Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18611
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恭如
dc.contributor.authorChung-Lun Wuen
dc.contributor.author吳仲倫zh_TW
dc.date.accessioned2021-06-08T01:14:50Z-
dc.date.copyright2014-08-17
dc.date.issued2014
dc.date.submitted2014-08-13
dc.identifier.citationR. Kirchain and L. C. Kimerling, “A roadmap for nanophotonics,” Nat. Photon. 1, 303-305 (2007).
[2] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47-73 (2012).
[3] J. K. Doylend and A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photonics Rev. 6, 504-525 (2012).
[4] R. A. Soref, and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[5] V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867-2869 (2004).
[6] Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325-327 (2005).
[7] M.-K. Hsieh, K.-N. Ku, and M.-C. Lee, “Enhanced photon-induced carrier density in silicon-on-insulator via surface recombination suppression for increasing plasma dispersion effect,” J. Appl. Phys. 105, 074510 (2009).
[8] G. T. Reed, G. Mashanovich, F. Y. Gardes and D. J. Thomson, “Silicon optical modulators,” Nature Photon. 4, 518-526 (2010).
[9] A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delage, J. Lapointe, M. Vachon and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17, 10457-10465 (2009).
[10] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615-618 (2004).
[11] L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129-3135 (2005).
[12] L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” IEEE Electronics Lett. 43, 1196-1197 (2007).
[13] Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924-929 (2007).
[14] C. Li, X. Luo and A. W. Poon, “Dual-microring-resonator electro-optic logic switches on a silicon chip,” Semicond. Sci. Technol. 23, 064010 (2008).
[15] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046-1048 (1990).
[16] B. Gelloz, A. Kojima, and N. Koshida, “Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing,” Appl. Phys. Lett. 87, 031107 (2005).
[17] M. Wang, K. Chen, L. He, W. Li, J. Xu, and X. Huang, “Green electro- and photoluminescence from nanocrystalline Si film prepared by continuous wave Ar+ laser annealing of heavily phosphorus doped hydrogenated amorphous silicon film,” Appl. Phys. Lett. 73, 105-107 (1998).
[18] G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou and Y.-L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition grown Si-rich SiO2,” J. Appl. Phys. 97, 094306 (2005).
[19] X. D. Pi, R. W. Liptak, J Deneen Nowak, N. P. Wells, C. B. Carter, S. A. Campbell, and U. Kortshagen, “Air-stable full-visible-spectrum emission from silicon nanocrystals synthesized by an all-gas-phase plasma approach,” Nanotechnology 19, 245603 (2008).
[20] B.-H. Lai, C.-H. Cheng, Y.-H. Pai, and G.-R. Lin, “Plasma power controlled deposition of SiOx with manipulated Si Quantum Dot size for photoluminescent wavelength tailoring,” Opt. Express 18, 4449-4456, (2010).
[21] B. Garrido, M. Lo’pez, O. Gonza’lez, A. Pe’rez-Rodrı’guez, J. R. Morante, and C. Bonafos, “Correlation between structural and optical properties of Si nanocrystals embedded in SiO2 : The mechanism of visible light emission,” Appl. Phys. Lett. 77, 3143-3145 (2000).
[22] F. Priolo, T. Gregorkiewicz, M. Galli and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19-32 (2014).
[23] K.-S. Cho, N.-M. Park, T.-Y. Kim, K.-H. Kim, G.-Y. Sung and J.-H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86, 071909 (2005).
[24] C.-J. Lin and G.-R. Lin, “Defect-enhanced visible electroluminescence of multi-energy silicon-implanted silicon dioxide film,” IEEE J. Quantum Electron. 41,441-447 (2005).
[25] G.-R. Lin, C.-J. Lin and H.-C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91, 093122 (2007).
[26] K.-Y. Cheng, R. Anthony, U. Kortshagen, and R. Holmes, “High-efficiency silicon nanocrystal light-emitting devices,” Nano Lett. 11, 1952-1956 (2011).
[27] R. J. Walters, G. I. Bourianoff and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4, 143-146 (2005).
[28] A. Marconi, A. Anopchenko, M. Wang, G. Pucker, P. Bellutti, and L. Pavesi, “High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling,” Appl. Phys. Lett. 94, 221110 (2009).
[29] L.-Y. Chen, W.-H. Chen, and Franklin C.-N. Hong, “Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix,” Appl. Phys. Lett. 86, 193506 (2005).
[30] C.-H. Cheng, Y.-C. Lien, C.-L. Wu, and G.-R. Lin, “Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency,” Opt. Express 21, 391-403 (2013).
[31] M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett. 82, 197-200 (1999).
[32] J. Valenta, A. Fucikova, I. Pelant, K. Kusova, K. Dohnalova, A. Aleknavicius, O. Cibulka, A. Fojtik, and G. Kada, “On the origin of the fast photoluminescence band in small silicon nanoparticles,” N. J. Phys. 10, 073022 (2008).
[33] C.-L. Wu and G.-R. Lin, “Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot,” AIP Adv. 2, 042162 (2012).
[34] C. Delerue, G. Allan and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys Rev. B. 48, 11024-11036 (1993).
[35] X. Zianni, and A. G. Nassiopoulou, “Photoluminescence lifetimes of Si quantum dots,” J. Appl. Phys. 100, 074312 (2006).
[36] E. G. Barbagiovanni, L. V. Goncharova, and P. J. Simpson, “Electronic structure study of ion-implanted Si quantum dots in a SiO2 matrix: Analysis of quantum confinement theories,” Phys. Rev. B 83,035112 (2011).
[37] S. Takeoka, M. Fujii, and S. Hayashi, “Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime,” Phys Rev. B. 62, 16820-16825 (2000).
[38] M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa’ar, “Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy,” Phys Rev. B. 69, 155311 (2004).
[39] D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, and F. Koch, “Breakdown of the k-conservation rule in Si nanocrystals,” Phys. Rev. Lett. 81, 2803-2806 (1998).
[40] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440-444 (2000).
[41] L. Dal Negro, M. Cazzanelli, N. Daldosso, Z. Gaburroa, L. Pavesi, F. Priolo, D. Pacifici, G. Franzo, and F. Iacona, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals,” Physica E 16, 297-308 (2003).
[42] K. Dohnalova, K. Zidek, L. Ondic, K. Kusov, O. Cibulka, and I. Pelant, “Optical gain at the F-band of oxidized silicon nanocrystals,” J. Phys. D: Appl. Phys. 42, 135102 (2009).
[43] G.-R. Lin, C.-L. Wu, C.-W. Lian, and H.-C. Chang,” Saturated small-signal gain of Si quantum dots embedded in SiO2/SiOx/SiO2 strip-loaded waveguide amplifier made on Quartz,” Appl. Phys. Lett. 95, 021106-021108 (2009).
[44] C.-L. Wu, and G.-R. Lin, “Gain and emission cross section analysis of wavelength-tunable Si-nc incorporated Si-rich SiOx waveguide amplifier,” IEEE J. Quantum Elect. 47, 1230-1237 (2011).
[45] R. Kekatpure and M. Brongersma, “Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity,” Nano Lett. 8, 3787-3793 (2008).
[46] E. Marchena, B. Redding, T. Creazzo, and D. Prather, “Mitigation of Si nanocrystal free carrier absorption loss at 1.5 μm in a concentric microdisk structure,” Opt. Lett. 35, 2182-2184 (2010).
[47] D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gourbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54μm,” Appl. Phys. Lett. 92, 051101 (2008).
[48] R. Kekatpure and M. Brongersma, “Near-infrared free-carrier absorption in silicon nanocrystals,” Opt. Lett. 34, 3397-3399 (2009).
[49] T. Creazzo, B. Redding, E. Marchena, S. Shi, and D. Prather, “Free-carrier absorption modulation in silicon nanocrystal slot waveguides,” Opt. Lett. 35, 3691-3693 (2010).
[50] B. K. Ridley, Quantum processes in semiconductors, 4th ed.; Oxford Science Publications: New York, 2000.
[51] R. Smith, Semiconductors, 1st ed.; Cambridge University Press:New York, 1959.
[52] G. V. Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo and F. Priolo, “Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 91, 4607-4610 (2002).
[53] S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana and J. M. Fedeli, “Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103, 064309 (2008).
[54] R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Jordana, J. M. Fedeli and L. Pavesi, “Bound electronic and free carrier nonlinearities in silicon nanocrystals at 1550nm,” Opt. Express 17, 3941-3950 (2009).
[55] M. Ito, K. Imakita, M. Fujii and S. Hayashi, “Nonlinear optical properties of silicon nanoclusters/nanocrystals doped SiO2 films: Annealing temperature dependence,” J. Appl. Phys. 108, 063512 (2010).
[56] J. Blasco, J. V. Galan, P. Sanchis, J. M. Martinez, A. Martinez, E. Jordana, J. M. Fedeli and J. Marti, “FWM in silicon nanocrystal-based sandwiched slot waveguides,” Opt. Commun. 283, 435-437 (2010).
[57] Q. Liu, S. Gao, Z. Li, Y. Xie and S. He, “Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion,” Appl. Optics 35, 1260-1265 (2011).
[58] A. Trita, C. Lacava, P. Minzioni, J.-P. Colonna, P. Gautier, J.-M. Fedeli and I. Cristiani, “Ultra-high four wave mixing efficiency in slot waveguides with silicon nanocrystals,” Appl. Phys. Lett. 99, 191105 (2011).
[59] A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 34, 1506-1511 (2010).
[60] K. Ikeda, R.-E. Saperstein, N. Alic and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16, 12987-12994 (2008).
[61] J.-S. Levy, A. Gondarenko, M.-A. Foster, A.-C. Turner-Foster, A.-L. Gaeta and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature photon. 4, 37-40 (2010).
[62] D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010).
[63] M. I. Vexler, S. E. Tyaginov, and A. F. Shulekin, “Determination of the hole effective mass in thin silicon dioxide film by means of an analysis of characteristics of a MOS tunnel emitter transistor,” J. Phys.: Condens. Matter, 17, 8057-8068 (2005).
[64] L.-W. Wang, and A. Zunger, “Electronic structure pseudopotential calculations of large (~1000 atoms) Si quantum dots,” J. Phys. Chem. 98, 2158-2165 (1993).
[65] G. Alemgasha, “Zero phonon and phonon assisted radiative transition rates based on finite potential well approximation for silicon nanocrystallize embedded in silicon oxide, ” G. Alemgasha’s master thesis, Addis Ababa Univ., 2009.
[66] S. Hybertsen, “Absorption and Emission of Light in Nanoscale Silicon Structures,” Phys. Rev. Lett. 72, 1514-1517 (1994).
[67] H. S. Bae, T. G. Kim, C. N. Whang, S. Im, J. S. Yun and J. H. Song, “Electroluminescence mechanism in SiOx layers containing radiative centers,” J. Appl. Phys. 91, 4078-4081 (2002).
[68] L. Rebohle, J. von Borany, W. Skorupa, H. Frob, and S. Niedermeier, “Strong photoluminescence of Sn-implanted thermally grown SiO2 layers,” Appl. Phys. Lett. 77, 969-971 (2000).
[69] H. Nishikawa, R. E. Stahlbush, and J. H. Stathis, “Oxygen-deficient centers and excess Si in buried oxide using photoluminescence spectroscopy,” Phys. Rev. B 60, 15910-15918 (1999).
[70] D. Pacifici, E. C. Moreira, G. Franzo, V. Martorino, F. Priolo, and F. Iacona, “Defect product ion and annealing in ion-irradiated Si nanocrystals,” Phys Rev. B. 65, 144109 (2002).
[71] G.-R. Lin, C.-J. Lin, and K.-C. Yu, “Time-resolved photoluminescence and capacitance–voltage analysis of the neutral vacancy defect in silicon implanted SiO2 on silicon substrate,” J. Appl. Phys. 96, 3025-3027 (2004).
[72] C.-J. Lin, C.-K. Lee, W.-G. Diau, and G.-R. Lin, “Time-resolved photoluminescence analysis of multidose Si-ion-implanted SiO2,” J. Electrochem. Soc. 153, E25-E32 (2006).
[73] W. D. A. M. de Boer, D. Timmerman, K. Dohnalova, I. N. Yassievich, H. Zhang, W. J. Buma, and T. Gregorkiewicz, “Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals,” Nature Nanotechnology 5, 878-884 (2010).
[74] G. P. Agrawal, Fiber-Optic Communication System (John Willy & Sons, New York, 1997).
[75] Z. Ma, and K. Pierz, “Carrier thermalization and activation within self-assembled InAs/AlAs quantum dot states”, Surf. Sci. 511, 57-64 (2002).
[76] D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Kunzner, and F. Koch, “Optical absorption cross sections of Si nanocrystals,” Phys. Rev. B 61, 4485-4487 (2000).
[77] F. Trojanek, K. Neudert, M. Bittner, and P. Maly, “Picosecond photoluminescence and transient absorption in silicon nanocrystals,” Phys. Rev. B 72, 075365 (2005).
[78] J. A. Rowlette, R. D. Kekatpure, M. A. Panzer, M. L. Brongersma, and K. E. Goodson, “Nonradiative recombination in strongly interacting silicon nanocrystals embedded in amorphous silicon-oxide films,” Phys. Rev. B 80, 045314 (2009).
[79] C. Vatankhah, and A. Ebadi, “Quantum Size Effects on Effective Mass and Band gap of Semiconductor Quantum Dots ,” Res. J. Recent Sci. 2, 21-24 (2013).
[80] I. Filikhin, S. G. Matinyan, B. K. Schmid, and B. Vlahovic, “Electronic and level statistics properties of Si/SiO2 quantum dots,” Physica E 42, 1979-1983 (2010).
[81] B.-H. Lai, C,-H. Cheng, and G.-R. Lin, “Multicolor light emitting diodes with improved emission efficiency by small Si quantum dots,” IEEE J. Quantum Electron. 47, 698-704 (2011).
[82] J. Waldmeyer, “A contactless method for determination of carrier lifetime, surface recombination velocity, and diffusion constant in semiconductors,” J. Appl. Phys. 63, 1977-1983 (1988).
[83] J. Linnros, “Carrier lifetime measurements using free carrier absorption transients. II. Lifetime mapping and effects of surface recombination,” J. Appl. Phys. 84, 284-291 (1998).
[84] R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12, 2774-2780 (2004).
[85] A. Turner-Foster, M. Foster, J. Levy, C. Poitras, R. Salem, A. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18, 3582-3591 (2010).
[86] R. Li, J. R. Schneck, J. Warga, L. D. Ziegler, and L. Dal Negro, “Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals,” Appl. Phys. Lett. 93, 091119 (2008).
[87] P. Ščajev, V. Gudelis, K. Jarašiūnas, and P. B. Klein, “Fast and slow carrier recombination transients in highly excited 4H– and 3C–SiC crystals at room temperature,” J. Appl. Phys. 108, 023705 (2010).
[88] G. M. Ingo, N. Zacchetti, D. deliaSala and C. Coluzza, “X-ray photoelectron spectroscopy investigation on the chemical structure of amorphous silicon nitride (a-SiNx),” J. Vac. Sci. Technol. A 7, 3048-3055 (1989).
[89] Y. Q. Wang, Y. G. Wang, L. Cao and Z. X. Cao, “High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride,” Appl. Phys. Lett. 83, 3474-3476 (2003).
[90] A. Kumar, W. R. Taube, R. Sarvanan, P. B. Agarwal, P. Kothari and D. Kumar, “Plasma enhanced chemical vapor deposited (Pecvd) silicon-rich-nitride thin films for improving silicon solar cells efficiency,” International Journal of Scientific Engineering and Technology 1, 111-116 (2012).
[91] G. Viera, S. Huet and L. Boufendi, “Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy,” J. Appl. Phys. 90, 4175-4183 (2001).
[92] J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang and X. Xie, “Raman shifts in Si nanocrystals,” Appl. Phys. Lett. 69, 200-202 (1996).
[93] P. Melinon, B. Prevel, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Boudeulle, M. Pellarin, P. Dugourd and M. Broyer, “New phases of amorphous carbon and silicon films obtained by low energy cluster beam deposition”, Mater. Sci. Eng. A 217/218, 69-73 (1996).
[94] R. Chen, D. L. Lin and B. Mendoza, “Enhancement of the third-order nonlinear optical susceptibility in Si quantum wires,” Phys. Rev. B 48, 11879-11882 (1993).
[95] N. Bloembergen, “Conservation laws in nonlinear optics,” J. Opt. Soc. Am. 70, 1429-1436 (1980).
[96] J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26, 1048-1050 (2001).
[97] R. del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B 21, 640-644 (2004).
[98] M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949-12958 (2007).
[99] V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302-1304 (2003).
[100] D. G. Rabus, Integrated ring resonators (Springer, 2007)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18611-
dc.description.abstract本研究中,我們成功利用矽量子點鑲嵌於氧化矽/氮化矽光波導結構達成全光光放大/調變/波長轉換之目的。
在第一部分,我們利用有限位勢法模擬了矽量子點能隙與耦合放光效率隨矽量子點尺寸大小的變化。並且透過光激螢光光譜與時析螢光光譜分析法,區分出各尺寸大小之矽量子點鑲嵌於氧化矽薄膜內的放光機制,其中包含了中性氧缺陷(455 nm)、E’d缺陷(520 nm)以及矽量子點內因量子侷限效應之放光。透過外部注入一調變訊號光至矽量子點光波導放大器內(SiO1.24:Si-QD/SiO1.42:Si-QD),我們觀察到在波長785 nm以及650 nm的情況下,其小訊號增益分別為14.7 dB/6.5 dB。藉由將功率相依之增益係數導入光波導放大器增益之模擬,我們可以成功模擬出矽量子點光波導放大器內增益飽和的現象,並估算出矽量子點之最大增益以及飽和功率。
在第二部分,由於矽量子點在紅外光波長具有極強的自由載子吸收特性,因此我們進行全光自由載子吸收調變器的研究。我們發現當量子點尺寸由4.3 nm縮小至1.7 nm時,其自由載子吸收面積會由2.8*10-17 cm2 縮減至8*10-18 cm2,雖然自由載子吸收面積會隨著矽量子點尺寸縮減而劣化,但是我們發現自由載子活期將由~10us 增快至480 ns,這是由於在動量空間中,量子侷限效應使得電子電洞波函數之耦合率會隨量子點尺寸縮小而增加。接著,我們成功利用矽量子點建構出全光自由載子吸收調變器,並且呈現了全光反向歸零訊號格式的調變,也發現當尺寸由4.3 nm縮減至1.7 nm,其最佳的調變位元率可由100kbit/s增快至2Mbit/s。
