Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18487
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈湯龍(Tang-Long Shen)
dc.contributor.authorShih-Cheng Wangen
dc.contributor.author王士誠zh_TW
dc.date.accessioned2021-06-08T01:07:45Z-
dc.date.copyright2020-09-23
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citationAltschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17), 3389-3402.
Amarasinghe, S. L., Su, S., Dong, X., Zappia, L., Ritchie, M. E., Gouil, Q. (2020). Opportunities and challenges in long-read sequencing data analysis. Genome Biology, 21(1), 30.
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., . .Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics, 25(1), 25-29.
Belwal, T., Bhatt, I. D., Kashyap, D., Sak, K., Tuli, H. S., Pathak, R., Ghatnur, S. M. (2019). Chapter 5.4 - Ophiocordyceps sinensis. In S. M. Nabavi A. S. Silva (Eds.), Nonvitamin and Nonmineral Nutritional Supplements (pp. 527-537): Academic Press.
Bolger, A. M., Lohse, M., Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 30(15), 2114-2120.
Chen, B.-X., Wei, T., Xue, L.-N., Zheng, Q.-W., Ye, Z.-W., Zou, Y., Lin, J.-F. (2020). Transcriptome Analysis Reveals the Flexibility of Cordycepin Network in Cordyceps militaris Activated by L-Alanine Addition. Frontiers in Microbiology, 11(577).
Chen, L., Liu, Y., Guo, Q., Zheng, Q., Zhang, W. (2018). Metabolomic comparison between wild Ophiocordyceps sinensis and artificial cultured Cordyceps militaris. Biomedical Chromatography, 32(9), e4279.
Cunningham, K. G., Manson, W., Spring, F. S., Hutchinson, S. A. (1950). Cordycepin, a Metabolic Product isolated from Cultures of Cordyceps militaris (Linn.) Link. Nature, 166(4231), 949-949.
Dong, J. Z., Liu, M. R., Lei, C., Zheng, X. J., Wang, Y. (2012). Effects of Selenium and Light Wavelengths on Liquid Culture of Cordyceps militaris Link. Applied Biochemistry and Biotechnology, 166(8), 2030-2036.
Eells, J. T., Wong-Riley, M. T. T., VerHoeve, J., Henry, M., Buchman, E. V., Kane, M. P., Whelan, H. T. (2004). Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion, 4(5), 559-567.
Fernie, A. R., Carrari, F., Sweetlove, L. J. (2004). Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology, 7(3), 254-261.
Fleischmann, R., Adams, M., White, O., Clayton, R., Kirkness, E., Kerlavage, A. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496-512.
Goodwin, S., Gurtowski, J., Ethe-Sayers, S., Deshpande, P., Schatz, M. C., McCombie, W. R. (2015). Oxford Nanopore Sequencing, Hybrid Error Correction, and de novo Assembly of a Eukaryotic Genome. bioRxiv, 013490.
Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J. Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36(10), 3420-3435.
Hardeep S.Tuli, A. S., Sardul S. Sandhu, Dharambir Kashyap. (2013). Cordycepin: A bioactive metabolite with therapeutic potential. Life Science, 93, 863-869.
Hu, H., Xiao, L., Zheng, B., Wei, X., Ellis, A., Liu, Y.-M. (2015). Identification of chemical markers in Cordyceps sinensis by HPLC-MS/MS. Analytical and Bioanalytical Chemistry, 407(26), 8059-8066.
Huang, C.-W., Hong, T.-W., Wang, Y.-J., Chen, K.-C., Pei, J.-C., Chuang, T.-Y., Shen, T.-L. (2016). Ophiocordyceps formosana improves hyperglycemia and depression-like behavior in an STZ-induced diabetic mouse model. BMC Complementary and Alternative Medicine, 16(1), 310.
Huang da, W., Sherman, B. T., Lempicki, R. A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 37(1), 1-13.
Huang da, W., Sherman, B. T., Lempicki, R. A. (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4(1), 44-57.
Huang, L., Li, Q., Chen, Y., Wang, X., Zhou, X. (2009). Determination and analysis of cordycepin and adenosine in the products of Cordyceps spp.
Huang, L.-F., Liang, Y.-Z., Guo, F.-Q., Zhou, Z.-F., Cheng, B.-M. (2003). Simultaneous separation and determination of active components in Cordyceps sinensis and Cordyceps militarris by LC/ESI-MS. Journal of Pharmaceutical and Biomedical Analysis, 33(5), 1155-1162.
JJ Burmeister, M. A., GW Small. (1998). Infrared Spectroscopy: Spectroscopic Considerations for Noninvasive Blood Glucose Measurements with Near Infrared Spectroscopy. LEOS Newsletter, 12, 5.
Kane, B. J., Kuhn, J. G., Roush, M. K. (1992). Pentostatin: an adenosine deaminase inhibitor for the treatment of hairy cell leukemia. Ann Pharmacother, 26(7-8), 939-947.
Kanehisa, M., Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28(1), 27-30.
Kim, D., Paggi, J. M., Park, C., Bennett, C., Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8), 907-915.
Kobayasi, Y. (1981). The genus Cordyceps and its allies from Taiwan (Formosa). Bulletin of the National Science Museum. Series B (Tokyo), 7, 113–122.
Kredich, N. M., Guarino, A. J. (1961). Studies on the biosynthesis of cordycepin. Biochimica et Biophysica Acta, 47(3), 529-534.
Langfelder, P., Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 559.
Lee, S. K., Lee, J. H., Kim, H. R., Chun, Y., Lee, J. H., Yoo, H. Y. Kim, S. W. (2019). Improved Cordycepin Production by Cordyceps militaris KYL05 Using Casein Hydrolysate in Submerged Conditions. Biomolecules, 9(9), 461.
Lei Huang, Q. L., Yiyuan Chen, Xuefei Wang and Xuanwei Zhou. (2009). Determination and analysis of cordycepin and adenosine in the products of Cordyceps spp. African Journal of Microbiology Research, 3(12), 957-961.
Lennon, M. B., Suhadolnik, R. J. (1976). BIOSYNTHESIS OF 3'-DEOXYADENOSINE BY CORDYCEPS-MILITARIS - MECHANISM OF REDUCTION. Biochimica Et Biophysica Acta, 425(4), 532-536.
Li, X., Wang, F., Liu, Q., Li, Q., Qian, Z., Zhang, X. Dong, C. (2019). Developmental transcriptomics of Chinese cordyceps reveals gene regulatory network and expression profiles of sexual development-related genes. BMC Genomics, 20(1), 337.
Liao, Y., Smyth, G. K., Shi, W. (2019). The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Research, 47(8), e47-e47.
Masuda, M., Urabe, E., Honda, H., Sakurai, A., Sakakibara, M. (2007). Enhanced production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzyme and Microbial Technology, 40(5), 1199-1205.
McMullin, D., Mizaikoff, B., Krska, R. (2015). Advancements in IR spectroscopic approaches for the determination of fungal derived contaminations in food crops. Analytical and Bioanalytical Chemistry, 407(3), 653-660.
Ni, H., Zhou, X.-H., Li, H.-H., Huang, W.-F. (2009). Column chromatographic extraction and preparation of cordycepin from Cordyceps militaris waster medium. Journal of Chromatography B, 877(22), 2135-2141.
Oh, J., Yoon, D. H., Shrestha, B., Choi, H. K., Sung, G. H. (2019). Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies. J Microbiol, 57(1), 54-63.
Park, J. P., Kim, S. W., Hwang, H. J., Yun, J. W. (2001). Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett Appl Microbiol, 33(1), 76-81.
Raethong, N., Laoteng, K., Vongsangnak, W. (2018). Uncovering global metabolic response to cordycepin production in Cordyceps militaris through transcriptome and genome-scale network-driven analysis. Scientific Reports, 8(1), 9250.
Robinson, M. D., McCarthy, D. J., Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England), 26(1), 139-140.
Rottman, F., Ibershof, M. L., Guarino, A. J. (1963). Studies on the synthesis and structure of cordycepin monophosphate. Biochimica et Biophysica Acta (BBA) - Specialized Section on Nucleic Acids and Related Subjects, 76, 181-187.
Sandra Holbein, A. W., Laurence Decourty, Florian M. Freimoser, Alain Jacquier and Bernhard Dichtl. (2009). Cordycepin interferes with 3' end formation in yeast independently of its potential to terminate RNA chain elongation. RNA, 15(5), 837-849.
Sato, H., Shimazu, M. (2002). Stromata production for Cordyceps militaris (Clavicipitales: Clavicipitaceae) by injection of hyphal bodies to alternative host insects.
Shrestha, B., Han, S.-K., Sung, J.-M., Sung, G.-H. (2012). Fruiting Body Formation of Cordyceps militaris from Multi-Ascospore Isolates and Their Single Ascospore Progeny Strains. Mycobiology, 40(2), 100-106.
