請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18612
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張瑞峰 | |
dc.contributor.author | SZU-HSIEN LEE | en |
dc.contributor.author | 李思賢 | zh_TW |
dc.date.accessioned | 2021-06-08T01:14:53Z | - |
dc.date.copyright | 2014-08-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-13 | |
dc.identifier.citation | [1] R. Siegel, J. Ma, Z. Zou, and A. Jemal, 'Cancer statistics, 2014,' CA: a cancer journal for clinicians, vol. 64, pp. 9-29, Jan 2014.
[2] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, 'Global cancer statistics,' CA: a cancer journal for clinicians, vol. 61, pp. 69-90, Feb 2011. [3] W. Buchberger, A. Niehoff, P. Obrist, P. DeKoekkoek-Doll, and M. Dunser, 'Clinically and mammographically occult breast lesions: detection and classification with high-resolution sonography,' in Seminars in Ultrasound, CT and MRI, Aug 2000, pp. 325-336. [4] S. W. Chan, P. S. Cheung, S. Chan, S. S. Lau, T. T. Wong, M. Ma, et al., 'Benefit of ultrasonography in the detection of clinically and mammographically occult breast cancer,' World J Surg, vol. 32, pp. 2593-8, Dec 2008. [5] P. Crystal, S. D. Strano, S. Shcharynski, and M. J. Koretz, 'Using sonography to screen women with mammographically dense breasts,' American Journal of Roentgenology, vol. 181, pp. 177-182, Jul 2003. [6] S. S. Kaplan, 'Clinical utility of bilateral whole-breast US in the evaluation of women with dense breast tissue,' Radiology, vol. 221, pp. 641-649, Dec 2001. [7] T. M. Kolb, J. Lichy, and J. H. Newhouse, 'Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: An analysis of 27,825 patient evaluations,' Radiology, vol. 225, pp. 165-175, Oct 2002. [8] K. Flobbe, P. Nelemans, A. Kessels, G. Beets, M. Von Meyenfeldt, and J. Van Engelshoven, 'The role of ultrasonography as an adjunct to mammography in the detection of breast cancer: a systematic review,' European Journal of Cancer, vol. 38, pp. 1044-1050, May 2002. [9] K. J. Taylor, C. Merritt, C. Piccoli, R. Schmidt, G. Rouse, B. Fornage, et al., 'Ultrasound as a complement to mammography and breast examination to characterize breast masses,' Ultrasound Med Biol, vol. 28, pp. 19-26, Jan 2002. [10] W. K. Moon, D.-Y. Noh, and J.-G. Im, 'Multifocal, Multicentric, and Contralateral Breast Cancers: Bilateral Whole-Breast US in the Preoperative Evaluation of Patients 1,' Radiology, vol. 224, pp. 569-576, Aug 2002. [11] C. M. Chen, Y. H. Chou, K. C. Han, G. S. Hung, C. M. Tiu, H. J. Chiou, et al., 'Breast lesions on sonograms: Computer-aided diagnosis with nearly setting-independent features and artificial neural networks,' Radiology, vol. 226, pp. 504-514, Feb 2003. [12] K. Drukker, M. L. Giger, and E. B. Mendelson, 'Computerized analysis of shadowing on breast ultrasound for improved lesion detection,' Medical Physics, vol. 30, pp. 1833-42, Jul 2003. [13] K. Drukker, M. L. Giger, and C. E. Metz, 'Robustness of computerized lesion detection and classification scheme across different breast US platforms,' Radiology, vol. 237, pp. 834-40, Dec 2005. [14] W. K. Moon, Y. W. Shen, M. S. Bae, C. S. Huang, J. H. Chen, and R. F. Chang, 'Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images,' IEEE Trans Med Imaging, vol. 32, pp. 1191-200, Jul 2013. [15] R. F. Chang, K. C. Chang-Chien, E. Takada, C. S. Huang, Y. H. Chou, C. M. Kuo, et al., 'Rapid image stitching and computer-aided detection for multipass automated breast ultrasound,' Medical Physics, vol. 37, pp. 2063-73, May 2010. [16] Y. Ikedo, D. Fukuoka, T. Hara, H. Fujita, E. Takada, T. Endo, et al., 'Development of a fully automatic scheme for detection of masses in whole breast ultrasound images,' Medical Physics, vol. 34, pp. 4378-4388, Oct 2007. [17] T. Tan, B. Platel, R. Mus, L. Tabar, R. M. Mann, and N. Karssemeijer, 'Computer-aided detection of cancer in automated 3d breast ultrasound,' Sep 2013. [18] K. Drukker, C. A. Sennett, and M. L. Giger, 'Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts,' Medical Physics, vol. 41, p. 012901, Dec 2014. [19] K. Drukker, M. L. Giger, K. Horsch, M. A. Kupinski, C. J. Vyborny, and E. B. Mendelson, 'Computerized lesion detection on breast ultrasound,' Medical Physics, vol. 29, pp. 1438-46, Jul 2002. [20] C.-M. Lo, R.-T. Chen, Y.-C. Chang, Y.-W. Yang, M.-J. Hung, C.-S. Huang, et al., 'Multi-dimensional Tumor Detection in Automated Whole Breast Ultrasound using Topographic Watershed,' Jul 2014. [21] W. K. Moon, C.-M. Lo, R.-T. Chen, Y.-W. Shen, J. M. Chang, C.-S. Huang, et al., 'Tumor detection in automated breast ultrasound images using quantitative tissue clustering,' Medical physics, vol. 41, p. 042901, Mar 2014. [22] M.-C. Yang, C.-S. Huang, J.-H. Chen, and R.-F. Chang, 'Whole breast lesion detection using naive bayes classifier for portable ultrasound,' Ultrasound in medicine & biology, vol. 38, pp. 1870-1880, Nov 2012. [23] Y. Luo, D. Tao, B. Geng, C. Xu, and S. J. Maybank, 'Manifold regularized multitask learning for semi-supervised multilabel image classification,' IEEE Trans Image Process, vol. 22, pp. 523-36, Feb 2013. [24] J. Shan, H. D. Cheng, and Y. Wang, 'A novel segmentation method for breast ultrasound images based on neutrosophic l-means clustering,' Medical Physics, vol. 39, pp. 5669-82, Sep 2012. [25] J. C. Bezdek, R. Ehrlich, and W. Full, 'FCM: The fuzzy c-means clustering algorithm,' Computers & Geosciences, vol. 10, pp. 191-203, May 1984. [26] J. Zhang, S. K. Zhou, S. Brunke, C. Lowery, and D. Comaniciu, 'Database-guided breast tumor detection and segmentation in 2d ultrasound images,' in SPIE Medical Imaging, Mar 2010, pp. 762405-762405-7. [27] Z. Tu, 'Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering,' in Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, Oct 2005, pp. 1589-1596. [28] J. Domke, 'Learning Graphical Model Parameters with Approximate Marginal Inference,' IEEE Trans Pattern Anal Mach Intell, Jan 2013. [29] C. C. Chang and C. J. Lin, 'LIBSVM: A Library for Support Vector Machines,' Acm Transactions on Intelligent Systems and Technology, vol. 2, Apr 2011. [30] C. Lo, Y.-W. Shen, C.-S. Huang, and R.-F. Chang, 'Computer-aided multiview tumor detection for automated whole breast ultrasound,' Ultrasonic imaging, vol. 36, pp. 3-17, Jan 2014. [31] T. Athanasiadis, P. Mylonas, Y. Avrithis, and S. Kollias, 'Semantic image segmentation and object labeling,' Ieee Transactions on Circuits and Systems for Video Technology, vol. 17, pp. 298-312, Mar 2007. [32] G. P. Liu, J. J. Yan, Y. Q. Wang, J. J. Fu, Z. X. Xu, R. Guo, et al., 'Application of multilabel learning using the relevant feature for each label in chronic gastritis syndrome diagnosis,' Evid Based Complement Alternat Med, vol. 2012, p. 135387, Mar 2012. [33] Y. L. Chang and X. Li, 'Adaptive image region-growing,' IEEE Trans Image Process, vol. 3, pp. 868-72, Nov 1994. [34] Rosenfel.A and J. L. Pfaltz, 'Sequential Operations in Digital Picture Processing,' Journal of the Acm, vol. 13, pp. 471-&, Oct 1966. [35] V. Mesev, 'Morphological image analysis: principles and applications,' Environment and Planning B-Planning & Design, vol. 28, pp. 800-801, Sep 2001. [36] A. T. Stavros, Breast ultrasound: Lippincott Williams & Wilkins, 2004. [37] H.-H. Hsu, J.-C. Yu, H.-S. Lee, W.-C. Lin, W.-C. Chang, H.