請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18473
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張耀乾(Yao-Chien Alex Chang) | |
dc.contributor.author | Yi-Jhen Chen | en |
dc.contributor.author | 陳怡臻 | zh_TW |
dc.date.accessioned | 2021-06-08T01:07:00Z | - |
dc.date.copyright | 2014-09-03 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-19 | |
dc.identifier.citation | 參考文獻 (Reference)
何松林、蔣要衛、任凝輝、和月霞. 2006. 培養基、添加物及碳源對蝴蝶蘭試管苗 生長的影響. 河南農業大學學報 40:142-145. 邱雯卉. 2002. 環境因子、乙烯與培養基添加物對蝴蝶蘭瓶苗品質的影響. 國立中興大學園藝學系研究所碩士論文. 臺中. 林旻德. 2010. 子瓶條件、乙烯前驅物及抑制劑對蝴蝶蘭瓶苗生長之影響. 國立嘉義大學園藝學系研究所碩士論文. 嘉義. 高景輝. 2006. 乙烯生合成. p.114-117. 植物荷爾蒙生理. 華香園出版社. 臺北. 馬若婷. 2010. 乙烯抑制劑對報歲蘭根莖抽梢之影響及臺灣原生豆蘭屬相關種之無 菌播種. 國立臺灣大學園藝學研究所碩士論文. 臺北. 陳福旗、陳采晴. 1998. 無機鹽類濃度及有機添加物對文心蘭擬原球體及組培苗生 長之影響. 中國園藝 44:403-412. 陳怡靜、李哖. 2002. 臺灣蝴蝶蘭瓶苗內二氧化碳與乙烯濃度及有機酸含量之日韻 律變化. 中國園藝 48:157-166. 曹進義、陳威臣、夏奇鈮. 2011. 培養基鹽類配方、活性碳與蔬果添加物對臺灣白 及無菌播種之影響. 臺灣農業研究 60:77-88. 楊玉婷. 2010. 全球蘭花發展現況與未來展望兼論我國蝴蝶蘭與文心蘭發展策略. 臺灣經濟研究月刊. 專題探索. p.36-41. 潘貞嫈. 2007. 培養條件對報歲蘭根莖生長分化之影響及培植期間瓶內氣體之變化. 國立臺灣大學園藝學研究所碩士論文. 臺北. 蔡瑜卿、廖玉珠、黃少鵬. 2012. 2012 年植物組織培養種苗產業調查與分析. 2012 年植物組織培養種苗業者名錄. 行政院農業委員會種苗改良繁殖場. 臺中. Abeles, F.B. 1992. Hormonal and herbicidal regulation of ethylene, p.58-86. Ethylene in plant biology. Academic Press, New York, NY, USA. Arditti, J. and R. Ersnt. 1984. Physiology of germinating orchid seeds, p.176-222. In: Arditti J. (ed.). Orchid biology: Reviews and perspectives, Vol III. Cornell University Press, Ithaca, NY, USA. Arditti, J., R. Ersnt, T.W. Yam, and C. Glabe. 1990. The contribution of orchid mycorrhizal fungi to seed germination: A speculative review. Lindleyana 5:249-255. Biddington, N.L. 1992. The influence of ethylene in plant tissue culture. Plant Growth Regul. 11:173-187. Buddendorf-Joosten, J.M.C. and E.J. Woltering. 1994. Components of the gaseous environment and their effects on plant growth and development in vitro. Plant Growth Regul. 15:1-16. Burg, S.P. and E.A. Burg. 1967. Molecular requirements for the biological activity of ethylene. Plant Physiol. 42:144-152. Dimasi-Theriou, K. and A.S. Economou. 1995. Ethylene enhances shoot formation in cultures of the peach rootstock GF-677 (Prunus persica × P. amygdalus). Plant Cell Rpt. 15: 87-90. de Laat, A.M.M., D.C.C. Brandenburg, and L.C. van Loon. 1981. The modulation of the conversion of l-aminocyclopropane-l-carboxylic acid to ethylene by light. Planta 153:193-200. Figueira, A. and J. Janick. 1994. Optimizing carbon dioxide and light levels during in vitro culture of Theobroma cacao. J. Amer. Soc. Hort. Sci. 119:865-871. Gepstein, S. and K.V. Thimann. 1980. The effect of light on theproduction of ethylene from 1-aminocyclopropane-l-carboxylicacid by leaves. Planta 149:196-199. George, E.F., A.M. Hall, and G.-J. De Klerk. 2008. Plant propagation by tissue culture. 3rd ed. Springer. Dordrecht, The Netherlands. p.239-248. Gnasekaran, P., R. Xavier, R.S. Uma, and S. Sreeramanan. 2010. A study on the use of organic additives on the protocorm-like bodies (PLBs) growth of Phalaenopsis violacea orchid. J. Phytol. 2:29-33. Imaseki, H. 1999. Biochemistry and molecular biology of plant hormones, p.209-245. In: P.J.J. Hooykaas, M.A. Hall, and K.R. Libbenga (eds.). Control of ethylene synthesis and metabolism. Academic Press, New York, NY, USA. Jackson, M.B., A.J. Abbott, A.R. Belcher, K.C. Hall, R. Butler, and J. Cameron. 1991. Ventilation in plant tissue cultures and effects of poor aeration on ethylene and carbon dioxide accumulation, oxygen depletion and explant development. Ann. Bot. 67:229-237. Kao, C.H. and S.F. Yang. 1982. Light inhibition of the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in leaves is mediated through carbon dioxide. Planta 155:261-266. Kim, W.T., A. Campbell, T. Moriguchi, H.C. Yi, and S.F. Yang. 1997. Auxin induces three genes encoding 1-aminocyclopropane-1-carboxylate synthase in mung bean hypocotyls. Plant Physiol. 150:77-84. Kumar, P.P., M.J. Nathan, and C.J. Goh. 1996. Involvement of ethylene on growth and plant regeneration in callus cultures of Heliconia psittacorum L.f. Plant Growth Regul. 19:145-151. Lau, O.L. and S.F. Yang. 1973. Mechanism of a synergistic effect of kinetin on auxin-induced ethylene production. Plant Physiol. 51:1011-1014. Lau, O.L. and S.F. Yang. 1975. Interaction of kinetin and calcium in relation to their effect on stimnulation of ethylene production. Plant Physiol. 55:738-740. Lo, S.F., S.M. Nalawade, C.L. Kuo, C.L. Chen, and H.S. Tsay. 2004. Asymbiotic germination of immature seeds, plantlet development and ex vitro establishment of plants of Dendrobium tosaense Makino - a medicinally important orchid. In Vitro Cell. Dev. Biol. Plant 40:528-535. Lopez-Delgado, H., M. Jimenez-Casas, and I.M. Scott. 1998. Storage of potato microplants in vitro in the presence of acetylsalicylic acid. Plant Cell Tiss. Org. Cult. 54:145-152. McGlasson, B.W. and H.K. Pratt. 1964. Effects of wounding on respiration and ethylene production by cantaloupe fruit tissue. Plant Physiol. 39:128-132. Meir, S., S. Philosoph-Hadas, E. Epstein, and N. Aharoni. 1985. Carbohydrates stimulate ethylene production in tobacco leaf discs. Plant Physiol. 78:131-138. Mensuali-Sodi, A., M. Panizza, and F. Tognoni. 1995. Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyedons and lavandin microcuttings in vitro. Plant Growth Regul. 17:205-212. Mok, D.W.S. and M.C. Mok. 2001. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:89-118. Mor, Y., H. Spiegelstein, and A. Halevy. 1983. Inhibition of ethylene biosynthesis in carnation petals by cytokinin. Plant Physiol. 71:541-546. Murdad, R., S.H. Kuik, K.S. Choo, M. A. Latip, A. A. Zaleha, and R. Ripin. 2006. High frequency multiplication of Phalaenopsis gigantean using trimmed bases protocorms technique. Scientia Hort. 111:73-79. Nasib, A., K. Ali, and S. Khan. 2008. An optimized and improved method for the in vitro propagation of kiwifruit (Actinidia deliciosa) using coconut water. Pak. J. Bot. 40:2355-2360. Nelson, N.D., J.G. Isebrands, and W.J. Rietveld. 1980. Ethylene loss from the gas phase of container-seal systems. Physiol. Plant. 48:509-511. Nambiar, N., C.S. Tee, and M. Maziah. 2012. Effects of organic additives and different carbohydrate sources on proliferation of protocorm-like bodies in Dendrobium Alya Pink. Plant Omics J. 5:10-18. Ogura-Tsujita, Y. and H. Okubo. 2006. Effects of low nitrogen medium on endogenous changes in ethylene, auxins, and cytokinins in in vitro shoot formation from rhizomes of Cymbidium kanran. In Vitro Cell. Dev. Biol. Plant. 42:614-616. Reid, M.S. 1995. Ethylene in plant growth, development, and senescence, p.486-487. In: P.J. Davis (ed.). Plant hormones. Kluwer Academic Publishers, Dordrecht, The Netherlands. Righetti, B., D.M. Reid, and T.A. Thorpe. 