在最後一部分的研究中,我們探討了矽量子點鑲嵌於氮化矽薄膜內之非線性光學特性以及其應用。透過Z-scan量測法,我們得知當薄膜內富矽含量由16.3%增加至23.4%時,富矽氮化矽於800 nm波長下之非線性折射係數由5.7*10-13增大至 9.2*10-12 cm2/W。透過矽量子點內極強的量子侷限效應,摻雜矽量子點之氮化矽薄膜內的非線性折射率可被增強一至兩個數量級(相較於結晶矽與標準氮化矽)。隨後,我們利用矽量子點鑲嵌於氮化矽薄膜製備光波導結構,並且首次觀測到鑲嵌矽量子點的氮化矽內非線性四波混頻現象。在長度為8 mm的氮化矽波導內,其最佳波長轉換效率、3-dB轉換頻寬分別為-46 dB、18 nm;透過色散模擬,我們發現實驗觀測的轉換效率以及轉換頻寬已十分接近數值模擬結果。最後,我們利用了鑲嵌矽量子點的氮化矽薄膜製備環形共振腔結構,透過非線性克爾效應與波長設定,在環形共振腔內可分別達成全光正向及反向訊號的快速調變。在激發光尖峰功率為3 W的情況下,當提高薄膜內富矽含量由16.3% (R 0.5)增加至23.4% (R 0.9)時,我們觀測到克爾效應導致的非線性折射率增量由2*10-5 增加至 1.6*10-4。這意味著與非線性折射相關的克爾係數隨著富矽含量增加由1.4*10-14 變大至1.6*10-13 cm2/W。最終,我們成功利用了矽量子點鑲嵌於氮化矽環形共振腔結構展示了全光非歸零訊號之正向與反向格式轉換器,其調變位元率至少可達12 Gbit/s。
關鍵字:矽量子點、光波導、量子侷限效應、增強自發輻射、自由載子吸收、四波混頻、非線性克爾效應。
zh_TW
dc.description.abstractAll-optical amplification, modulation, and wavelength conversion have been demonstrated by using the Si-QD doped in SiOx/SiNx waveguide.
In the first part, the bandgap energy and radiative recombination rate of the Si-QD are theoretically simulated by the finite potential well approximation. The luminescent mechanisms, including NOV, E'd defect and Si-QDs related spontaneous emission, in SiOx:Si-QD are clearly distinguished by combining the PL with TRPL analysis. The small-signal gain of the SiOx:Si-QD waveguide is demonstrated by injecting the modulated probe signal into the optically pumped Si-QDs. The small-signal gain of 14.7 dB/6.5 dB at 785-/650-nm are measured in the SiO1.24:Si-QD/SiO1.42:Si-QD waveguide amplifiers. By considering the power-dependent gain coefficient in the Si-QD based waveguide amplifier, the peak power gain and saturation power in the Si-QD based waveguide amplifiers are determined.
In the second part, the free-carrier absorption in the Si-QD is utilized to demonstrate the all-optical FCA modulator. The FCA cross-section at 1550 nm is reduced from 2.8*10-17 cm2 to 8*10-18 cm2 with shrinking Si-QD size from 4.3 nm to 1.7 nm. Although the FCA cross-section is degraded when shrinking the Si-QD size, the free-carrier relaxation lifetime in SiOx:Si-QD waveguide is shortened from ~10 us to 0.48 us due to the increased momentum overlapping factor of electron-hole wave-functions in Si-QDs. The achievable bit rate of the inverted data modulation with RZ-OOK data format at 1550 nm has been significantly increased from 100 kbit/s to 2 Mbit/s by shrinking Si-QD size from 4.3 nm to 1.7 nm.
In the rest part, the nonlinearity of the Si-QD doped in SiNx matrix and corresponding applications are discussed. Based on the Z-scan measurement, the nonlinear refractive index at 800 nm for Si-rich SiNx film is increased from 5.7*10-13 to 9.2*10-12 cm2/W when increasing the excessive Si concentration from 16.3% to 23.4%. Such optical nonlinearity enhancement in the Si-rich SiNx film can be attributed to the strong quantum confinement effect in the Si-QD doped in the SiNx matrix. Then, the FWM has been firstly demonstrated by using the SiNx:Si-QD channel waveguide. The maximum conversion efficiency of -46 dB with the 3-dB bandwidth of 18 nm has been measured in the 8-mm long Si-rich SiNx channel waveguide. Furthermore, the all-optical data modulation in the SiNx based ring resonator has been achieved by using the nonlinear Kerr effect of the Si-QD. The refractive index change induced by the nonlinear Kerr effect is increased from 2*10-5 to 1.6*10-4 for SiNx R0.5 to R0.9 ring resonator under the pump pulse excitation with peak power of 3W. It indicates that the nonlinear refractive index at ~1550 nm are increased from 1.4*10-14 to 1.6*10-13 cm2/W by increasing the excessive Si concentration in SiNx films from 16.3% (R0.5) to 23.4% (R0.9). Finally, the 12 Gbit/s all-optical data conversion and inversion with NRZ-OOK data format has been firstly demonstrated by nonlinear Kerr effect in the SiNx based ring resonator.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:14:50Z (GMT). No. of bitstreams: 1
ntu-103-F97941087-1.pdf: 7984888 bytes, checksum: b059f86c720adf038e66d11aaf2f6549 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝....................................................................................................................................i
中文摘要..........................................................................................................................iii
ABSTRACT.....................................................................................................................iv
CONTENTS....................................................................................................................vi
LIST OF FIGURES........................................................................................................xi
LIST OF TABLES .........................................................................................................xx
Chapter 1 Introduction 1
1.1 Historical review of silicon photonics and silicon nanostructure 1
1.2 Recent Progress on Si-QD based optical amplifier, FCA modulator, and nonlinear optical applications 2
1.3 Motivation 5
1.4 Organization of thesis 6
Chapter 2 All-optical amplifying in the Si-QD doped SiOx waveguide amplifier 8
2.1 Introduction 8
2.2 Device fabrication and experimental setup 8
2.2.1 Fabrication of the Si quantum dots doped in Si-rich SiOx by using the plasma-enhanced chemical vapor deposition 8
2.2.2 System diagram of full-band TRPL analysis 10
2.2.3 Experimental setup of small-signal gain in SiOx:SiQD waveguide amplifier 11
2.3 Results and discussion 12
2.3.1 The size-dependent bandgap energy and recombination rate of Si-QDs simulated by finite-potential well confinement model. 12
2.3.2 Luminescent mechanisms of Si-rich SiOx films measured by PL and TRPL analyses. 19
2.3.3 Small-signal gain and gain saturation analysis of SiOx:Si-QD waveguide amplifier 26
2.4 Summary 28
Chapter 3 All-optical data inverter based on free-carrier absorption modulation in Si quantum dot doped SiOx waveguide 30
3.1 Introduction 30
3.2 Device fabrication and experimental setup 31
3.2.1 Fabrication of all-optical SiOx:Si-QD waveguide modulator 31
3.2.2 Pump-probe analysis for measuring the FCA absorption in SiOx:Si-QD waveguide modulator 33
3.3 Results and discussion 35