-J. Tung, et al., 'Complex cystic lesions of the breast on ultrasonography: Feature analysis and BI-RADS assessment,' Eur J Radiol, vol. 79, pp. 73-79, Jul 2011. [38] A. Kolesnikov, M. Guillaumin, V. Ferrari, and C. H. Lampert, 'Closed-Form Training of Conditional Random Fields for Large Scale Image Segmentation,' arXiv preprint arXiv:1403.7057, Mar 2014. [39] J. Lafferty, A. McCallum, and F. C. Pereira, 'Conditional random fields: Probabilistic models for segmenting and labeling sequence data,' Jun 2001. [40] X. He, R. S. Zemel, and M. Carreira-Perpindn, 'Multiscale conditional random fields for image labeling,' in Computer vision and pattern recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE computer society conference on, Jun 2004, pp. II-695-II-702 Vol. 2. [41] H. Wang and X. Zhou, 'Detection and characterization of regulatory elements using probabilistic conditional random field and hidden Markov models,' Chin J Cancer, vol. 32, pp. 186-94, Apr 2013. [42] H. Chung and H. D. Yang, 'Conditional random field-based gesture recognition with depth information,' Optical Engineering, vol. 52, Jan 2013. [43] S. K. Das, S. K. Saha, and D. P. Mukherjee, 'Segmentation of multiple objects evolving conditional random field based topology adaptive active membrane,' Signal Processing, vol. 92, pp. 2341-2355, Oct 2012. [44] N. Ranganathan, R. Mehrotra, and S. Subramanian, 'A High-Speed Systolic Architecture for Labeling Connected Components in an Image,' Ieee Transactions on Systems Man and Cybernetics, vol. 25, pp. 415-423, Mar 1995. [45] P. Soille, Morphological image analysis: principles and applications: Springer-Verlag New York, Inc., 2003. [46] R. L. Kodell, C. Zhang, E. R. Siegel, and R. Nagarajan, 'Selective voting in convex-hull ensembles improves classification accuracy,' Artif Intell Med, vol. 54, pp. 171-9, Mar 2012. [47] W. K. Moon, C. M. Lo, C. S. Huang, J. H. Chen, and R. F. Chang, 'Computer-Aided Diagnosis Based on Speckle Patterns in Ultrasound Images,' Ultrasound in Medicine and Biology, vol. 38, pp. 1251-1261, Jul 2012. [48] S. J. Ahn, W. Rauh, and H. J. Warnecke, 'Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola,' Pattern Recognition, vol. 34, pp. 2283-2303, Dec 2001. [49] A. K. Jain, Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice Hall, 1989. [50] W. C. Shen, R. F. Chang, and W. K. Moon, 'Computer aided classification system for breast ultrasound based on breast imaging reporting and data system (BI-RADS),' Ultrasound in Medicine and Biology, vol. 33, pp. 1688-1698, Nov 2007. [51] R. Bird, Pearls of functional algorithm design. Cambridge ; New York: Cambridge University Press, 2010. [52] D. Singh and B. S. Khehra, 'Digit Recognition System Using Back Propagation Neural Network,' International Journal of Computer Science and Communication, vol. 2, pp. 197-205, Jun 2011. [53] R. M. Haralick, Shanmuga.K, and I. Dinstein, 'Textural Features for Image Classification,' Ieee Transactions on Systems Man and Cybernetics, vol. Smc3, pp. 610-621, Nov 1973. [54] L. K. Soh and C. Tsatsoulis, 'Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices,' Ieee Transactions on Geoscience and Remote Sensing, vol. 37, pp. 780-795, Mar 1999. [55] O. Demirkaya, M. H. Asyali, and P. Sahoo, Image processing with MATLAB: applications in medicine and biology: CRC Press Boca Raton, Dec 2009. [56] D. A. Clausi, 'An analysis of co-occurrence texture statistics as a function of grey level quantization,' Canadian Journal of Remote Sensing, vol. 28, pp. 45-62, Feb 2002. [57] B. Andre, T. Vercauteren, A. M. Buchner, M. W. Shahid, M. B. Wallace, and N. Ayache, 'An image retrieval approach to setup difficulty levels in training systems for endomicroscopy diagnosis,' Med Image Comput Comput Assist Interv, vol. 13, pp. 480-7, Oct 2010. [58] D. P. Chakraborty, 'Maximum-Likelihood Analysis of Free-Response Receiver Operating Characteristic (Froc) Data,' Medical Physics, vol. 16, pp. 561-568, Jul 1989. [59] S. Y. Yu and L. Guan, 'A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films,' IEEE Trans Med Imaging, vol. 19, pp. 115-126, Feb 2000. [60] D. P. Chakraborty, E. S. Breatnach, M. V. Yester, B. Soto, G. T. Barnes, and R. G. Fraser, 'Digital and Conventional Chest Imaging - a Modified Roc Study of Observer Performance Using Simulated Nodules,' Radiology, vol. 158, pp. 35-39, Jan 1986. [61] S. Holm, 'A simple sequentially rejective multiple test procedure,' Scandinavian Journal of Statistics, pp. 65-70, Sep 1979. [62] M. H. Yap, 'A novel algorithm for initial lesion detection in ultrasound breast images,' Journal of Applied Clinical Medical Physics, vol. 9, Jun 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18612 | - |
