Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18567
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林依依 | |
dc.contributor.author | Mei Leng Lam | en |
dc.contributor.author | 林美玲 | zh_TW |
dc.date.accessioned | 2021-06-08T01:12:11Z | - |
dc.date.copyright | 2014-08-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-15 | |
dc.identifier.citation | Ando, K., and M. J. McPhaden, 1997: Variability of surface layer hydrography in the tropical Pacific Ocean, J. Geophys. Res., 102, 23,063– 23,078, 1997.
Aberson, Sim D., 2003: Targeted Observations to Improve Operational Tropical Cyclone Track Forecast Guidance. Mon. Wea. Rev., 131, 1613–1628. Black, P. G., E. A. D’Asaro, W. M. Drennan, J. R. French, P. P. Niller, T. B. Sanford, E. J. Terrill, E. J. Walsh, and J. A. Zhang, 2007: Air-sea exchange in hurricanes, Bull. Am. Meteorol. Soc., 88, 357– 374. Balaguru, K., Chang, P., Saravanan, R., Leung, L.R., Xu, Z., Li, M., Hsieh, J.S., 2012:Ocean barrier layers' effect on tropical cyclone intensification. Proc Natl Acad Sci , (36), 14343-7. Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone-ocean interaction with a high resolution coupled model. J. Geophys. Res., 98, 23245–23263. Bender, Morris A., Isaac Ginis, 2000: Real-Case Simulations of Hurricane–Ocean Interaction Using A High-Resolution Coupled Model: Effects on Hurricane Intensity. Mon. Wea. Rev., 128, 917–946. Bosc, C., and T. Delcroix, 2008: Observed equatorial Rossby waves and ENSO-related warm water volume changes in the equatorial Pacific Ocean, J. Geophys. Res., 113, C06003, doi:10.1029/2007JC004613. Bosc, C., Delcroix, T., Maes, C., 2009: Barrier layer variability in the western pacific warm pool from 2000 to 2007. Journal of Geophysical Research ,114. Boutin, J., Martin, N., Reverdin, G., Yin, X., and Gaillard, F., 2013: Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain, Ocean Sci., 9, 183-192 Chen, S.S., Zhao, W., Donelan, M.A., Tolman, H.L., 2013: Directional wind–wave coupling in fully coupled atmosphere–wave–ocean models: Results from cblast-hurricane. Journal of the Atmospheric Sciences, 70 (10), 3198-3215. Cronin, M. F., and M. J. McPhaden. 2002: Barrier layer formation during westerly wind bursts. J. Geophys. Res., 107, 8020, doi:10.1029/2001JC001171, 2002 Cione, Joseph J., Eric W. Uhlhorn, 2003: Sea Surface Temperature Variability in Hurricanes: Implications with Respect to Intensity Change. Mon. Wea. Rev., 131, 1783–1796. Delcroix, Thierry, Catherine Gautier, 1987: Estimates of Heat Content Variations from Sea Level Measurements in the Central and Western Tropical Pacific from 1979 to 1985. J. Phys. Oceanogr., 17, 725–734. DeMaria, M., and J. Kaplan, 1997: An operational evaluation of a statistical hurricane intensity prediction scheme (SHIPS). Preprints, 22d Conf. on Hurricanes and Tropical Meteorology, Fort Collins, CO, Amer. Meteor. Soc., 280–281. DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS), Weather Forecast., 20, 531–543. De Boyer Montégut, C., 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research, 109 (C12). De Boyer Montégut, C., Mignot, J., Lazar, A., and Cravatte,S., 2007: Control of