Skellam, E. (2019). Strategies for Engineering Natural Product Biosynthesis in Fungi. Trends in Biotechnology, 37(4), 416-427.
Suhadolnik, R. J., Weinbaum, G., Meloche, H. P. (1964). The Biosynthesis of Cordycepin. Journal of the American Chemical Society, 86(5), 948-949.
Sung, G.-H., Hywel-Jones, N. L., Sung, J.-M., Luangsa-ard, J. J., Shrestha, B., Spatafora, J. W. (2007). Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology, 57, 5-59.
The Gene Ontology Consortium. (2018). The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Research, 47(D1), D330-D338.
Turgeon, B. G. (1998). APPLICATION OF MATING TYPE GENE TECHNOLOGY TO PROBLEMS IN FUNGAL BIOLOGY. Annual Review of Phytopathology, 36(1), 115-137.
Wang, Y.-W., Hong, T.-W., Tai, Y.-L., Wang, Y.-J., Tsai, S.-H., Lien, P. T. K., Shen, T.-L. (2015). Evaluation of an Epitypified Ophiocordyceps formosana (Cordyceps s.l.) for Its Pharmacological Potential. Evidence-Based Complementary and Alternative Medicine, 2015, 189891.
Wellham, P. A. D., Kim, D.-H., Brock, M., de Moor, C. H. (2019). Coupled biosynthesis of cordycepin and pentostatin in Cordyceps militaris : implications for fungal biology and medicinal natural products. Annals of Translational Medicine, 11.
Xia, Y., Luo, F., Shang, Y., Chen, P., Lu, Y., Wang, C. (2017). Fungal Cordycepin Biosynthesis Is Coupled with the Production of the Safeguard Molecule Pentostatin. Cell Chemical Biology, 24(12), 1479-1489.e1474.
Yang, T., Guo, M., Yang, H., Guo, S., Dong, C. (2016). The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Applied Microbiology and Biotechnology, 100(2), 743-755.
Yang, X., Shi, C., Tong, R., Qian, W., Zhau, H. E., Wang, R., Chung, L. W. K. (2010). Near IR Heptamethine Cyanine Dye–Mediated Cancer Imaging. Clinical Cancer Research, 16(10), 2833-2844.
Yao-xiong, -. Y., Da-rong, -. Y., Fa-rong, -. S., Da-zhi, -. D. (1989). - Studies on Hepialid Larvae For Being Infected by Chinese. - Zoological Research, - 10(- 3), - 227.
Yin, Y., Yu, G., Chen, Y., Jiang, S., Wang, M., Jin, Y., Sun, H. (2012). Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PLoS One, 7(12), e51853.
Zheng, P., Xia, Y., Xiao, G., Xiong, C., Hu, X., Zhang, S., Wang, C. (2011a). Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol, 12(11), R116.
Zheng, P., Xia, Y. L., Xiao, G. H., Xiong, C. H., Hu, X., Zhang, S. W., Wang, C. S. (2011b). Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional chinese medicine. Genome Biology, 12(11).
Zheng, Z.-l., Qiu, X.-h., Han, R.-c. (2015). Identification of the Genes Involved in the Fruiting Body Production and Cordycepin Formation of Cordyceps militaris Fungus. Mycobiology, 43(1), 37-42.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18487-
dc.description.abstract蟲草素(cordyepin)屬腺苷異構物,於1950年初次自北蟲草分離,並被視為北蟲草中可抑制癌細胞生長之主要化合物。蟲草素之生合成雖已被報導與抑制腺苷脫氨酶之化合物噴司它丁有關,然而其上游代謝路徑仍有待進一步探討。此外,蛇形蟲草屬(Ophiocordycipitaceae),包含西藏蟲草及臺灣蟲草之蟲草素生合成路徑,因基因差異性,目前依然未知。本研究選出五種不同生長階段之北蟲草,包含固態菌絲體、菌液、與米基上初步轉色之菌絲體、發育中及老化之子實體,結合轉錄體及代謝體學探討蟲草素生合成在生長過程中之分子機制,並發現精氨酸(arginine)在其中扮演重要角色。我們也發現北蟲草菌絲體在經過近紅外光處理後能顯著提升蟲草素產量,並同樣進行了轉錄體分析,更再次驗證精氨酸對於蟲草素生成之重要性。同時,本研究將先前利用次世代定序完成的臺灣蟲草全基因序列針對北蟲草中存在已知的蟲草素生合成相關基因進行比對,發現僅存在一段與北蟲草中cns4相似之片段。另一方面同步進行長片段定序技術(結合次世代定序及三代定序),將臺灣蟲草再次進行長片段定序,提供更完善的全基因序列。本研究結合包含基因體學、轉錄體學及代謝體學之研究應用於探討蟲生真菌中蟲草素生合成路徑,為未來藥理功能開發及應用上建立完善基礎。zh_TW
dc.description.abstractCordycepin, an analogue of adenosine, is first isolated and identified from Cordyceps militaris in 1950 to be regarded as a bioactive compound in inhibiting cancer cell growth. Although the biogenic analysis of cordycepin was reported to couple with the adenosine deaminase inhibitor, pentostatin, in Cordyceps militaris, the upstream precursor during developmental stages still remains unclear. Besides, it remains a puzzle in Ophiocordycipitaceae (including Ophiocordyceps sinensis and Ophiocordyceps formosana) due to their genetic discrepancy. In this study, 5 different development stages, including mycelia in solid and suspension as well as pre-matured and aged fruiting bodies of Cordyceps militaris have been harvested for transcriptomics and metabolomics analyses. We found that arginine-related pathways were activated whenever cordycepin increased. Besides, near infrared spectrum was proved to be able to enriched cordycepin production, and proceeded the transcriptomics as well, further confirmed the importance of arginine. Meanwhile, we searched the published protein sequences related to cordycepin against the draft genome of O.formosana and revealed only one scaffold with high identity compare to cns4 in C.militaris. We conducted DNA whole genome sequencing against Ophiocordyceps formosana by combining nanopore sequencing and illumina sequencing, to get a better quality of whole genome sequence as well. Together, this study conducted multi-omic analysis to illuminate the biogenesis of cordycepin in these entomopathogenic Ascomycete fungi, which provides the foundation for the further novel pharmacologically potential discovery and application.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:07:45Z (GMT). No. of bitstreams: 1
U0001-1208202014260100.pdf: 7153640 bytes, checksum: 9e4b8746bfe4a93cf0fdc3233b9ea2ac (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
中文摘要 I
Abstract II
List of Figures VII
Introduction 1
Entomopathogenic fungi 1
Fruiting body formation 2
Near infrared 3
Biosynthesis pathway of cordycepin 4
Oxford Nanopore sequencing 7
Materials and Methods 8
Entomopathogenic used in this study 8
Sample extraction and HPLC analysis for main targeted compound 10
DNA extraction 11
RNA extraction, cDNA library preparation and sequencing 12
Alignment with reference genome and DEGs analysis 13
Functional analysis of DEGs 14
Weighted correlation network analysis 14
UHPLC-ESI-MS 15
Near-Infrared 17
In silico analysis of O.fomrosana 18
Whole genome sequencing and De novo assembly 18
Statistical analysis 19
Results 19
Cultivated characteristics 19
HPLC analysis 21
RNA-seq data analysis 21
Differentially expressed genes identification 23
Gene ontology functional annotation and KEGG enrichment analysis 23
WGCNA 25
LC-ESI-MS 27
Near Infrared 28
Putative cordycepin biosynthesis pathway 30
In silico analysis of Ophiocordyceps formosana isolate 815-3 32
Genome statistic of Ophiocordyceps formosana 815-3 33
Discussions 33
Comparative omics of developmental stages 33
Specific module and hub genes detected by WGCNA 35
Putative cordycepin biogenesis 37
Genome feature of Ophiocordyceps formosana 40
Conclusion 41
Reference 42
Tables 52
Figures 68
Supplementary 83
dc.language.isoen
dc.title利用多體學探討藥用蟲生真菌之蟲草素生合成路徑zh_TW
dc.titleDeciphering cordycepin biogenesis in medicinal entomopathogenic fungi by multi-omicsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉俊揚(Jun-Yang Liou),陳倩瑜(Chien-Yu Chen),曾顯雄(Shean-Shung Tzean),徐泰浩(Tai-Hao Hsu)
dc.subject.keyword蟲生真菌,蟲草素,近紅外光,轉錄體,代謝體學,精氨酸,長片段定序,zh_TW
dc.subject.keywordEntomopathogenic fungi,cordycepin,near infrared spectrum,transcriptomics,metabolomics,arginine,nanopore sequencing,en
dc.relation.page88
dc.identifier.doi10.6342/NTU202003086
dc.rights.note未授權
dc.date.accepted2020-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-1208202014260100.pdf
  未授權公開取用
6.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved