Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18546
標題: 具應用可適性之跨平台相互輔助推薦系統
Application-Aware Cross Domains Selective Transfer Learning
作者: KANG LIN WANG
王康林
指導教授: 陳銘憲(Ming-Syan Chen)
共同指導教授: 吳尚鴻(Shan-Hung Wu)
關鍵字: 推薦系統,跨平台,最佳化,
recommendation,recommender systems,cross domain,cross multiple domains,
出版年 : 2014
學位: 碩士
摘要: 本碩士論文係介紹在多個平台上的推薦系統相互甫助的方式。以往的推薦系統多利用於單一平台上,方法多如利用該單一平台上的資訊,尋找相似的評分模式去進行對於使用者們尚未評分的項目進行預測與推薦。近年來, 諸多文獻開始探討關於是否能夠使用多個分別的平台,藉由交換資訊的方式達到對所有參與的平台皆有益處的跨平台推薦系統。 本論文係在討論該跨平台推薦系統,本論文除了回顧了之前方法的好處之外,並提出一新穎的方式進行跨平台推薦系統的優化。我們提出的方式不僅在效能上優於舊有的方式,且運算速度更快。
Traditionally, recommender systems make recommendations based on a single domain (e.g., movie or book domain) only. Recently, several cross-domain recommendation models have been proposed. Some of them proposed to leverage the common latent factors in the rating patterns of users-to-items co-clustering between domains and proposed to transfer the knowledge of such common latent factors to enhance the overall recommendation performance. However, these models often restrain themselves to transfer all the common knowledge between domains. Furthermore, these models often include all the domains in theirs participating domain set without selecting and evaluating the effect of including such domain into the transfer learning task. In this thesis, we propose a novel selective transfer learning model for the cross-multiple domains recommendation problem. This model not only can discover and apply the cross-multiple domains rating patterns to enhance the performance of recommendation on each of the participating domain, but also can select the most beneficial and efficient common knowledge then transfer the knowledge to each of the participating domain to improve the recommendation performance. In addition, we define a domain property index to evaluate the benefit of including each domain into the transfer learning task. Hence, this framework is able to discover and leverage the most influential common and cross-multiple domains rating patterns, and select an efficient participating domain set to enhance the recommendation performance. Extensive experiments on several real world datasets indicate that the proposed framework outperforms state-of-the-art methods for cross-domain recommendation task.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18546
全文授權: 未授權
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.09 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved