請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18488
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱士維(Shi-Wei Chu) | |
dc.contributor.author | Yun-Ju Liu | en |
dc.contributor.author | 劉運儒 | zh_TW |
dc.date.accessioned | 2021-06-08T01:07:48Z | - |
dc.date.copyright | 2014-08-25 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-19 | |
dc.identifier.citation | 1. Leung, B.O. and K.C. Chou, Review of super-resolution fluorescence microscopy for biology. Applied spectroscopy, 2011. 65(9): p. 967-980.
2. Hecht, E., Optics2002: Addison-Wesley Longman, Incorporated. 3. Abbe, E., Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv fur mikroskopische Anatomie, 1873. 9(1): p. 413-418. 4. Reimer, L., Scanning Electron Microscopy: Physics of Image Formation and Microanalysis: Ludwig Reimer1985: Springer. 5. Binnig, G. and H. Rohrer, Scanning tunneling microscopy. IBM Journal of research and development, 2000. 44(1-2): p. 279-293. 6. Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Physical Review Letters, 1986. 56(9): p. 930. 7. Hell, S.W., Far-field optical nanoscopy. Science, 2007. 316(5828): p. 1153-8. 8. Rust, M.J., M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 2006. 3(10): p. 793-796. 9. Huang, B., et al., Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 2008. 319(5864): p. 810-3. 10. Betzig, E., et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006. 313(5793): p. 1642-1645. 11. Hess, S.T., T.P. Girirajan, and M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J, 2006. 91(11): p. 4258-4272. 12. Yamanaka, M., et al., Beyond the diffraction-limit biological imaging by saturated excitation microscopy. Journal of Biomedical Optics, 2008. 13(5): p. 050507-050507-3. 13. Oketani, R., et al. Super-resolution Imaging of Gold Nanoparticles Based on Saturation of Plasmonic Light Scattering. in Conference on Lasers and Electro-Optics/Pacific Rim. 2013. Optical Society of America. 14. 吳學侑, 金奈米粒子之可逆電漿散射開關及其在超解析影像上之應用, in 物理研究所2014, 臺灣大學. p. 1-48. 15. Wang, Z., et al., Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat Commun, 2011. 2: p. 218. 16. Kapitonov, A. and V. Astratov, Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities. Opt Lett, 2007. 32(4): p. 409-411. 17. Chen, Z., A. Taflove, and V. Backman, Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Optics Express, 2004. 12(7): p. 1214-1220. 18. Lecler, S., et al., Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres. Optics Express, 2007. 15(8): p. 4935-4942. 19. Yi, K., et al., Enhanced Raman scattering by self-assembled silica spherical microparticles. Journal of applied physics, 2007. 101(6): p. 063528. 20. Mcleod, E. and C.B. Arnold, Subwavelength direct-write nanopatterning using optically trapped microspheres. Nature nanotechnology, 2008. 3(7): p. 413-417. 21. Hao, X., et al., Microsphere based microscope with optical super-resolution capability. Applied Physics Letters, 2011. 99(20): p. 203102. 22. Hao, X., et al., Hydrophilic microsphere based mesoscopic-lens microscope (MMM). Optics Communications, 2012. 285(20): p. 4130-4133. 23. 樓宗興, 介電質微米球透鏡之超解析成像性質研究, in 物理研究所2013, 臺灣大學. 24. Ye, R., et al., Experimental far-field imaging properties of a ~5-mum diameter spherical lens. Opt Lett, 2013. 38(11): p. 1829-31. 25. Darafsheh, A., et al., Optical super-resolution by high-index liquid-immersed microspheres. Applied Physics Letters, 2012. 101(14): p. -. 26. Darafsheh, A., et al., Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Applied Physics Letters, 2014. 104(6): p. 061117. 27. Lee, S., L. Li, and Z. Wang, Optical resonances in microsphere photonic nanojets. Journal of Optics, 2014. 16(1): p. 015704. 28. Duan, Y., G. Barbastathis, and B. Zhang, Classical imaging theory of a microlens with super-resolution. Opt Lett, 2013. 38(16): p. 2988-90. 29. Rayleigh, J.W.S.B., The theory of sound. Vol. 2. 1896: Macmillan. 30. Heifetz, A., et al., Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere. Optics Express, 2007. 15(25): p. 17334-17342. 31. Regan, C.J., et al., Far-field optical superlenses without metal. Journal of Applied Physics, 2013. 113(18): p. 183105. 32. Yan, Y., et al., Microsphere-Coupled Scanning Laser Confocal Nanoscope for Sub-Diffraction-Limited Imaging at 25 nm Lateral Resolution in the Visible Spectrum. ACS Nano, 2014. 8(2): p. 1809-1816. 33. Krivitsky, L.A., et al., Locomotion of microspheres for super-resolution imaging. Sci Rep, 2013. 3. 34. Pawley, J.B., Handbook of biological confocal microscopy1995, New York: Plenum Press. 35. Pawley, J., Handbook of biological confocal microscopy2010: Springer. 36. Lock, J.A. and E.A. Hovenac, Internal caustic structure of illuminated liquid droplets. Journal of the Optical Society of America A, 1991. 8(10): p. 1541-1552. 37. Adler, C.L., et al., High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder. Journal of the Optical Society of America A, 1997. 14(6): p. 1305-1315. 38. Benincasa, D.S., et al., Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers. Applied Optics, 1987. 26(7): p. 1348-1356. 39. Lock, J.A., C.L. Adler, and E.A. Hovenac, Exterior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder: semiclassical scattering theory analysis. Journal of the Optical Society of America A, 2000. 17(10): p. 1846-1856. 40. Griffiths, D.J. and R. College, Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 1999. 41. Jackson, J.D. and J.D. Jackson, Classical electrodynamics. Wiley New York etc, 1962. 42. Rayleigh, L., CXII. The problem of the whispering gallery. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1910. 20(120): p. 1001-1004. 43. Little, B.E., J.P. Laine, and H. Haus, Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators. Journal of Lightwave Technology, 1999. 17(4): p. 704-715. 44. Goos, F. and H. Hanchen, Ein neuer und fundamentaler Versuch zur Totalreflexion. Annalen der Physik, 1947. 436(7‐8): p. 333-346. 45. Raether, H., Surface plasmons on smooth and rough surfaces and on gratings Springer, 1988. 46. Kelly, K.L., et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 2003. 107(3): p. 668-677. 47. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry., 2007. 58: p. 267-297. 48. Link, S., M. Mohamed, and M. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. The Journal of Physical Chemistry B, 1999. 103(16): p. 3073-3077. 49. Jain, P.K., et al., Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 2006. 110(14): p. 7238-7248. 50. Draine, B.T. and P.J. Flatau, Discrete-dipole approximation for scattering calculations. JOSA A, 1994. 11(4): p. 1491-1499. 51. Regan, C.J., et al., Far-field optical superlenses without metal. Journal of applied physics, 2013. 113(18): p. 183105. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18488 | - |
dc.description.abstract | 自光學顯微鏡被發明以來,就被廣泛的運用在物理、化學、醫學等各項領域中。然而由於光本身的繞射特性,使得光學解析度存在著最小的極限,及為著名的繞射極限。這使得光學顯微鏡無法用於觀察奈米等級的微觀世界。為了生物醫學上的需要,在過往的十幾年內,光學超解析(optical super-resolution)顯微技術被蓬勃的發展。然而,雖然這些技術已在實驗上獲得顯著的成效,但由於這些技術本身工作原理,大多技術都需要高強度的雷射照射以及螢光特性的樣本。使得這些技術在使用上面臨著重重的限制。
近年來,微米球透鏡白光超解析現象的發現,使得人們可以用更為簡單的製程直接藉由可見光觀察奈米尺度的微觀世界。然而,此項技術依然存在著幾項缺點。例如影像的光學對比度很差,光學超解析影像的視野範圍被微米球大小限制,以及未知機制使在這項技術在應用上顯得左支右絀。雖然隨之發現直徑稍大的微米球依然也能夠提供超解析影像,使得視野範圍提升了不少,然而依然還是受限於微米球的尺度。 在我們的工作中,嘗試著對以上三項缺點作研究與改進。對於光學對比度而言,我們結合微米球透鏡與共軛焦顯微鏡(confocal microscopy)改善其光學度比度的問題。並藉由微米球成像的特性,發現了一種新的簡易的方法,使得微米球透鏡可以自由的移動,如此微米球的視野範圍就不再受到尺寸的限制。最後,我們也列舉了幾種可能的微米球成像機制,並利用實驗的結果對於這些機制作一一的討論。希望能夠進一步的瞭解其成像的機制。 | zh_TW |
dc.description.abstract | Optical microscopy has made significant impacts in lots of fields since its invention, especially in biology and material sciences. Due to the diffractive nature of light, the resolution of optical microscopy is constrained to about half wavelength, known as Abbe limit. To conquer this limit, some ground-breaking techniques have been demonstrated in the past decades, including far-field photo-activated localization microscopy (PALM), stimulated emission depletion (STED) microscopy and so on.
However, for most of these super-resolution techniques, fluorescent samples are required, and high laser intensities are necessary to achieve higher resolution. Recently, a simple method has been demonstrated to break diffraction limit by adopting a microsphere lens under a microscope objective. 50-nm resolution was claimed by this microsphere-assisted imaging. Comparing to the other super-resolution techniques, the microsphere technique is free from constraints of fluorescence, high intensity, and surface flatness. However, it still has some constrains in application, such as bad optical contrast, small super-resolution field of view and unknown mechanism. It is known that confocal microscopy provides higher optical contrast and spatial resolution than bright-field microscopy. In this work, we combined confocal microscopy with microsphere lens, and demonstrated super-resolution confocal microscopy without the need of fluorescence. And then we make a moveable microsphere film with PMMA, a thermoset material, so that it provides unlimited field of view by moving the microsphere. At last we discuss some possible mechanism with our experiment result, and exclude some theory. Our technique not only can be implemented easily in common confocal systems, but will greatly augment the observation of biological cells and material science. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:07:48Z (GMT). No. of bitstreams: 1 ntu-103-R00222036-1.pdf: 3162955 bytes, checksum: 3ab17efa964d8648092e8878efb184e6 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xiii Chapter 1 簡介 1 1.1 繞射極限與光學超解析顯微技術 1 1.2 介電質微米球透鏡 4 1.3 實驗目的 8 Chapter 2 實驗方法與原理 9 2.1 光學解析度 9 2.2 共軛焦顯微技術 12 2.2.1 簡介 12 2.2.2 參數介紹 13 2.2.3 成像原理 14 2.3 光奈米噴流(photonic nanojet) 15 2.4 表面漸逝波(Evanescent wave) 20 2.4.1 Whispering-Gallery Modes共振 23 2.4.2 Goos–Hanchen 效應(GHE) 與reciprocal Goos–Hanchen 效應 (rGHE) 26 2.5 金奈米粒子的表面電漿共振 28 Chapter 3 實驗架設 30 3.1 樣本設計 30 3.1.1 共軛焦顯微鏡成像測試 30 3.1.2 解析度測試樣本 31 3.1.3 偏振性測試樣本 32 3.2 共軛焦顯微鏡 33 3.2.1 測試光的偏振對成像的影響 34 3.2.2 測試光的波長對成像的影響 35 3.3 微米球的可移動性 39 Chapter 4 實驗結果 41 4.1微米球搭配共軛焦顯微鏡 41 4.2 成像的偏振相關性 43 4.3 成像的光波長相關性 44 4.4 微米球的可移動性 48 Chapter 5 分析與討論 50 5.1 光學對比度 50 5.2 機制討論 52 5.2.1 提高孔徑值 52 5.2.2 光奈米噴流 53 5.2.3 Whispering Gallery Modes共振 54 5.2.4 rGHE超透鏡 56 5.3 微米球的可移動性 58 Chapter 6 結論與未來工作 61 6.1 結論 61 6.2 未來工作 62 Reference 63 | |
dc.language.iso | zh-TW | |
dc.title | 以共軛焦顯微鏡觀察介電質微米球之光學超解析特性之研究與應用 | zh_TW |
dc.title | Study and application of super-resolution microscopy based on confocal laser scanning and a dielectric microsphere lens | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張之威(Chih-Wei Chang),林宮玄(Kung-Hsuan Lin),陳永芳(Yang-Fang Chen) | |
dc.subject.keyword | 超解析,光奈米噴流,WGM共振,rGHE超透鏡,非點光源解析度, | zh_TW |
dc.subject.keyword | laser scanning,resolution of non-point light source,water,photonic nanojet,WGM resonant,rGHE super lens without matel., | en |
dc.relation.page | 65 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-08-19 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。