1996. Growth and tissue senescence in Prunus avium shoots grown in vitro at different CO2/O2 ratios. In Vitro Cell. Dev. Biol. Plant 32:290-294. Robinson, E.P. and D.O. Adams. 1987. The role of ethylene in the regeneration of Helianthus annuus (sunflower) plants form callus. Physiol. Plant. 71:151-156. Sarkar, D., S.K. Kaushik, and P.S. Naik. 1999. Minimal growth conservation of potato microplants: Silver thiosulfate reduces ethylene-induced growth abnormalities during prolonged storage in vitro. Plant Cell Rpt. 18:897-903. Santana-Buzzy, N., A. Canto-Flick, L. Iglesias-Adreu, M.C. Montalvo-Peniche, G. Lopez-Puc, and F. Barahona-Perez. 2006. Improvement of in vitro culturing of Habanero pepper by inhibition of ethylene effects. HortScience 41:405-409. Shiau, Y.J., S.M. Nalawade, C.N. Hhia, V. Mulabagal, and H.S. Tsay. 2005. In vitro propagation of the chinese medicinal plant, Dendrobium candidum Wall. Ex Lindl., from axenic nodal segments. In Vitro Cell. Dev. Biol. Plant 41:666-670. Tawaro, S., P. Suraninpong, and S. Chanprame. 2008. Germination and regeneration of Cymbidium findlaysonianum Lindl. on a medium supplemented with some organic sources. Walailak J. Sci. Tech. 5:125-135. Vogel, J.P., P. Schuerman, K. Woeste, I. Brandstatter, and J.J. Kieber. 1998. Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin. Genetics 149:417-427. Wang, Y.T. 2000. Medium, nutrition, and flower induction in potted blooming orchids. HortTechnology 10:433-434. Woltering, E.J. 1987. Effects of ethylene on ornamental pot plants: a classification. Scientia Hort. 31:283-294. Wojtania, A. and E. Wegrzynowicz-Lesiak. 2012. Ethylene and cytokinin interaction in the morphogenesis of Pelargonium × hortorum L.H. Bailey in vitro. Acta Physiol. Plant. 34:2407-2412. Wulster, G. and J. Sacalis. 1980. Effects of auxins and cytokinins on ethylene evolution and growth of rose callus tissue in sealed vessels. HortScience 15:736-737. Yang, S.F. and N.E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plant. Annu. Rev. Plant Physiol. 35:155-189. Yip, W.K. and S.F. Yang. 1986. Effect of thidiazuron, a cytokinin-active urea derivative, in cytokinin-dependent ethylene production systems. Plant Physiol. 80:515-519. Yong, J.W.H., L. Ge, Y.F. Ng, and S.N. Tan. 2009. The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 14:5144-5164. Yu, Y.B., O.A. Douglas, and S.F. Yang. 1979. Regulation of auxin-induced ethylene production in mung bean hypocotyls. Plant Physiol. 63:589-590. Yu, Y.B. and S.F. Yang. 1980. Biosynthesis of wound ethylene. Plant Physiol. 66:281-285. 參考文獻 (Reference) 張耿衡、王斐能、謝庭芳、鍾仁賜. 2008. 三種不同配方之肥料對蝴蝶蘭小苗營養 生長與養分吸收之影響. 臺灣農業化學與食品科學 46:57-69. 陳瀅如. 2001. 不同肥料處理對蝴蝶蘭生長、葉片黃斑的發生、礦物成分及開花品 質之影響. 國立臺灣大學園藝學研究所碩士論文. 臺北. 游雅娸. 2012. 蝴蝶蘭於氮、磷、鉀養分逆境下之生長反應與基因功能分析. 國立臺灣大學園藝學研究所碩士論文. 臺北. 蔣若珊. 2012. 蝴蝶蘭組培苗品質及礦物元素分析. 國立中興大學園藝學研究所碩士論文. 臺中. Barta, D.J. and T.W. Tibbitts. 2000. Calcium localization and tipburn development in lettuce leaves during early enlargement. J. Amer. Soc. Hort. Sci. 125:294-298. Benzing, D.H., W.E. Friedman, G. Peterson, and A. Renfrow. 1983. Shootlessness, velamentous roots, and the pre-eminence of orchidaceae in the epiphytic biotope. Amer. J. Bot. 70:121-133. Beruto, D., M. Beruto, C. Ciccarelli, and P. Debergh. 1995. Matric potential evaluations and measurements for gelled substrates. Physiol. Plant. 