 (Thermogravimetric Analysis, TGA)及微差掃描熱分析(Differential Scanning Calorimetry, DSC)證實此線性PU與文獻之化學結構、熱性質相符,顯示本論文成功使用環狀胺基甲酸酯製備非光氣法線性聚胺酯 。
zh_TW
dc.description.abstractChemical recycling of poly(bisphenol-A carbonate) (PC) into cyclic urethanes was attempted by aminolysis, i.e. amine carbonylation reaction, followed by pyrolysis. By using amino alcohols with different chain lengths as aminolysis agent, the interim prepolymers with carbamate functional groups were developed. Based on the molecular design, the prepolymers were then decomposed into five-membered, six-membered or seven-membered cyclic urethanes dependent on the chain length of aminolysis agent after pyrolysis. This process provided a rather simple and eco-friendly way to synthesize cyclic urethanes in the absence of catalyst.
The mechanism of the two-step process was also discussed based on the results of Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectrometer (NMR) and thermodynamics data. These results confirm that the cyclization reaction was influenced by intramolecular interactions and the stability of cyclic urethane.
Linear polyurethanes (PU) were also prepared via cationic ring-opening polymerization of cyclic urethanes, which is a non-phosgene route to polyurethanes. The structure of the polyurethane was confirmed by NMR, and thermal properties were analyzed by thermogravimetric analysis and differential scanning calorimetry. The results were comparable with those in the literature.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:15:21Z (GMT). No. of bitstreams: 1
U0001-0502202114415700.pdf: 4432820 bytes, checksum: fb4b54111aa8e35e9bfa087648cc0ad1 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 1
圖目錄 3
表目錄 6
1. 緒論 7
2. 文獻回顧 8
2.1 高分子與循環材料 8
2.2 聚碳酸酯回收 9
2.2.1 聚碳酸酯簡介 9
2.2.2 聚碳酸酯回收方法 10
2.3 聚氨酯製備 16
2.3.1 聚氨酯簡介 16
2.3.2 傳統聚氨酯製備方法 16
2.3.3 非異氰酸酯法製備聚氨酯 18
2.4 研究動機 28
3. 實驗內容 29
3.1 藥品與溶劑 29
3.2 實驗儀器 33
3.3 實驗流程圖 35
3.4 合成步驟 37
3.4.1 以醇胺消化聚碳酸酯為反應中間體 37
3.4.2 以裂解法製備環狀胺基甲酸酯 39
3.4.3 純化裂解後之產物 41
3.4.4 以環狀胺基甲酸酯製備聚氨酯 42
4. 結果與討論 43
4.1 以醇胺消化聚碳酸酯之結構分析與機制探討 43
4.1.1 以不同碳鏈長度之醇胺消化聚碳酸酯之結構分析 43
4.1.2 以FT-IR光譜分析進行機制探討 48
4.1.3 以熱力學數據進行機制探討 49
4.2 以裂解法製備環狀胺基甲酸酯之結構分析 51
4.2.1 1H-NMR核磁共振氫譜分析 51
4.2.2 以裂解法製備環狀胺基甲酸酯之機制探討 54
4.3 環狀胺基甲酸酯之結構分析 55
4.3.1 1H-NMR核磁共振氫譜分析 55
4.4 以環狀胺基甲酸酯製備聚氨酯 58
4.4.1 以六元及七元環狀胺基甲酸酯製備之聚氨酯結構與分子量分析 58
4.4.2 以六元及七元環狀胺基甲酸酯製備之聚氨酯熱性質分析 59
5. 結論與未來展望 62
6. 參考文獻 63
附錄 68
dc.language.isozh-TW
dc.title回收聚碳酸酯製備環狀胺基甲酸酯之研究與應用zh_TW
dc.titlePreparation and Application of Cyclic Urethane derived from Recycled Polycarbonateen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee邱文英(Wen-Yen Chiu),戴憲弘(Sheng-Hong A. Dai),吳建欣(Chien-Hsin Wu)
dc.subject.keyword聚碳酸酯,回收,環狀胺基甲酸酯,開環聚合,聚氨酯,綠色化學,zh_TW
dc.subject.keywordPolycarbonate,Recycling,Cyclic urethane,Ring-opening polymerization,Polyurethane,Green chemistry,en
dc.relation.page68
dc.identifier.doi10.6342/NTU202100587
dc.rights.note未授權
dc.date.accepted2021-02-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0502202114415700.pdf
  未授權公開取用
4.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved