請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18574
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉深淵(Shen-Iuan Liu) | |
dc.contributor.author | Chi-Yun Liu | en |
dc.contributor.author | 劉其昀 | zh_TW |
dc.date.accessioned | 2021-06-08T01:12:35Z | - |
dc.date.copyright | 2014-08-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-15 | |
dc.identifier.citation | [1] Y. K. Ramadass, and A. P. Chandrakasan, “An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 189–204, January. 2010.
[2] I. M. Darmayuda, Y. Gao, M. T. Tan, S. J. Cheng, Y. Zheng, M. Je, and C. H. Heng ”A self-powered power conditioning IC for piezoelectric energy harvesting from short-duration vibrations,” IEEE Trans. Circuits Syst.II, Exp. Briefs, vol.59, no. 9, pp. 578–582, Sept. 2012. [3] T. T. Le, J. Han, A. V. Jouanne, K. Mayaram, and T. S. Fiez, “Piezoelectric micro-power generation interface circuits,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1411–1420, Jun. 2006. [4] Y. H. Lam, W. H. Ki, and C. Y. Tsui, “Integrated low-loss CMOS active rectifier for wirelessly powered devices,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 12, pp. 1378–1382, Dec. 2006. [5] J. L. Wardlaw and A. I. Karsilayan, “Self-powered rectifier for energy harvesting applications,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 1, no. 3, pp. 308–320, Sep. 2011. [6] S. Roundy, P. Wright, and J. Rabaey, “Energy Scavenging for Wireless Sensor NetworksWith Special Focus on Vibrations,” Boston, MA: Kluwer Academic, 2003. [7] M. Renaud, T. Sterken, A. Schmitz, P. Fiorini, C. Van Hoof, and R. Puers, “Piezoelectric harvesters and MEMS technology: Fabrication, modeling and measurements,” in Proc. Int. Solid-State Sensors, Actuators and Microsystems Conf., Jun. 2007, pp. 891–894. [8] Y. K. Ramadass and A. Chandrakasan, “Minimum energy tracking loop with embedded DCDC converter enabling ultra-low-voltage operation down to 250 mV in 65 nm CMOS” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 256–265, Jan. 2008. [9] Y. K. Ramadass and A. Chandrakasan, “Minimum energy tracking loop with embedded DC-DC converter delivering voltages down to 250 mV in 65 nm CMOS” in IEEE Int. Solid-State Circuits Conf. Dig. Tech.Papers, Feb. 2007, pp. 64–587. [10] S. Bandyopadhyay, and A. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining With MPPT and single inductor” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199–2215, Sept. 2012. [11] T. C. Huang, C. Y. Hsieh, Y. Y. Yang, Y. H. Lee, Y. C. Kang, K. H. Chen C. C. Kuang, Y. H. Lin, and M. W. Lee, “A battery-free 217nW static control power buck converter for wireless RF energy harvesting with α-calibrated dynamic on/off time and adaptive phase lead control” IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 852–862, April. 2012. [12] N. Kong, and D. S. Ha, “Low-Power Design of a Self-powered piezoelectric energy harvesting system with maximum power point tracking,” IEEE Trans. on Power Electronics, vol. 27, pp. 2298–2308, May 2012. [13] D. Kweon, and G. Rincon-Mora, “A single-inductor 0.35-μm energy-investing piezoelectric harvester”, ISSCC Dig. Tech. Papers, pp pp.78-79 , Feb. 2013. [14] Y. S. Yuk, S. Jung, H. D. Gwon, S. Choi, S. D. Sung, T. H. Kong, S. W. Hong, J. H. Choi, M. Y. Jeong, J. P. Im, S. T. Ryu, and G. H. Cho, “An energy pile-up resonance circuit extracting maximum 422% energy from piezoelectric material in a dual-source energy-harvesting interface”, ISSCC Dig. Tech. Papers, pp. 402-404, Sept. 2014. [15] S. Stanzione, C. Van Liempd, R. Van Schaijk, Y. Naito, R. F. Yazicioglu, and C. Van Hoof, “A Self-Biased 5-to-60V input voltage and 20-to-1600μW integrated DC-DC buck converter with fully analog MPPT algorithm reaching up to 88% end-to-end efficiency”, ISSCC Dig. Tech. Papers, pp.74-75 , Feb. 2013. [16] M. Shim, and J. Jung, “Self-Powered 30μW to 10mW piezoelectric energy harvesting system with 9.09msV maximum power point tracking time”, ISSCC Dig. Tech. Papers, pp.78-79 , Feb. 2014. [17] A. Sharma, M. F. Zaman and F. Ayazi” A 104-dB dynamic range transimpedance-based CMOS ASIC for tuning fork microgyroscopes” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1790–1802, Aug. 2007. [18] C. S. Taillefer, and G. W. Roberts” Delta–Sigma A/D conversion via time-mode signal processing” IEEE Trans. Circuts Syst.I, Regular Papers, vol. 56, no. 9, pp. 1908-1920, Sept. 2009. [19] H. H. Chang, and S. I. Liu” A wide-range and fast-locking all-digital cycle-controlled delay-locked loop” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 661-670, Mar. 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18574 | - |
dc.description.abstract | 這篇論文的主題主要分為二個部分,第一部分實作了一個低輸入範圍的壓電材料能量擷取電路。為了降低輸入電壓範圍,我們使用了負電壓轉換電路跟蕭基二極體,並且加入了啟動升壓電路讓電路在開機時能升壓供給電能給數位控制器。此能量擷取電路提出了創新的自動偵測壓電材料在輸入零電流時的開關開啟時的脈波寬度偵測電路,使得壓電材料的輸入功率能夠提升3.6倍。此外,我們也提出一個可適性零電流偵測電路再直流轉直流轉換器裡面,去減少電感關閉時的功率損耗。整體電能處理範圍為0.6V~2V的輸入電壓轉換成1V的穩定輸出電壓。此介面電路使用TSMC 0.18um CMOS製程。
第二個部分是偵測血液中急性冠狀動脈分子濃度的介面電路,此電路運用了低頻轉阻放大器將分子感測元件因為不同分子濃度而產生的電流訊號轉換成電壓訊號,再將此電壓訊號轉換成數位訊號輸出,得到的數位訊號輸出值正比於生物分子濃度值。若此分子元件及介面電路能夠成功偵測其訊號,醫院在偵測疾病時就無需使用昂貴的量測儀器。此電路能涵蓋的濃度偵測範圍,當使用cTnI為分子濃度指標時,其可偵測濃度範圍在320fM~3.2nM,而使用NT-proBNP微分子濃度指標時,其可偵測濃度範圍在320fM~32nM。此介面電路使用TSMC 0.18um CMOS製程。 | zh_TW |
dc.description.abstract | This thesis consists of two parts. The first part implements a low input voltage piezoelectric (PZT) energy harvesting interface circuit. To lower the input voltage range, the negative voltage converter (NVC) with Schottky diode is implemented. The startup boost converter is also implemented to supply the power of the digital controller. The adaptive pulse width detector (PWD) is proposed to find the optimal turn-on time of the switches when input ac current of PZT harvester is approaching to zero. In addition, the adaptive zero-crossing detector is proposed for a DC-DC converter to reduce the power loss while the inductor is switching. The whole circuit can convert an input voltage from 0.6V~2V to realize a stable output voltage 1V. The circuit is implemented in TSMC 0.18um CMOS process.
The second part is talking an interface circuit with digital output for acute myocardial infraction diagnosis. The low frequency transimpedance amplifier is implemented to convert the current signal from sensor to voltage signal under different bio-molecular concentration. Then, the voltage signal is converted to digital code which is proportional to different concentration. The sensor with its interface circuit can distinguish different bio-molecular concentration successfully; the expensive equipments are not needed in hospitals. When cTnI is used for bio-molecular target, the interface circuit can cover its concentration from 320fM~3.2nM. NT-proBNP is used for bio-molecular target, the interface circuit can cover its concentration from 320fM~32nM. The circuit is implemented in TSMC 0.18um CMOS process. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:12:35Z (GMT). No. of bitstreams: 1 ntu-103-R00943125-1.pdf: 2615531 bytes, checksum: 3b4ba5f6a2921f667724bbd5c3c48325 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 1.Introduction………………………………………………………………………………………………………………1
1.1 PZT Energy Harvesting Interface Circuit………………………………1 1.2 Bio-molecular Readout Circuit…………………………………………………………2 1.3 Overview…………………………………………………………………………………………………………………3 2. A Piezoelectric Energy Harvesting Interface Circuit Using a Bias-flip Technique with Adaptive Pulse-Width Detector and Zero Current Detector……………………………………………………………………………………………5 2.1 Motivation……………………………………………………………………………………………………………5 2.2 System Architecture……………………………………………………………………………………6 2.2.1 System Description………………………………………………………………………………6 2.3 Circuit Description……………………………………………………………………………7 2.3.1 AC-DC Converter………………………………………………………………………………………7 2.3.2 DC-DC Converter……………………………………………………………………………………10 2.3.3 Adaptive PWD/ZCD Circuit……………………………………………………………11 2.3.4 Startup Boost Converter………………………………………………………………16 2.3.5 Digital Controller……………………………………………………………………………17 2.4 Measurement Results…………………………………………………………………………………19 2.5 Conclusion…………………………………………………………………………………………………………27 3. A Silicon Nanowire-Based Bio-sensing System with Digital Output for Acute Myocardial Infraction Diagnosis…………………29 3.1 Motivation…………………………………………………………………………………………………………29 3.2 System Architecture…………………………………………………………………………………30 3.2.1 System Description……………………………………………………………………………30 3.3 Circuit Description…………………………………………………………………………………31 3.3.1 NWFET………………………………………………………………………………………………………………31 3.3.2 TIA……………………………………………………………………………………………………………………32 3.3.3 VCDU…………………………………………………………………………………………………………………33 3.3.4 DCDL and a Digital Bolck……………………………………………………………34 3.4 Measurement Results…………………………………………………………………………………36 3.6 Conclusion…………………………………………………………………………………………………………43 4. Conclusion and Future Work……………………………………………………………………45 4.1 Conclusion…………………………………………………………………………………………………………46 4.2 Future Work………………………………………………………………………………………………………47 Bibliography…………………………………………………………………………………………………………………49 | |
dc.language.iso | zh-TW | |
dc.title | 應用於生醫微型系統之壓電材料介面面度與分子濃度感測電路 | zh_TW |
dc.title | Piezoelectric Energy Harvesting Interface Circuit and Molecular Readout Circuit for Biomedical Micro Systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳介琮(Jieh-Tsorng Wu),黃柏鈞(Po-Chiun Huang),蔡建泓(Chien-Hung Tsai) | |
dc.subject.keyword | 壓電材料,介面電路,分子濃度,感測電路, | zh_TW |
dc.subject.keyword | piezoelectric,energy,harvesting,interface,circuit,molecular,readout,circuit, | en |
dc.relation.page | 52 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-08-15 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。