請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18537完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林中梧 | |
| dc.contributor.author | Wei-Ting Huang | en |
| dc.contributor.author | 黃偉庭 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:10:29Z | - |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-16 | |
| dc.identifier.citation | 1 Lin, T. C., Chen, S. U., Chen, Y. F., Chang, Y. C. & Lin, C. W. Intramucosal variant of nasal natural killer (NK)/T cell lymphoma has a better survival than does invasive variant: implication on loss of E26 transformation-specific sequence 1 (ETS-1) and T-box expressed in T cells (T-bet) with invasion. Histopathology 60, 287-295, doi:10.1111/j.1365-2559.2011.04086.x (2012).
2 Young, H. A. & Bream, J. H. IFN-gamma: recent advances in understanding regulation of expression, biological functions, and clinical applications. Current topics in microbiology and immunology 316, 97-117 (2007). 3 Lanier, L. L. Evolutionary struggles between NK cells and viruses. Nature reviews. Immunology 8, 259-268, doi:10.1038/nri2276 (2008). 4 Reich, N. C. STAT dynamics. Cytokine & growth factor reviews 18, 511-518, doi:10.1016/j.cytogfr.2007.06.021 (2007). 5 Kim, H. S. & Lee, M. S. STAT1 as a key modulator of cell death. Cellular signalling 19, 454-465, doi:10.1016/j.cellsig.2006.09.003 (2007). 6 Vilcek, J. Boosting p53 with interferon and viruses. Nature immunology 4, 825-826, doi:10.1038/ni0903-825 (2003). 7 Townsend, P. A. et al. STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. The Journal of biological chemistry 279, 5811-5820, doi:10.1074/jbc.M302637200 (2004). 8 Bhinge, A. A., Kim, J., Euskirchen, G. M., Snyder, M. & Iyer, V. R. Mapping the chromosomal targets of STAT1 by Sequence Tag Analysis of Genomic Enrichment (STAGE). Genome research 17, 910-916, doi:10.1101/gr.5574907 (2007). 9 Kaplan, D. H. et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proceedings of the National Academy of Sciences of the United States of America 95, 7556-7561 (1998). 10 Porta, C. et al. Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively. Oncogene 24, 605-615, doi:10.1038/sj.onc.1208204 (2005). 11 Gil, M. P. et al. Biologic consequences of Stat1-independent IFN signaling. Proceedings of the National Academy of Sciences of the United States of America 98, 6680-6685, doi:10.1073/pnas.111163898 (2001). 12 Ramana, C. V. et al. Stat1-independent regulation of gene expression in response to IFN-gamma. Proceedings of the National Academy of Sciences of the United States of America 98, 6674-6679, doi:10.1073/pnas.111164198 (2001). 13 Sajish, M. et al. Trp-tRNA synthetase bridges DNA-PKcs to PARP-1 to link IFN-gamma and p53 signaling. Nature chemical biology 8, 547-554, doi:10.1038/nchembio.937 (2012). 14 Goodwin, M. M., Canny, S., Steed, A. & Virgin, H. W. Murine gammaherpesvirus 68 has evolved gamma interferon and stat1-repressible promoters for the lytic switch gene 50. Journal of virology 84, 3711-3717, doi:10.1128/JVI.02099-09 (2010). 15 Quintanilla-Martinez, L. et al. p53 Mutations in nasal natural killer/T-cell lymphoma from Mexico: association with large cell morphology and advanced disease. The American journal of pathology 159, 2095-2105, doi:10.1016/S0002-9440(10)63061-1 (2001). 16 Barth, S., Meister, G. & Grasser, F. A. EBV-encoded miRNAs. Biochimica et biophysica acta 1809, 631-640, doi:10.1016/j.bbagrm.2011.05.010 (2011). 17 Nachmani, D., Stern-Ginossar, N., Sarid, R. & Mandelboim, O. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell host & microbe 5, 376-385, doi:10.1016/j.chom.2009.03.003 (2009). 18 Choy, E. Y. et al. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. The Journal of experimental medicine 205, 2551-2560, doi:10.1084/jem.20072581 (2008). 