94:151-157. Bichsel, R.G., T.W. Starman, and Y.T. Wang. 2008. Nitrogen, phosphorus, and potassium requirements for optimizing growth and flowering of the nobile dendrobium as a potted orchid. HortScience 43:328-332. Broschat, T.K. 1994. Removing potassium deficient leaves accelerates rate of decline in Phoenix roebelenii O’Brien. HortScience 29:823. Burstrom, H.G. 1968. Calcium and plant growth. Biol. Rev. 43:287-316. Chang, Y.C. and W.B. Miller. 2003. Growth and calcium partitioning in Lilium ‘Star Gazer’ in relation to leaf calcium deficiency. J. Amer. Soc. Hort. Sci. 128:788-796. Ciompi, S., E. Gentili, L. Guidi, and G.F. Soldatini. 1996. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Sci. 118:177-184. de Freitas, S.T. and E.J. Mitcham. 2012. Factors involved in fruit calcium deficiency disorders. Hort. Rev. 40:107-146. Epstein, E. and A. Bloom. 2005. Mineral nutrition of plants: Principles and perspectives. Sinauer Sunderland, MA., USA. Ferguson, I.B. and C.B. Watkins. 1992. Crop load affects mineral concentrations and incidence of bitter pit in ‘Cox’s Orange Pippin’ apple fruit. J. Amer. Soc. Hort. Sci. 117:373-376. Fredeen, A.L., I.M. Rao, and N. Terry. 1989. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol. 89:225-230. George, E.F., A.M. Hall, and G.-J. De Klerk. 2008. Plant propagation by tissue culture, p.239-248. 3rd ed. Springer, Dordrecht, The Netherlands. Gruber, B.D., R.F.H. Giehl, S. Friedel, and N. von Wiren. 2013. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163:161-179. Hermans, C. and N. Verbruggen. 2005. Physiological characterization of Mg deficiency in Arabidopsis thaliana. J. Expt. Bot. 56:2153-2161. Hew, C.S. and C.K.Y. Ng. 1996. Changes in mineral and carbohydrate content in psuedobulbs of the C3 epiphytic orchid hybrid Oncidium Goldiana at different growth stages. Lindleyana 11:125-134. Hew, C.S. and J.W.H. Yong. 2004. The physiology of tropical orchids in relation to the industry. World Scientific Press, Singapore. Islam, N., G.G. Patil, S. Torre, and H.R. Gislerod. 2004. Effects of relative air humidity, light, and calcium fertilization on tipburn and calcium content of the leaves of Eustoma grandiflorum (Raf.) Shinn. Europ. J. Hort. Sci. 69:29-36. Lin, C.Y. and D.M. Yeh. 2008. Potassium nutrition affects leaf growth, anatomy, and macroelements of Guzmania. HortScience 43:146-148. Liu, H.C., G.C. Chen, R.Y. Chen, Y.H. Kang, and X.Y. Wu. 2004. Anatomical structures of seedlings of Vigna unguiculata ssp. sesquipedalis cultivars under phosphorus deficient stress. J. Plant Resources Environ. 13:48-52. Lopez-Bucio, J., A. Cruz-Ramirez, and L. Herrera-Estrella. 2003. The role of nutrient availability in regulating root architecture. Physiol. Metab. 6:280-287. Masarirambi, M.T., N. Mhazo, T.O. Oseni, and V.D. Shongwe. 2009. Common physiological disorders of tomato (Lycopersicon esculentum) fruit found in Swaziland. J. Agric. Soc. Sci. 5:123-127. Mengel, K. and E.A. Kirkby. 2001. Principles of plant nutrition. 5th ed. Kluwer Academic Publishers, MA, USA. Mollier, A. and S. Pellerin. 1999. Maize root system growth and development as influenced by phosphorus deficiency. J. Expt. Bot. 50:489-497. Ng, C.K.Y. and C.S. Hew. 2000. Orchid pseudobulbs – ‘false’ bulbs with a genuine importance in orchid growth and survival. Scientia Hort. 83:165-172. Poole, H.A. and J.G. Seeley. 