salinity on the mixed layer depth in the world ocean. Part I: general description, J. Geophys. Res., 112, C06011, doi:10.1029/2006JC003953 Donelan, M. A., Haus, B. K., Reul, N., Plant, W., Stiassnie, M., Graber, H., Brown, O., and Saltzman, E., 2004: On the limiting aerodynamic roughness of the ocean in very strong winds, Geophys. Res. Lett., 31, L18306 Durand, F., S. R. Shetye, J. Vialard, D. Shankar, S. S. C. Shenoi, C. Ethe, and G. Madec, 2004: Impact of temperature inversions on SST evolution in the southeastern Arabian Sea during the pre-summer monsoon season, Geophys. Res. Lett., 31, L01305, doi:10.1029/2003GL018906. Emanuel, K.A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43, 585-604. Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665-669 Emanuel, K.A., 2000: A statistical analysis of hurricane intensity. Mon. Wea. Rev., 128, 1139-1152. Emanuel, K., 2004: Tropical Cyclone Energetics and Structure. In Atmospheric Turbulence and Mesoscale Meteorology, E. Fedorovich, R. Rotunno and B. Stevens, editors, Cambridge University Press, 280 pp. Emanuel, K., 2006:Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 4797-4802. Ffield, A., 2007: Amazon and orinoco river plumes and nbc rings: Bystanders or participants in hurricane events? Journal of Climate, 20 (2), 316-333. Godfrey, J.S., Lindstrom, E.J., 1989: The heat budget of the equatorial western pacific surface mixed layer. Journal of Geophysical Research, 94 (C6), 8007. Goerss, James S., 2000: Tropical Cyclone Track Forecasts Using an Ensemble of Dynamical Models. Mon. Wea. Rev., 128, 1187–1193. Goni, G., et al., 2009: Application of satellite-derived ocean measurements to tropical cyclone intensity forecasting, Oceanography, 22(3), 190–197. Grodsky, S. A., N. Reul, G. Lagerloef, G. Reverdin, J. A. Carton, B. Chapron, Y. Quilfen, V. N. Kudryavtsev, and H. Y. Kao, 2012: Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett., 39, doi: 10.1029/2012GL053335. Hasegawa, Takuya, Kentaro Ando, Iwao Ueki, Keisuke Mizuno, Shigeki Hosoda, 2013: Upper-Ocean Salinity Variability in the Tropical Pacific: Case Study for Quasi-Decadal Shift during the 2000s Using TRITON Buoys and Argo Floats. J. Climate, 26, 8126–8138. Hellweger, F. L., and A. L. Gordon, 2002: Tracing Amazon River water into the Caribbean Sea, J. Mar. Res., 60, 537– 549. Henocq, C., J. Boutin, G. Reverdin, F. Petitcolin, S. Arnault, and P. Lattes ,2010: Vertical variability of near-surface salinity in the tropics: Consequences for L-band radiometer calibration and validation, J. Atmos. Oceanic Technol., 27, 192–209, doi:10.1175/2009JTECHO670.1. Houze, R.A., Jr., Chen, S.S., Smull, B.F., Lee, W.C., Bell, M.M., 2007: Hurricane intensity and eyewall replacement. Science, 315 (5816), 1235-9. Lagerloef, G., F. Colomb, D. LeVine, F. Wentz, S. Yueh, C. Ruf, J. Lilly, J. Gunn, Y. Chao, A. deCharon, and others. 2008. The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge. Oceanography, 21(1):68–81. Levitus, S., 1982: Climatological Atlas of the World Ocean, NOAA Professional Paper No. 13, pp. 191 Lee, Chia-Ying, Shuyi S. Chen, 2014: Stable Boundary Layer and Its Impact on Tropical Cyclone Structure in a Coupled Atmosphere–Ocean Model. Mon. Wea. Rev., 142, 1927–1944. Li, X., Pu, Z., 2008: Sensitivity of numerical simulation of early rapid intensification of hurricane emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Monthly Weather Review, 136 (12), 4819-4838. Lindstrom, E., R. Lukas, R. Fine, E. Firing, S. Godfrey, G. Meyers, and M. Tsuchiya, 1987: The Western Equatorial Pacific Ocean Circulation Study. Nature, 300, 533-537. Lin, I.I., 2003: Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophysical Research Letters, 30 (3). Lin, I. I., C. C. Wu, K. A. Emanuel, I. H. Lee, C. R. Wu, and I. F. Pun, 2005: The Interaction of Supertyphoon Maemi (2003) With a Warm Ocean Eddy, Mon. Wea. Rev., 133, 2635–2649. Lin, I. I., C. C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper-Ocean Thermal Structure and the Western North Pacific Category-5 Typhoons. Part I: Ocean Features and Category-5 Typhoon’s Intensification, Mon. Wea. Rev., 136, 3288–3306, doi:10.1175/2008MWR2277.1. Lin, I. I., I. F. Pun, and C. C. Wu, 2009: Upper ocean thermal structure and the western North Pacific category-5 typhoons—Part II: Dependence on translation speed, Mon. Weather Rev., 137, 3744–3757. Lin, I.I., Black, P., Price, J.F., Yang, C.Y., Chen, S.S., Lien, C.C., Harr, P., Chi, N.H., Wu, C.C., D'asaro, E.A., 2013: An ocean coupling potential intensity index for tropical cyclones. Geophysical Research Letters, 40 (9), 1878-1882. Lin, I.I., Chen, C.-H., Pun, I.-F., Liu, W.T., Wu, C.-C., 2009a: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone nargis (2008). Geophysical Research Letters, 36 (3). Lin, I.I., Pun, I.-F., Wu, C.-C., 2009b: Upper-ocean thermal structure and the western north pacific category 5 typhoons. Part II: Dependence on translation speed. Monthly Weather Review, 137 (11), 3744-3757. Lin, I.I., Wu, C.-C., Pun, I.-F., Ko, D.-S., 2008: Upper-ocean thermal structure and the western north pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Monthly Weather Review, 136 (9), 3288-3306. Liu, K. S., and J. C. L. Chan, 1999: Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Mon. Wea. Rev., 127, 2992–3001. Liu, H., Grodsky, S.A., Carton, J.A., 2009: Observed subseasonal variability of oceanic barrier and compensated layers. Journal of Climate, 22 (22), 6104-6119. Lukas, E.J. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean, J. Geophys. Res., 96 (S01) (1991), pp. 3343–3357 Malkus, J., 1962: Large Sacle Interactions. The Sea, Vol. I, M.N. Hill, Ed., Interscience, 55-294 Marks, Frank D., Lynn K. Shay, 1998: Landfalling Tropical Cyclones: Forecast Problems and Associated Research Opportunities. Bull. Amer. Meteor. Soc., 79, 305–323. Maes, C., Ando, K., Delcroix, T., Kessler, W.S., Mcphaden, M.J., Roemmich, D., 2006: Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western pacific warm pool. Geophysical Research Letters, 33 Maes, C., Belamari, S., 2011: On the impact of salinity barrier layer on the pacific ocean mean state and enso. Sola 7, 97-100. Mcphaden, M.J., Foltz, G.R., 2013: Intraseasonal variations in the surface layer heat balance of the central equatorial indian ocean: The importance of zonal advection and vertical mixing. Geophysical Research Letters, 40 (11), 2737-2741. Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W. Wang, 2004: 'The Weather Reseach and Forecast Model: Software Architecture and Performance' to appear in proceedings of the 11th ECMWF Workshop on the Use of High Performance Computing In Meteorology, 25-29 October 2004 Merrill, R. T., 1984: Structure of the tropical cyclone outflow layer. Preprints, 15th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 421–426. Mignot, J., De Boyer Montégut, C., Lazar, A., Cravatte, S., 2007: Control of salinity on the mixed layer depth in the world ocean: 2. Tropical areas. Journal of Geophysical Research, 112 (C10). Mignot, J., De Boyer Montégut, C. and Tomczak, M., 2009: On the porosity of barrier layers, Ocean Sci., 5, 379–387, 2009 Monterey, G., and S. Levitus, 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean, NOAA Atlas NESDIS, 14, 100 pp. Price, J. F., 1981: Upper ocean response to a hurricane, J. Phys. Oceanogr., 11, 153–175. Qiu, Y., W. Cai, L. Li, and X. Guo, 2012: Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean Dipole, Geophys. Res. Lett., doi:10.1029/2012GL051441 Qu, Tangdong, Shan Gao, Rana A. Fine, 2013: Subduction of South Pacific Tropical Water and Its Equatorward Pathways as Shown by a Simulated Passive Tracer. J. Phys. Oceanogr., 43, 1551-1565. Sato, K., Suga, T., Hanawa, K., 2004: Barrier layer in the north pacific subtropical gyre. Geophysical Research Letters, 31 (5) Shay L. K., G. J. Goni and P. G. Black, 2000: Effect of a warm ocean ring on hurricane Opal. Mon. Weath. Rev., 128, 1366-1383 Soloviev, A., and R. Lukas, 1996: Observation of spatial variability of diurnal thermocline and rain-formed halocline in the western Pacific warm pool, J. Phys. Oceanogr., 26, 2529–2538, 1996. Sprintall, J., and M. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97, 7305-7316. Sprintall, J., Cronin, M.F., 2001: Upper ocean vertical structure. 3120-3128. Swenson, M. S., and D. V. Hansen, 1999: Tropical Pacific ocean mixed layer heat budget: The Pacific cold tongue, J. Phys. Oceanogr., 29, 83–91. Thomson, R. E., and I. V. Fine, 2003: Estimating mixed layer depth from oceanic profile data, J. Atmos. Oceanic Technol., 20(2), 319– 329. Ueno, Hiromichi, Ichiro Yasuda, 2005: Temperature Inversions in the Subarctic North Pacific. J. Phys. Oceanogr., 35, 2444–2456. Wang, Y., and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review, Meteor. Atmos. Phys., 87, 257–278. Wang X. -D. , G. -J. Han, Y. -Q. Qi, W. Li, 2011: Impact of barrier layer on typhoon-induced sea surface cooling. Dyn. Atmos. Oceans, 52, 367—385 You, Y., 1995: Salinity variability and its role in the barrier-layer formation during TOGA-COARE, J. Phys. Oceanogr., 25, 2778– 2807, 1995. Zedler, S. E., T. D. Dickey, S. C. Doney, J. F. Price, X. Yu, and G. L. Mellor, 2002: Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995, J. Geophys. Res., 107(C12), 3232 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18567 | - |
dc.description.abstract | 過去二十多年間,由於觀測資料的數量增加與數值模式之改善,熱帶氣旋(颱風、颶風)的路徑預報能力穩定地發展中;相形之下,強度預報之精確度仍然是相對地緩慢,其中一個影響熱帶氣旋的強度變化之重要因子是海洋的上層和次表層結構[Goni et al., 2009; Lin et al., 2013]。最近的研究[Ffield, 2007; Balaguru et al., 2012]顯示,海洋次表層的阻隔層(Barrier Layer,BL)有利於熱帶氣旋增強。因此,本研究檢視北半球的熱帶氣旋活躍區中,阻隔層在熱帶氣旋增強的過程中所扮演之角色。由World Ocean Atlas 2013的氣候資料顯示,深厚且長期存在的阻隔層主要分佈在孟加拉灣(BoB)、赤道西太平洋和北大西洋;透過分析熱帶氣旋活躍區的平均温度和鹽度結構,結果發現,在孟加拉灣區,有利於熱帶氣旋發展的熱力結構與鹽度結構並不會同時存在,而北大西洋和西北太平洋則可以同時擁有較高SST和稍厚的阻隔層之條件。在過去6年間,熱帶氣旋與阻隔層交互作用之機率為13%。另外,使用3D Price-Weller-Pinkel海洋模式定量分析阻隔層的貢獻量,在兩個個案中,在適當的移動速度及風速下,具有阻隔層(With-BL)和不具有阻隔層(No-BL)的結構才會產生顯著的冷卻差異。因此,在阻隔層的條件下確實能夠抑制熱帶氣旋引起的冷卻效應,並且能提供較多的焓通量給大氣,促使熱帶氣旋發展。為更深入瞭解阻隔層的抑制冷卻之能力,本研究使用3D PWP海洋模式進行2種敏感度測試,對象分別是阻隔層厚度及鹽度梯度。結果是鹽度梯度的敏感度較高。最後,本研究使用高空間解析度的大氣—海洋耦合模式(Coupled WRF & PWP),分別模擬在阻隔層(With-BL)和不具有阻隔層(NO-BL)的條件下,對於熱帶氣旋的強度影響,模擬的對象分別為熱帶氣旋桑達(2011)和寶發(2012),它們的海洋初始場中皆具存在阻隔層。模擬結果顯示,在With-BL組中,模擬的最低海平面氣壓較低,熱帶氣旋強度較強,並且與JTWC的觀測較為接近。因此,本研究認為在熱帶氣旋的發展過程中,不可忽略阻隔層所帶來的影響,然而統計顯示熱帶氣旋與阻隔層發生作用之機率並不是相當高,並且熱帶氣旋的移動速度、風速、阻隔層之厚度、深度皆會影響阻隔層之最終功能,未來應加強對鹽度的觀測,以避免忽略或高估鹽度對熱帶氣旋的強度之影響力。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:12:11Z (GMT). No. of bitstreams: 1 ntu-103-R01229012-1.pdf: 19087831 bytes, checksum: 0571a036fdc9df5ccfb9baa87527d44f (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II 目錄 V 圖目錄 VII 表目錄 XII 第一章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 10 第二章 研究工具與研究方法 11 2.1 資料簡介 11 2.1.1 Tropical Cyclone Best Track Data 11 2.1.2 NCEP FNL Analysis Data 11 2.1.3 ECMWF Re-analysis Interim 12 2.1.4 World Ocean Atlas Series 12 2.1.5 Argo Array 13 2.1.6 TMI/AMSR-E Microwave OI SST 13 2.1.7 Aquarius/SAC-D Sea Surface Salinity 14 2.1.8 Global HYCOM + NCODA Global 1/12° Analysis (GLBa0.08) 14 2.2 數值模式介紹 15 2.2.1 3D Price-Weller-Pinkel Ocean Mixed Layer Model 15 2.2.2 Coupled WRF & 3D-PWP Model 17 2.3 研究方法 19 2.3.1 阻隔層的定義 19 2.3.2 熱帶氣旋活躍區的平均海洋場之計算 20 2.3.3 熱帶氣旋在其路徑上與阻隔層的機率計算 21 2.3.4 逆温層的定義 22 2.3.5 焓通量 22 第三章 研究結果Ⅰ — 阻隔層之特徵分析 24 3.1 阻隔層的功能 24 3.1.1 降低逸入冷卻的程度 24 3.1.2 阻隔層對熱帶氣旋的貢獻-焓通量 26 3.1.3 海水的逆温現象 27 3.1.4 小結 29 3.2 阻隔層的敏感度測試 29 3.2.1 阻隔層厚度 30 3.2.2 鹽度梯度 32 3.3 全球海洋的氣候平均場 33 3.3.1 等温層的氣候場 33 3.3.2 海表面鹽度的氣候場 34 3.3.3 阻隔層的氣候場 35 3.4 阻隔層中的逆温現象 36 3.5 熱帶氣旋活躍區的平均海洋場 37 3.6 熱帶氣旋在其路徑上與阻隔層的發生機率 38 3.7 延伸分析 39 3.7.1 兩種門檻值之差異 39 3.7.2 WOA05與WOA13之差異 40 3.7.3 Aquarius與HYCOM的海表面鹽度之對照 40 第四章 研究結果Ⅱ — 海氣耦合模式之實驗結果 42 4.1 個案1—強烈熱帶氣旋桑達(2011/04W) 42 4.1.1 熱帶氣旋桑達之簡介 42 4.1.2 WRF-PWP模式設定 42 4.1.3 對照組的實驗設計 43 4.1.4 耦合模式中的阻隔層 43 4.1.5 模擬結果之探討 44 4.2 個案2—強烈熱帶氣旋寶發(2012/26W) 45 4.2.1 熱帶氣旋寶發之簡介 45 4.2.2 WRF-PWP模式設定 46 4.2.3 對照組的實驗設計 46 4.2.4 模擬結果之探討 46 第五章 總結 48 5.1 結論 48 5.2 未來展望 50 參考文獻 52 附圖 58 附表 122 附錄 IX | |
dc.language.iso | zh-TW | |
dc.title | 海洋阻隔層對熱帶氣旋的強度變化之探討 | zh_TW |
dc.title | Investigation of Ocean's Barrier Layer on
Tropical Cyclone's Intensity Change | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳俊傑,隋中興,羅敏輝 | |
dc.subject.keyword | 熱帶氣旋,抑制冷卻,阻隔層, | zh_TW |
dc.subject.keyword | Tropical cyclone,Suppress Cooling,Barrier layer, | en |
dc.relation.page | 139 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-08-15 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
Appears in Collections: | 大氣科學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-103-1.pdf Restricted Access | 18.64 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.