19 Xia, T. et al. EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer research 68, 1436-1442, doi:10.1158/0008-5472.CAN-07-5126 (2008). 20 Lin, T. C., Liu, T. Y., Hsu, S. M. & Lin, C. W. Epstein-Barr virus-encoded miR-BART20-5p inhibits T-bet translation with secondary suppression of p53 in invasive nasal NK/T-cell lymphoma. The American journal of pathology 182, 1865-1875, doi:10.1016/j.ajpath.2013.01.025 (2013). 21 Steiner, D. F. et al. MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity 35, 169-181, doi:10.1016/j.immuni.2011.07.009 (2011). 22 Ma, F. et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nature immunology 12, 861-869, doi:10.1038/ni.2073 (2011). 23 Naiche, L. A., Harrelson, Z., Kelly, R. G. & Papaioannou, V. E. T-box genes in vertebrate development. Annual review of genetics 39, 219-239, doi:10.1146/annurev.genet.39.073003.105925 (2005). 24 Pearce, E. L. et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302, 1041-1043, doi:10.1126/science.1090148 (2003). 25 Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655-669 (2000). 26 Beima, K. M. et al. T-bet binding to newly identified target gene promoters is cell type-independent but results in variable context-dependent functional effects. The Journal of biological chemistry 281, 11992-12000, doi:10.1074/jbc.M513613200 (2006). 27 Cho, J. Y., Grigura, V., Murphy, T. L. & Murphy, K. Identification of cooperative monomeric Brachyury sites conferring T-bet responsiveness to the proximal IFN-gamma promoter. International immunology 15, 1149-1160 (2003). 28 Lee, D. U., Avni, O., Chen, L. & Rao, A. A distal enhancer in the interferon-gamma (IFN-gamma) locus revealed by genome sequence comparison. The Journal of biological chemistry 279, 4802-4810, doi:10.1074/jbc.M307904200 (2004). 29 Lord, G. M. et al. T-bet is required for optimal proinflammatory CD4+ T-cell trafficking. Blood 106, 3432-3439, doi:10.1182/blood-2005-04-1393 (2005). 30 Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295, 338-342, doi:10.1126/science.1065543 (2002). 31 Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nature immunology 3, 549-557, doi:10.1038/ni794 (2002). 32 Matsuda, J. L., George, T. C., Hagman, J. & Gapin, L. Temporal dissection of T-bet functions. Journal of immunology 178, 3457-3465 (2007). 33 Tong, Y., Aune, T. & Boothby, M. T-bet antagonizes mSin3a recruitment and transactivates a fully methylated IFN-gamma promoter via a conserved T-box half-site. Proceedings of the National Academy of Sciences of the United States of America 102, 2034-2039, doi:10.1073/pnas.0409510102 (2005). 34 Usui, T. et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. The Journal of experimental medicine 203, 755-766, doi:10.1084/jem.20052165 (2006). 35 Glimcher, L. H. & Murphy, K. M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes & development 14, 1693-1711 (2000). 36 Murphy, K. M. et al. Signaling and transcription in T helper development. Annual review of immunology 18, 451-494, doi:10.1146/annurev.immunol.18.1.451 (2000). 37 Szabo, S. J., Dighe, A. S., Gubler, U. & Murphy, K. M. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. The Journal of experimental medicine 185, 817-824 (1997). 38 Presky, D. H. et al. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proceedings of the National Academy of Sciences of the United States of America 93, 14002-14007 (1996). 39 Rengarajan, J., Szabo, S. J. & Glimcher, L. H. Transcriptional regulation of Th1/Th2 polarization. Immunology today 21, 479-483 (2000). 40 Rao, A. & Avni, O. Molecular aspects of T-cell differentiation. British medical bulletin 56, 969-984 (2000). 41 Mullen, A. C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907-1910, doi:10.1126/science.1059835 (2001). 