1978. Nitrogen, potassium and magnesium nutrition of three orchid genera. J. Amer. Soc. Hort. Sci. 130:11-17. Radin, J.W. and L.L. Parker. 1979. Water relations of cotton plants under nitrogen deficiency. I. Dependence upon leaf structure. Plant Physiol. 64:495-498. Romheld, V. and H. Marschner. 1981. Iron deficiency stress induced morphological and physiological changes in root tips of sunflower. Physiol. Plant. 53:354-360. Sarker, B.C., J.L. Karmoker, and P. Rashid. 2010. Effects of phosphorus deficiency on anatomical structures in maize (Zea mays L.). Bangladesh J. Bot. 39:57-60. Scholten, H.J. and R.L.M. Pierik. 1998. Agar as a gelling agent: chemical and physical analysis. Plant Cell Rpt. 17:230-235. Schmidt, W. and A. Schikora. 2001. Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiol. 125:2078-2084. Susilo, H., Y.C. Peng, S.C. Lee, Y.C. Chen, and Y.C.A. Chang. 2013. The uptake and partitioning of nitrogen in Phalaenopsis Sogo Yukidian ‘V3’ as shown by 15N as a tracer. J. Amer. Soc. Hort. Sci. 138:229-237. Susilo, H., Y.C. Peng, and Y.C.A. Chang. 2014. Nitrogen source for inflorescence development in Phalaenopsis: I. Relative significance of stored and newly absorbed nitrogen. J. Amer. Soc. Hort. Sci. 139:69-75. Wang, Y.T. 2000. Impact of a high phosphorus fertilizerand timing of termination of fertilization on flowering of a hybrid moth orchid. HortScience 35:60-62. Wang, Y.T. 2007. Potassium nutrition affects Phalaenopsis growth and flowering. HortScience 42:1563-1567. Yoneda, K., M. Usui, and S. Kubota. 1997. Effect of nutrient deficiency on growth and flowering of Phalaenopsis. J. Jpn. Soc. Hort. Sci. 66:141-147. Yoneda, K., N. Suzuki, and I. Hasegawa. 1999. Effects of macroelement concentrations ongrowth, flowering, and nutrient absorption in an Odontoglossum hybrid. Scientia Hort. 80:259-265. Zhao, D., K.R. Reddy, V.G. Kakani, and V.R. Reddy. 2005. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Europ. J. Agr. 22:391-403. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18473 | - |
dc.description.abstract | 摘要 (abstract)
本論文分為兩部分,第一部分探討蝴蝶蘭於組織培養子瓶階段下位葉黃化之成因,第二部分研究蝴蝶蘭瓶苗於礦物元素缺乏逆境下之病徵及生長所受之影響。 以不同無菌操作方式及培養基組成探討瓶內乙烯累積與上述因子之相關性及其對蝴蝶蘭瓶苗生長之影響。朵麗蝶蘭下位葉易黃化品種 (Doritaenopsis Formosa Sunrise) 與較不易黃化品種 (Doritaenopsis Unimax Waltz) 在繼代操作過程中,矽膠瓶塞經過火處理1 天後,瓶內乙烯濃度維持在10-20 nL·L-1。瓶塞過火0、20 及 40 秒各處理間黃化程度無顯著差異,顯示瓶塞過火時間長短不是影響該兩品種下位葉黃化之主因。 朵麗蝶蘭不論易黃化品種或不易黃化品種在繼代操作過程中,以25、40、60及80 oC 之解剖刀切除瓶苗根部後定植,各處理間瓶內乙烯濃度無顯著差異。不易黃化品種,在操作當天各處理間乙烯濃度均上升至100 nL·L-1 以上,1 天之後則下降至10-20 nL·L-1,但葉片無黃化現象;易黃化品種於各處理下均有黃化現象,但 以80 oC 之處理最高。延遲繼代時間愈久,植株年齡愈大,蝴蝶蘭Phalaenopsis Brother Pico Bahama ‘E.G’瓶苗延遲3 個月後繼代之處理,於繼代操作當天其瓶內乙烯濃度顯著高於對照組 (正常時間繼代),然而延遲繼代處理於培養3 個月期間並不會造成較嚴重的黃化現象。 於培養基中添加不同比例的N6-benzyladenine / 1-naphthaleneacetic acid (BA / NAA),5 mg·L-1 BA 處理下,Doritaenopsis Unimax Waltz 與Phalaneopsis Unimax Wish ‘CL271’黃葉數均為0.8,低於對照組 (分別為1.5 與1.0) 。NAA 對瓶苗黃葉數無顯著影響。在不同有機添加物之處理下,Phal. Brother Pico Bahama ‘E.G’瓶苗繼代培養3 個月後,以添加蘋果、香蕉或馬鈴薯之處理,其黃葉數達0.5 片以上,黃化程度高於對照組 (0.3 片)。培養基配方試驗中,Phal. Brother Pico Bahama ‘E.G’ 瓶苗繼代培養3 個月後,以Hyponex #1 (京都配方) 處理其瓶內乙烯濃度最高 (14 nL·L-1),黃化程度最嚴重,平均每株有2.0 片黃葉;對照組僅有0.3 片。 綜合上述,瓶塞過火、高溫解剖刀操作及延遲繼代時間等,均會增加瓶內乙烯濃度,但僅高溫解剖刀造成兩試驗品種的下位葉黃化。而培養基組成中,添加蘋果或香蕉等有機添加物,或使用Hyponex #1 配方,皆會使易黃化蝴蝶蘭產生較嚴重的黃化現象,且產生的乙烯也較高,顯示乙烯與黃化之間仍有相關。此外,BA 降低瓶苗下位葉黃化程度,可能與抑制乙烯的生成有關。 臺灣蝴蝶蘭 (Phal. amabilis) 子瓶於養分缺乏逆境下6 個月後,各處理間的病徵表現明顯。缺氮植株根長顯著高於其他處理;缺磷植株新生葉片小,根尖生長 停止;缺鉀植株矮小,中位葉有黃化現象;缺鈣植株新生葉壞疽,根部短小;缺鎂植株中位葉有壞疽及黃化現象;缺鐵植株新生葉片小,基部明顯黃化。大白花蝴蝶蘭 (Phal. Sogo Yukidian ‘V3’) 於養分缺乏逆境下培養6 個月後,缺氮植株下位葉黃化,地下部生長較地上部好;缺磷植株地上部生長量與對照組相近,根部較短;缺鉀植株矮小,葉片上有紫紅小斑點;缺鈣植株上位葉出現水浸狀,根部 短小;缺鎂植株整體與對照組相似,所受影響較輕微;缺鐵植株根長及乾重均高於對照組,地下部生長較地上部良好。 礦物元素缺乏逆境下6 個月後,各處理間的乾物重變化在試驗兩品種 (大白花蝴蝶蘭及臺灣蝴蝶蘭) 有相似趨勢。各元素缺乏處理的地上部乾重均低於對照組,以缺氮處理降低最多,分別為對照組的38.5%及52.3%,缺磷處理組降低較少,分別為對照組的22.2%及31.9%。在地下部乾重方面,兩品種均在缺氮及缺鐵處理組地下部乾重較對照組增加,缺氮處理於兩品種間分別增加36.3%及131%;缺鐵處理分別增加34%及88.5%。顯示礦物元素缺乏對蝴蝶蘭根部影響大於地上部。兩試驗品種於各元素缺乏處理組下,該元素含量為所有處理中最低;於根部構造方面,各元素缺乏處理並不影響根被層數。 | zh_TW |
dc.description.abstract | Abstract
This thesis consists of two portions. The first portion investigates the causes of lower leaf yellowing in Phalaenopsis plantlets in vitro. The second portion investigates the symptoms of mineral nutrient deficiency in Phalaenopsis plantlets in vitro, as well as its effects on growth. Various aseptic procedures and media compositions were tested for correlation with ethylene accumulation in the tissue culture vessel of Phalaenopsis, and the effects of these factors on growth of the plantlets were studied. Plantlets of one cultivar susceptible to lower leaf yellowing in vitro (Doritaenopsis Formosa Sunrise) and one cultivar not susceptible to the disorder (Dtps. Unimax Waltz) were subcultured and the silicone stoppers of the tissue culture vessels were subjected to various durations of flaming before the vessels were sealed. Ethylene concentration in the vessel ranged 10-20 nL·L-1 1 day after flaming treatments. Flaming durations of 0, 20, or 40 seconds produced no significant difference in the extent of lower leaf yellowing of the plantlets, indicating that the duration for which the stoppers were flamed was not the main factor affecting lower leaf yellowing in the two cultivars. Plantlets of two Doritaenopsis cultivars, one susceptible and one not susceptible to leaf yellowing, were subcultured. Before planting into the culture medium, the roots of the plantlets were excised with a scalpel at a temperature of 25, 40, 60, or 80 oC. The various scalpel temperatures produced no significant difference in subsequent ethylene concentration inside the culture vessel. For the cultivar not susceptible to leaf yellowing, the ethylene concentration increased to higher than 100 nL·L-1 across all treatments on the day the plantlets were planted, and decreased to 10-20 nL·L-1 after 1 day. No leaf yellowing developed in this cultivar. In the susceptible cultivar, leaf yellowing developed across all treatments, but the greatest extent occurred when the scalpel temperature was 80 oC. Age of plantlet increased with longer delay before subculturing. Ethylene concentration within the culture vessel was significantly higher when plantlets of Phal. Brother Pico Bahama ‘E.G’ were subcultured after a 3-month delay, compared with control (i.e., subcultured to normal schedule). However, the delay did not result in more severe leaf yellowing over a 3-month culture period. Various BA-to-NAA ratios were added to the culture medium. Under 5 mg·L-1 BA treatment, the number of yellowed leaves on plantlets of Dtps. Unimax Waltz and Phal. Unimax Wish ‘CL271’ were 0.8, respectively, which was lower than that of control (1.5 and 1.0 for the two cultivars, respectively). NAA had no significant effect on leaf yellowing of the plantlets. The incorporation of organic additives, i.e., apple, banana, or potato into the culture medium resulted in number of yellowed leaf greater than 0.5 on Phal. Brother Pico Bahama ‘E.G’ plantlet after 3 months of culture, and the severity of leaf yellowing was greater than that of control (i.e., 0.3 yellowed leaf per plantlet). The effect of various base media was also investigated, and the medium based on Hyponex #1 resulted in the highest ethylene concentration in the culture vessel (14 nL·L-1) and the most severe leaf yellowing, with 2.0 yellowed leaves per plantlet against just 0.3 in the control group. Summing up the above, flaming stoppers, using scalpels while hot, and delaying subculture all increased ethylene concentration in the culture vessel, but only high scalpel temperature caused lower leaf yellowing in the two cultivars tested. As for medium composition, the addition of organic additives such as apple or banana, or using the medium based on Hyponex #1 both increased the severity of leaf yellowing in susceptible cultivars with concomitantly higher concentrations of ethylene. This result suggests that there is still a link between ethylene and leaf yellowing in Phalenopsis plantlets in vitro. In addition, BA reduced the extent of leaf yellowing, possibly through an inhibitory effect on ethylene biosynthesis. Plantlets of Phal. amabilis were subcultured and subjected to various mineral deficiency stresses. Within 6 months, mineral deficiency symptoms were obvious among treatments. Plantlets deprived of nitrogen had significantly greater root length compared with those in other treatments. Phosphorus deficiency resulted in small newly grown leaves and inhibited the growth of root tips. Under potassium deficiency, growth was stunted, resulting in small plantlets, and leaf yellowing developed on the middle leaves. Necrotic lesions developed on the newly grown leaves of plantlets deprived of calcium, and the roots of these plantlets were small and short. Under magnesium deficiency, necrotic lesions as well as leaf yellowing developed on the middle leaves. Iron deficiency resulted in small newly grown leaves with yellowing developing on their basal portion. Similarly, plantlets of the large white flowered hybrid Phal. Sogo Yukidian ‘V3’ were cultured under various of mineral deficiencies for 6 months. Lower leaf yellowing developed under nitrogen deficiency and the growth of roots was better than that of the shoot. Under phosphorus deficiency, shoot growth was similar to control, but the roots were shorter. Plantlets deficient in potassium were of small size, and small purple-red spots developed on their leaves. Under calcium deficiency, the upper leaves became vitrified and the roots were short and small. Plantlets deprived of magnesium were little affected and overall were similar to the control group. Plantlets deprived of iron had greater root length and dry weight compared with control, and had better root growth than shoot growth. The changes in dry weight after 6 months of various mineral deficiencies in vitro showed a similar trend between Phal. Sogo Yukidian ‘V3’ and Phal. amabilis. Shoot dry weights in the various mineral deficiency treatments were all smaller than control. The greatest reductions in shoot dry weight occurred under nitrogen deficiency, which, for the two Phalaenopsis tested, were 38.5% and 52.3% reductions compared with control, respectively. Smaller reductions in shoot dry weight occurred under phosphorus deficiency, which were 22.2% and 31.9% reductions compared with control, respectively. For both Phalaenopsis, root dry weight increased under nitrogen and iron deficiency treatments as compared with control. Under nitrogen deficiency treatment, root dry weight increased by 36.3% and 131%, respectively, while under iron deficiency treatment, it increased by 34% and 88.5%, respectively. This result shows that mineral deficiency had a greater effect on root growth than on the shoot growth of Phalaenopsis. It is showed a similar trend be between Phal. Sogo Yukidian ‘V3’ and Phal. amabilis. The mineral element contents in nutruient deficiency treatment is the lowest of all treatment, and the number of velament layers of root was not affected by mineral nutruient deficiency. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:07:00Z (GMT). No. of bitstreams: 1 ntu-103-R01628111-1.pdf: 12331071 bytes, checksum: a9526d2ee19ebaf89e031d2e8952f9a4 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄
中文摘要……………………………………………………………………………...I 英文摘要……………………………………………………………………………..III 目錄…………………………………………………………………………………..VI 表目錄……………………………………………………………………………….VIII 圖目錄……………………………………………………………………………......XII 第一章 蝴蝶蘭瓶苗下位葉黃化成因之探討……………………………………...1 一. 前言 (Introduction)………………………………………………………………1 二. 前人研究 (Literature review)…………………………………………………....3 (一) 蝴蝶蘭組織培養產業概況………………………………………………..3 (二) 乙烯之生合成……………………………………………………………..3 (三) 瓶內氣體對組培苗之影響………………………………………………..4 (四) 影響瓶內乙烯濃度及乙烯作用之因素…………………………………..4 三. 材料與方法 (Materials and Methods)…………………………………………..10 四. 結果 (Results)…………………………………………………………………...17 試驗一:瓶塞過火時間對蝴蝶蘭子瓶苗生長之影響………………………...17 試驗二:解剖刀溫度對蝴蝶蘭子瓶苗生長之影響…………………………….18 試驗三:不同比例之BA/NAA 對蝴蝶蘭子瓶苗生長之影響……...20 試驗四:中母瓶植株年齡對蝴蝶蘭子瓶苗生長之影響……………………..23 試驗五:有機添加物對蝴蝶蘭子瓶苗生長之影響…………………………..24 試驗六:培養基配方對蝴蝶蘭子瓶苗生長之影響…………………………..25 試驗七:瓶塞過火時間與培養基配方對蝴蝶蘭子瓶苗生長之影響………..26 VII 五. 討論 (Discussion)……………………………………………………………….72 參考文獻 (Reference)………………………………………………………………...78 第二章 蝴蝶蘭組培苗於礦物營養缺乏逆境下之徵狀………………………….84 一. 前言 (Introduction)……………………………………………………………...84 二. 前人研究 (Literature review)……………………………………………………85 (一) 無機營養對植物生長之影響……………………………………...85 (二) 礦物元素對植物生理之影響……………………………………………...85 (三) 蘭科作物在營養缺乏下的生長反應……………………………………...88 (四) 礦物元素於蘭科作物的貯存與分配……………………………………...89 三. 材料與方法 (Materials and Methods)…………………………………………..91 四. 結果 (Results)…………………………………………………………………97 (一) 蝴蝶蘭組培苗於礦物營養元素缺乏逆境下之徵狀……………………...97 (二) 礦物營養元素缺乏逆境對蝴蝶蘭組培苗生長之影響………………….100 (三) 蝴蝶蘭組培苗於礦物營養元素缺乏逆境下,地上部地下部礦物元素之組 成…………………………………………………………………………….103 (四) 蝴蝶蘭組培苗於礦物營養元素缺乏逆境下根部解剖構造…………….107 五. 討論 (Discussion)………………………………………………………………149 六. 參考文獻 (Reference)………………………………………………………….153 | |
dc.language.iso | zh-TW | |
dc.title | 蝴蝶蘭瓶苗下位葉黃化之成因及組培苗於礦物營養缺乏下之徵狀 | zh_TW |
dc.title | Causes of Lower Leaf Yellowing and Symptoms of Mineral Nutrient Deficiency in Phalaenopsis Plantlets in vitro | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 沈榮壽(Rong-Show Shen),鍾仁賜(Ren-Shih Chung),陳香君(Shiang-Jiuun Chen) | |
dc.subject.keyword | 乙烯,元素缺乏,組織培養, | zh_TW |
dc.subject.keyword | ethylene,element deficiency,tissue culture, | en |
dc.relation.page | 159 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 12.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。