dc.description.abstract | 電腦輔助乳房腫瘤偵測系統可以有效率地輔助放射科醫生檢查乳房超音波影像,所以電腦輔助乳房腫瘤偵測系統被廣泛運用在乳房超音波影像的腫瘤偵測。為了發展出用於腫瘤偵測的電腦輔助乳房腫瘤偵測系統,我們採用條件隨機域模型對被放射科醫師用語意式標籤標示過的乳房超音波影像做像素分類。當腫瘤標籤的像素被決定後,我們使用孔洞填充和連通分量方法把腫瘤的候選區域組成同區域。為了減少預測區域的偽陽性,在訓練基於向量支持機器的腫瘤偵測器時,使用形態學和材料特徵來計算腫瘤候選區域為真實腫瘤的可能性。我們蒐集103個案(63個不正常個案和40個正常個案)去評估本實驗的效果。經由實驗結果,本方法達到腫瘤偵測率95%和每張圖平均有0.24個偽陽性個數。結合兩種特徵組合的品質因數(FOM)達到0.89,與其他現行方法相比時有顯著性差異(p-value < 0.05)。總結,實驗結果顯示我們提出的電腦輔助乳房腫瘤偵測系統可以有效地應用在臨床上。 | zh_TW |
dc.description.abstract | Computer-aided detection systems (CADe) have been widely developed for the detection of lesions in breast ultrasound (BUS) images due to the capability and efficiency of aiding the radiologists in reviewing the breast ultrasonography. To develop a CADe system for lesion detection, we propose to adopt the conditional random fields (CRFs) model to perform the pixel classification task of BUS images with semantic labels described by experienced radiologists. Once the lesion label of the pixels can be determined, we perform hole-filling and connected component labeling to group the regions of lesion candidates. To reduce the false positives of suspected regions, morphological and textural features are used for the evaluation of the likelihood of the lesion candidate while training a lesion detector based on support vector machine (SVM). We collect 103 cases (63 for abnormal cases and 40 for normal cases) to evaluate the effectiveness of the proposed method. As the result, the proposed method achieves the sensitivity of 95% with false positive rate at 0.24 FPs/image. The figure of merit (FOM) of the combination of two feature sets is 0.89 which significantly outperforms the recent state-of-the-art methods (p-value < 0.05). In summary, the experiment results support our proposed system to be applied in the clinical use of computer-aided lesion detection. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:14:53Z (GMT). No. of bitstreams: 1 ntu-103-R01922103-1.pdf: 1421168 bytes, checksum: 4b9b58a98fffeb828a218a17a4c9f338 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv Table of Contents vi List of Figures vii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Material 6 2.1 Patients and Lesion Characteristics 6 2.2 Data collection for 2-D breast sonogram 7 Chapter 3 The Proposed Method 9 3.1 Learning Graphical Model for Semantic Pixels Clustering 11 3.1.1 Annotation of Semantic Labels for Training BUS Images 12 3.1.2 CRFs Model Learning for Semantic Pixels Prediction 14 3.1.3 CRFs model Testing 16 3.2 Feature Extraction for Candidate Regions 18 3.2.1 Morphology Features 19 3.2.2 Texture Features 21 3.3 False-Positive Reduction using Lesion Detector 24 3.4 Detailed Implementation of State-of-the-art Approaches for Lesion Detection 26 3.5 Statistical Analysis 28 Chapter 4 Experimental Results and Discussion 30 4.1 Experimental Results 30 4.2 Discussion 43 Chapter 5 Conclusion and Future Works 46 References 48 | |
dc.language.iso | en | |
dc.title | 基於條件隨機域方法的語意式乳房超音波腫瘤偵測 | zh_TW |
dc.title | Semantic Lesion Detection for Breast Ultrasound Based on Conditional Random Fields | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃俊升,張允中 | |
dc.subject.keyword | 乳房腫瘤,電腦輔助偵測,條件隨機域, | zh_TW |
dc.subject.keyword | breast lesion,computer-aided detection,conditional random fields, | en |
dc.relation.page | 53 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-08-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。