42 Lewis, M. D., Miller, S. A., Miazgowicz, M. M., Beima, K. M. & Weinmann, A. S. T-bet's ability to regulate individual target genes requires the conserved T-box domain to recruit histone methyltransferase activity and a separate family member-specific transactivation domain. Molecular and cellular biology 27, 8510-8521, doi:10.1128/MCB.01615-07 (2007). 43 Lesley, J. & Hyman, R. CD44 structure and function. Frontiers in bioscience : a journal and virtual library 3, d616-630 (1998). 44 Naor, D. et al. CD44 involvement in autoimmune inflammations: the lesson to be learned from CD44-targeting by antibody or from knockout mice. Annals of the New York Academy of Sciences 1110, 233-247, doi:10.1196/annals.1423.025 (2007). 45 Seth, A., Gote, L., Nagarkatti, M. & Nagarkatti, P. S. T-cell-receptor-independent activation of cytolytic activity of cytotoxic T lymphocytes mediated through CD44 and gp90MEL-14. Proceedings of the National Academy of Sciences of the United States of America 88, 7877-7881 (1991). 46 Hammond, D. M. et al. Double-negative T cells from MRL-lpr/lpr mice mediate cytolytic activity when triggered through adhesion molecules and constitutively express perforin gene. The Journal of experimental medicine 178, 2225-2230 (1993). 47 Ponta, H., Sherman, L. & Herrlich, P. A. CD44: from adhesion molecules to signalling regulators. Nature reviews. Molecular cell biology 4, 33-45, doi:10.1038/nrm1004 (2003). 48 Turley, E. A., Noble, P. W. & Bourguignon, L. Y. Signaling properties of hyaluronan receptors. The Journal of biological chemistry 277, 4589-4592, doi:10.1074/jbc.R100038200 (2002). 49 Rafi-Janajreh, A. Q., Nagarkatti, P. S. & Nagarkatti, M. Role of CD44 in CTL and NK cell activity. Frontiers in bioscience : a journal and virtual library 3, d665-671 (1998). 50 Hegde, V. L., Singh, N. P., Nagarkatti, P. S. & Nagarkatti, M. CD44 mobilization in allogeneic dendritic cell-T cell immunological synapse plays a key role in T cell activation. Journal of leukocyte biology 84, 134-142, doi:10.1189/jlb.1107752 (2008). 51 Guan, H., Nagarkatti, P. S. & Nagarkatti, M. Role of CD44 in the differentiation of Th1 and Th2 cells: CD44-deficiency enhances the development of Th2 effectors in response to sheep RBC and chicken ovalbumin. Journal of immunology 183, 172-180, doi:10.4049/jimmunol.0802325 (2009). 52 Lin, C. W., Chen, Y. H., Chuang, Y. C., Liu, T. Y. & Hsu, S. M. CD94 transcripts imply a better prognosis in nasal-type extranodal NK/T-cell lymphoma. Blood 102, 2623-2631, doi:10.1182/blood-2003-01-0295 (2003). 53 Lanier, L. L., Chang, C., Spits, H. & Phillips, J. H. Expression of cytoplasmic CD3 epsilon proteins in activated human adult natural killer (NK) cells and CD3 gamma, delta, epsilon complexes in fetal NK cells. Implications for the relationship of NK and T lymphocytes. Journal of immunology 149, 1876-1880 (1992). 54 Vilches, C. & Parham, P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annual review of immunology 20, 217-251, doi:10.1146/annurev.immunol.20.092501.134942 (2002). 55 Long, E. O. & Rajagopalan, S. HLA class I recognition by killer cell Ig-like receptors. Seminars in immunology 12, 101-108, doi:10.1006/smim.2000.0212 (2000). 56 Wilson, M. J., Torkar, M. & Trowsdale, J. Genomic organization of a human killer cell inhibitory receptor gene. Tissue antigens 49, 574-579 (1997). 57 Steffens, U., Vyas, Y., Dupont, B. & Selvakumar, A. Nucleotide and amino acid sequence alignment for human killer cell inhibitory receptors (KIR), 1998. Tissue antigens 51, 398-413 (1998). 58 Lopez-Botet, M. et al. Structure and function of the CD94 C-type lectin receptor complex involved in recognition of HLA class I molecules. Immunological reviews 155, 165-174 (1997). 59 Takei, F. et al. Ly49 and CD94/NKG2: developmentally regulated expression and evolution. Immunological reviews 181, 90-103 (2001). 60 Lian, R. H. et al. Orderly and nonstochastic acquisition of CD94/NKG2 receptors by developing NK cells derived from embryonic stem cells in vitro. Journal of immunology 168, 4980-4987 (2002). 61 Williams, N. S., Kubota, A., Bennett, M., Kumar, V. & Takei, F. Clonal analysis of NK cell development from bone marrow progenitors in vitro: orderly acquisition of receptor gene expression. European journal of immunology 30, 2074-2082, doi:10.1002/1521-4141(200007)30:7<2074::AID-IMMU2074>3.0.CO;2-# (2000). 62 Kubota, A., Kubota, S., Lohwasser, S., Mager, D. L. & Takei, F. Diversity of NK cell receptor repertoire in adult and neonatal mice. Journal of immunology 163, 212-216 (1999). 63 Perez-Villar, J. J. et al. Biochemical and serologic evidence for the existence of functionally distinct forms of the CD94 NK cell receptor. Journal of immunology 157, 5367-5374 (1996). 64 Mori, K. L., Egashira, M. & Oshimi, K. Differentiation stage of natural killer cell-lineage lymphoproliferative disorders based on phenotypic analysis. British journal of haematology 115, 225-228 (2001). 65 Yang, W. et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS genetics 6, e1000841, doi:10.1371/journal.pgen.1000841 (2010). 66 Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes & development 16, 720-728, doi:10.1101/gad.974702 (2002). 67 Lunde, B. M., Moore, C. & Varani, G. RNA-binding proteins: modular design for efficient function. Nature reviews. Molecular cell biology 8, 479-490, doi:10.1038/nrm2178 (2007). 68 Glisovic, T., Bachorik, J. L., Yong, J. & Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS letters 582, 1977-1986, doi:10.1016/j.febslet.2008.03.004 (2008). 69 van Kouwenhove, M., Kedde, M. & Agami, R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nature reviews. Cancer 11, 644-656, doi:10.1038/nrc3107 (2011). 70 Djuranovic, S., Nahvi, A. & Green, R. A parsimonious model for gene regulation by miRNAs. Science 331, 550-553, doi:10.1126/science.1191138 (2011). 71 Wei, Z. et al. A laminar flow electroporation system for efficient DNA and siRNA delivery. Analytical chemistry 83, 5881-5887, doi:10.1021/ac200625b (2011). 72 Xu, Y., Lu, Y. & Xing, W. An individually addressable suspended-drop electroporation system for high-throughput cell transfection. Lab on a chip 14, 686-690, doi:10.1039/c3lc50907a (2014). 73 Guy, H. M., McCloskey, L., Lye, G. J., Mitrophanous, K. A. & Mukhopadhyay, T. K. Characterization of lentiviral vector production using microwell suspension cultures of HEK293T-derived producer cells. Human gene therapy methods 24, 125-139, doi:10.1089/hgtb.2012.200 (2013). 74 Cribbs, A. P., Kennedy, A., Gregory, B. & Brennan, F. M. Simplified production and concentration of lentiviral vectors to achieve high transduction in primary human T cells. BMC biotechnology 13, 98, doi:10.1186/1472-6750-13-98 (2013). 75 Savan, R., Chan, T. & Young, H. A. Lentiviral gene transduction in human and mouse NK cell lines. Methods in molecular biology 612, 209-221, doi:10.1007/978-1-60761-362-6_14 (2010). 76 Huang, W. T. & Lin, C. W. EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-gamma-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. The American journal of pathology 184, 1185-1197, doi:10.1016/j.ajpath.2013.12.024 (2014). 77 Yang, Y., Ochando, J. C., Bromberg, J. S. & Ding, Y. Identification of a distant T-bet enhancer responsive to IL-12/Stat4 and IFNgamma/Stat1 signals. Blood 110, 2494-2500, doi:10.1182/blood-2006-11-058271 (2007). 78 Mukhopadhyay, R., Jia, J., Arif, A., Ray, P. S. & Fox, P. L. The GAIT system: a gatekeeper of inflammatory gene expression. Trends in biochemical sciences 34, 324-331, doi:10.1016/j.tibs.2009.03.004 (2009). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18537 | - |
| dc.description.abstract | Epstein-Barr病毒(EBV)感染常見於淋巴瘤疾病而鼻腔NK細胞淋巴瘤(NNL)是個與EBV病毒相關並由鼻黏膜中的細胞毒性NK細胞與T細胞衍伸而來。EB病毒編碼的miR-BART20-5P抑制T-bet和IFNg並間接抑制p53導致疾病發展的鼻腔NK細胞淋巴瘤(NNL)。
除此之外,我們尚研究EBV病毒如何藉由病毒本身的microRNAs來抑制IFN-γ-STAT1路徑以提升病毒的複製與主流的生長。在EBV−的Jurkat細胞當中,轉染miR-BART20-5p以及miR-BART8各別抑制了luciferase-IFN-γ-3’-UTR和luciferase-STAT1-3’-UTR的轉譯。在EBV+ IFN-γ表現弱/STAT1表現強的YT白血病細胞與IFN-γ表現強/STAT1表現弱的NK92細胞中,miR-BART20-5p與IFN-γ mRNAs或miR-BART8與STAT1 mRNAs在細胞內的相對表現量影響標的基因的表現。染色質免疫沉澱實驗顯示STAT1調節腫瘤抑制基因P53以及miR-let7a的轉錄。此外,使miR-BART8於YT細胞中過度表現或使miR-BART20-5p於NK92細胞中過度表現會抑制p53的表現而造成腫瘤對doxorubicin的抗藥性,這項實驗結果與前述實驗結果相符。於36位NNL的病人當中,miR-BART20-5p或miR-BART8的表現量與STAT1之表現呈現反比結果。除此之外,於46位NNL病人案例中,同時具有miR-BART20-5p和miR-BART8表現的一群NNL病人之p53 mRNAs均有下降情形且伴隨著疾病嚴重進展。因此,我們下了一個結論,EB病毒編碼的miR-BART20-5P和miR-BART8抑制干擾素IFN-γ-STAT1途徑與疾病進展的鼻NK細胞淋巴瘤息息相關 (已發表於2014年的AJP) (Appendix Figure 3)。 核醣核蛋白聚合物(RNPCs)可能調節著T-bet的轉譯過程。為了辨識這些核醣核蛋白聚合物,我們採用全基因體shRNA以分離並辨識那些可能誘導T-bet或是T-bet調節的標記的shRNAs。全基因體shRNAs同時也藉由病毒感染方式送入EBV+ 的YT-20-5p-ECFP-IRES-Tbet-EGFP細胞株,且在此實驗當中,我們以辨識出一些有表現ECFP(藍光)的clones。一些shRNAs已從分離出的clones當中定序出來且正進行進一步的確認實驗。 (關鍵詞:EBV病毒,鼻腔NK細胞淋巴瘤,NK細胞,T-bet,IFN-γ,miR-BART20-5p) | zh_TW |
| dc.description.abstract | Epstein-Barr virus (EBV) infection is frequently found in lymphomas, and Nasal NK/T-cell lymphoma (NNL) is an Epstein-Barr virus (EBV)-associated lymphoma derived from cytotoxic NK or T cells of the nasal mucosa. The EBV-encoded miR-BART20-5p inhibits T-bet and IFN-γ with secondary suppression of p53 and disease progression in nasal NK-cell lymphoma (NNL).
Furthermore, we investigated how EBV may have used miRNAs of viral origin to inhibit the IFN-γ-STAT1 pathway to facilitate viral replication and tumor growth. In EBV− Jurkat cells, transfection of miR-BART20-5p and miR-BART8 inhibited translation of luciferase-IFN-γ-3’-UTR and luciferase-STAT1-3’-UTR, respectively. In EBV+ IFN-γ weak/STAT1 strong YT leukemic cells and IFN-γ strong/STAT1 weak NK92 cells, relative endogenous levels between miR-BART20-5p and IFN-γ mRNAs or between miR-BART8 and STAT1 mRNAs determined expression of the targets. Chromatin immune precipitation studies showed that STAT1 regulates the transcription of the tumor suppressor TP53 (encoding p53) and miR-let7a. Consistent with these findings, overexpression of miR-BART8 in YT cells or of miR-BART20-5p in NK92 cells inhibited p53 and increased resistance to doxorubicin. In 36 NNLs, the levels of miR-BART20-5p or miR-BART8 correlated inversely with the expression of STAT1. Additionally, in 46 NNLs, expression of both miR-BART20-5p and miR-BART8 identified a group of NNLs with decreased p53 mRNAs and evidence of disease progression. We conclude that miR-BART20-5p and miR-BART8 cause progression of nasal NK-cell lymphomas through inhibition of the IFN-g-STAT1 pathway (Am J Path, 2014) (Appendix Figure 3.). Multiple ribonucleoprotein complexes (RNPCs) might regulate T-bet translation. To identify these RNPCs, we have used genome-wide shRNA library to isolate and identify the shRNAs which can induce T-bet or T-bet-regulated markers. The library was also transduced into EBV+ YT-20-5p-ECFP-IRES-Tbet-EGFP cells, and ECFP positive clones were identified. Several shRNAs have been sequenced in the isolated clones and processed for further confirmation. (Key words:EBV, Nasal NK/T-cell lymphoma (NNL), NK cell, T-bet, IFN-γ, miR-BART20-5p) | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:10:29Z (GMT). No. of bitstreams: 1 ntu-103-R01444002-1.pdf: 6703312 bytes, checksum: bf7ddee9beab7aeb155ef4c331fe553c (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 ……………………………………………………………………...................i
目錄 …………………………………………………………………….....................ii 中文摘要 ……………………………………………………………….....................1 Abstract …………………………………………………………………....................2 Chapter 1: Introduction …………………………………………………....................4 1.1 Epstein-Barr virus-encoded miR-BART20 and miR-BART8 in Nasal NK cell lymphoma………………………………………………………………….....4 1.2 Genome-Wide DECIPHER shRNA Library ………………………………….7 1.3 The model of miRNA translational repression………...…...………………….7 1.4 Potential T-bet-regulated-selection markers…….……………………………..8 1.5 Library screening to identify multiple ribonucleoprotein complexes (RNPCs)... ………………………………………………………………………………..11 Chapter 2: Materials and Methods …………………………………………………13 2.1 Chemicals ………………..………………………………………………….13 2.2 Machines and Kits ………………………………………………………13 2.3 Plasmid constructs ………………………………………………………14 2.4 Cell lines and stable cell lines …………………………………………15 2.5 Western Blotting ..……………………………………………………17 2.6 Amplification of the library and viral production ………………………….17 2.7 Transduction of the library into YT cells .......……………………………18 2.8 Flow cytometry ……………………………………….…….……………18 2.9 Cell Sorting …………………………….....…………………………………21 2.10 PCR ………………………………………………………………………...21 2.11 TA cloning of the library ...............................................................................22 2.12 Colony PCR ………………………………………………………………22 2.13 Real-time RT-PCR …………………………………………………………23 2.14 Sequences from colony PCR ………………………………………………24 2.15 Data analysis ……………………………………………………………24 Chapter 3: Results …………………………………………………………………..25 3.1 EBV-Encoded miR-BART20-5p and miR-BART8 Inhibit the IFN-γ-STAT1 Pathway Associated with Disease Progression in Nasal NK-Cell Lymphoma... ……………………………………………………………………………….25 3.2 Construction of the library in YT cells …………………...…………………25 3.3 Intra-cellular staining for T-bet in a YT-BART20-library: miR-BART20-5p suppresses endogenous T-bet in YT cells cells transduced with a shRNA-Decipher library and tarnfected with miR-BART20-5p…………....26 3.4 Double intra-cellular staining for T-bet and IFN-γ from YT cells transduced with the shRNA Library: isolation of rare cells ..............................................26 3.5 Identify potential T-bet-regulated markers in YT cells: T-bet does not induce CXCR3, CD44, CD94, or IL12RB2 in YT cells ……………………............27 3.6 Selection for T-bet-independent marker, CD44: Failure to enrich after 4 rounds ………………………………………….……………………………27 3.7 Array and qRT-PCR for potentialT-bet-dependent markers: WDFY4 is a weakly T-bet-regulated surface marker ……………………………………28 3.8 IL12 plus IL18 does not up-regulate an IFNg promoter-dsRed construct in YT cells ……………..……………………………………………….…………..28 3.9 IFNg promoter-dsRed-EGFP in YT and NK92 cells: Inconclusive for a T-bet driven IFNg promoter ………………………………......………………….29 3.10 Transfection of plasmid IFNg-promoter-dsRed-EGFP or plasmid Tbet-IFNg- promoter-dsRed-EGFP into YT cells: over-expression of T-bet might up-regulate the IFNg-promoter ………………..…………………………...29 3.11 20-5p-dsRed-IRES-Tbet-EGFP and 20-5p-dsRed-IRES-Tbet-3’UTR -deletion-EGFP in YT cells …………………………………………….….30 3.12 Plasmids 20-5p-ECFP-IRES-Tbet-EGFP and 20-5p-ECFP-IRES-Tbet- 3’UTR-deletion- EGFP may be used to screen the shRNA library in YT cells …………….................................................................……………….31 3.13 Conclusions ………………..………………………………………………31 Chapter 4: Discussion ……………….………………………………………………33 Figures and Tables …………………………………………………………………..38 Reference ……………………………………………………………………………56 Appendix ……………………………………………………………………………68 | |
| dc.language.iso | en | |
| dc.title | 以全基因體shRNA篩選能於YT細胞誘發受T-bet調控的標記之微RNA | zh_TW |
| dc.title | Genome-wide shRNA screen in YT cells for induction of T-bet- regulated markers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡錦華,周綠蘋,陳惠文,黃聖懿 | |
| dc.subject.keyword | EBV病毒,鼻腔NK細胞淋巴瘤,NK細胞,T-bet,IFN-γ,miR-BART20-5p, | zh_TW |
| dc.subject.keyword | EBV,Nasal NK/T-cell lymphoma (NNL),NK cell,T-bet,IFN-γ,miR-BART20-5p, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 病理學研究所 | zh_TW |
| 顯示於系所單位: | 病理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 6.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