3.3.1 Pumping power-dependent relaxation lifetime of Si-QD 35
3.3.2 The relationship among FCA modulation, injection probe power, and pulsewidth of pump laser. 38
3.3.3 Si-QD size-dependent FCA absorption cross-section and free-carrier relaxation lifetime in SiOx:Si-QD waveguide 44
3.3.4 All-optical data inverted modulation by using the SiOx:Si-QD waveguides with the illumination of an optical RZ-OOK data stream at 405 nm. 55
3.4 Summary 58
Chapter 4 Enhanced optical nonlinearity of the silicon quantum dot doped Si-rich SiNx matrix 61
4.1 Introduction 61
4.2 Experimental setup 62
4.2.1 Fabrication of the Si-QD doped Si-rich SiNx matrix by using the plasma-enhanced chemical vapor deposition 62
4.2.2 System diagram of Z-scan measurement 62
4.3 Results and discussion 64
4.3.1 Atomic Si/N composition and structural properties of Si-rich SiNx 64
4.3.1.1 X-ray photoelectron spectroscopy 64
4.3.1.2 Fourier transform infrared spectroscopy 67
4.3.1.3 Raman scattering spectroscopy 69
4.3.2 The enhanced nonlinear optical Kerr effect in the Si-rich SiNx synthesized with enlarging SiH4/NH3 fluence ratio 70
4.3.2.1 Linear absorption spectra and nonlinear transmittance measured by Z-scan method 70
4.3.2.2 Quantum confinement enhanced optical nonlinearity in Si-QD doped Si-rich SiNx films 74
4.4 Summary 76
Chapter 5 Degenerated four-wave-mixing in the Si-QD doped Si-rich SiNx channel waveguide 78
5.1 Introduction 78
5.2 Theory of degenerated four-wave-mixing 78
5.3 Designing of Si-QD doped Si-rich SiNx channel waveguide 81
5.3.1 Geometric design for signal mode operation in Si-QD doped Si-rich SiNx channel waveguide 81
5.3.2 Chromatic dispersion of Si-QD doped Si-rich SiNx channel waveguide 84
5.3.3 Inverse taper structure for enhancing the power coupling between lens fiber and waveguide structure 86
5.4 Waveguide fabrication and experimental setup 87
5.4.1 Fabrication of the Si-QD doped Si-rich SiNx channel waveguide 87
5.4.2 Experimental setup of four-wave-mixing 89
5.5 Results and Discussion 90
5.5.1 Estimation of nonlinear refractive index in Si-QD doped Si-rich SiNx channel waveguide by using the four-wave-mixing 90
5.5.2 Conversion efficiency and conversion bandwidth in Si-QD doped Si-rich SiNx channel waveguide 92
5.5.3 TPA-free in Si-QD doped Si-rich SiNx channel waveguide 95
5.6 Summary 96
Chapter 6 Nonlinear Kerr effect induced all-optical data conversion/inversion by using the Si-QD doped Si-rich SiNx ring resonator 97
6.1 Introduction 97
6.2 Theory of ring resonator 98
6.3 Experimental Setup 101
6.3.1 Fabrication of the Si-QD doped Si-rich SiNx ring resonator 101
6.3.2 Working principle and system diagram of nonlinear Kerr switch 102
6.4 Results and discussion 106
6.4.1 Optical properties of Si-QD doped Si-rich SiNx ring resonator 106
6.4.2 Demonstration of all-optical modulation and nonlinear refractive index estimation by the Si-QD doped Si-rich SiNx resonator 108
6.4.3 12 Gbit/s all-optical data conversion/inversion with NRZ-OOK data format in Si-QD doped Si-rich SiNx ring resonator. 112
6.5 Summary 114
Chapter 7 Conclusion 115
dc.language.isozh-TW
dc.title利用氧化矽與氮化矽中摻雜矽量子點進行全光放大/調變/波長轉換研究zh_TW
dc.titleAll-optical amplification, modulation, and wavelength conversion based on the quantum confinement effect in the Si-QD doped SiOx/SiNx waveguideen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee李明昌,郭浩中,李柏璁,張宏鈞,黃鼎偉
dc.subject.keyword矽量子點,光波導,量子侷限效應,增強自發輻射,自由載子吸收,四波混頻,非線性克爾效應,zh_TW
dc.subject.keywordSilicon quantum dot,Optical waveguide,Quantum confinement effect,Amplified spontaneous emission,Free-carrier absorption,Four-wave-mixing,Nonlinear Kerr effect,en
dc.relation.page135
dc.rights.note未授權
dc.date.accepted2014-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
7.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved