Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18449
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor符文美(Wen-Mei Fu)
dc.contributor.authorTzu-Ling Chenen
dc.contributor.author陳姿伶zh_TW
dc.date.accessioned2021-06-08T01:05:46Z-
dc.date.copyright2014-10-15
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citationAgrawal D, Chen T, Irby R, Quackenbush J, Chambers AF, Szabo M, et al. (2002). Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. Journal of the National Cancer Institute 94(7): 513-521.
Ahrendt SA, Pitt HA (2002). Surgical management of pancreatic cancer. Oncology (Williston Park, N.Y.) 16(6): 725-734; discussion 734, 736-728, 740, 743.
Alexopoulou AN, Ho-Yen CM, Papalazarou V, Elia G, Jones JL, Hodivala-Dilke K (2014). Tumour-associated endothelial-FAK correlated with molecular sub-type and prognostic factors in invasive breast cancer. BMC cancer 14: 237.
Alvarez AI, Real R, Perez M, Mendoza G, Prieto JG, Merino G (2010). Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J Pharm Sci 99(2): 598-617.
Anborgh PH, Mutrie JC, Tuck AB, Chambers AF (2010). Role of the metastasis-promoting protein osteopontin in the tumour microenvironment. Journal of cellular and molecular medicine 14(8): 2037-2044.
Aoudjit F, Vuori K (2012). Integrin signaling in cancer cell survival and chemoresistance. Chemotherapy research and practice 2012: 283181.
Ariztia EV, Subbarao V, Solt DB, Rademaker AW, Iyer AP, Oltvai ZN (2003). Osteopontin contributes to hepatocyte growth factor-induced tumor growth and metastasis formation. Experimental cell research 288(2): 257-267.
Baguley BC (2010). Multiple drug resistance mechanisms in cancer. Molecular biotechnology 46(3): 308-316.
Bardeesy N, DePinho RA (2002). Pancreatic cancer biology and genetics. Nature reviews. Cancer 2(12): 897-909.
Barraclough R, Chen HJ, Davies BR, Davies MP, Ke Y, Lloyd BH, et al. (1998). Use of DNA transfer in the induction of metastasis in experimental mammary systems. Biochemical Society symposium 63: 273-294.
Beausejour M, Noel D, Thibodeau S, Bouchard V, Harnois C, Beaulieu JF, et al. (2012). Integrin/Fak/Src-mediated regulation of cell survival and anoikis in human intestinal epithelial crypt cells: selective engagement and roles of PI3-K isoform complexes. Apoptosis : an international journal on programmed cell death 17(6): 566-578.
Borska S, Sopel M, Chmielewska M, Zabel M, Dziegiel P (2010). Quercetin as a potential modulator of P-glycoprotein expression and function in cells of human pancreatic carcinoma line resistant to daunorubicin. Molecules 15(2): 857-870.
Bos JL (1989). ras oncogenes in human cancer: a review. Cancer research 49(17): 4682-4689.
Bramwell VH, Tuck AB, Chapman JA, Anborgh PH, Postenka CO, Al-Katib W, et al. (2014). Assessment of osteopontin in early breast cancer: correlative study in a randomised clinical trial. Breast cancer research : BCR 16(1): R8.
Brown LF, Papadopoulos-Sergiou A, Berse B, Manseau EJ, Tognazzi K, Perruzzi CA, et al. (1994). Osteopontin expression and distribution in human carcinomas. The American journal of pathology 145(3): 610-623.
Chambers AF, Wilson SM, Kerkvliet N, O'Malley FP, Harris JF, Casson AG (1996). Osteopontin expression in lung cancer. Lung Cancer 15(3): 311-323.
Cheng SY, Sun G, Schlaepfer DD, Pallen CJ (2014). Grb2 promotes integrin-induced focal adhesion kinase (FAK) autophosphorylation and directs the phosphorylation of protein tyrosine phosphatase alpha by the Src-FAK kinase complex. Molecular and cellular biology 34(3): 348-361.
Choi CH (2005). ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer cell international 5: 30.
Chun SG, Zhou W, Yee NS (2009). Combined targeting of histone deacetylases and hedgehog signaling enhances cytoxicity in pancreatic cancer. Cancer Biol Ther 8(14): 1328-1339.
Coley HM (2010). Overcoming multidrug resistance in cancer: clinical studies of p-glycoprotein inhibitors. Methods in molecular biology (Clifton, N.J.) 596: 341-358.
Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. The New England journal of medicine 364(19): 1817-1825.
Coppola D, Szabo M, Boulware D, Muraca P, Alsarraj M, Chambers AF, et al. (2004). Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clinical cancer research : an official journal of the American Association for Cancer Research 10(1 Pt 1): 184-190.
Corbo V, Tortora G, Scarpa A (2012). Molecular pathology of pancreatic cancer: from bench-to-bedside translation. Current drug targets 13(6): 744-752.
Cui D, Xu Q, Wang K, Che X (2010). Gli1 is a potential target for alleviating multidrug resistance of gliomas. J Neurol Sci 288(1-2): 156-166.
Day JD, Digiuseppe JA, Yeo C, Lai-Goldman M, Anderson SM, Goodman SN, et al. (1996). Immunohistochemical evaluation of HER-2/neu expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasms. Human pathology 27(2): 119-124.
Denhardt DT, Giachelli CM, Rittling SR (2001). Role of osteopontin in cellular signaling and toxicant injury. Annual review of pharmacology and toxicology 41: 723-749.
Denhardt DT, Mistretta D, Chambers AF, Krishna S, Porter JF, Raghuram S, et al. (2003). Transcriptional regulation of osteopontin and the metastatic phenotype: evidence for a Ras-activated enhancer in the human OPN promoter. Clin Exp Metastasis 20(1): 77-84.
Deramaudt TB, Dujardin D, Hamadi A, Noulet F, Kolli K, De Mey J, et al. (2011). FAK phosphorylation at Tyr-925 regulates cross-talk between focal adhesion turnover and cell protrusion. Molecular biology of the cell 22(7): 964-975.
DiGiuseppe JA, Hruban RH, Goodman SN, Polak M, van den Berg FM, Allison DC, et al. (1994). Overexpression of p53 protein in adenocarcinoma of the pancreas. American journal of clinical pathology 101(6): 684-688.
Du Z, Qin R, Wei C, Wang M, Shi C, Tian R, et al. (2011). Pancreatic cancer cells resistant to chemoradiotherapy rich in 'stem-cell-like' tumor cells. Dig Dis Sci 56(3): 741-750.
Duan Z, Brakora KA, Seiden MV (2004). Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Molecular cancer therapeutics 3(7): 833-838.
Eke I, Cordes N (2011). Radiobiology goes 3D: how ECM and cell morphology impact on cell survival after irradiation. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 99(3): 271-278.
Eke I, Deuse Y, Hehlgans S, Gurtner K, Krause M, Baumann M, et al. (2012). beta(1)Integrin/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy. The Journal of clinical investigation 122(4): 1529-1540.
Feng F, Rittling SR (2000). Mammary tumor development in MMTV-c-myc/MMTV-v-Ha-ras transgenic mice is unaffected by osteopontin deficiency. Breast cancer research and treatment 63(1): 71-79.
Fok TC, Lapointe H, Tuck AB, Chambers AF, Jackson-Boeters L, Daley TD, et al. (2013). Expression and localization of osteopontin, homing cell adhesion molecule/CD44, and integrin alphavbeta3 in pleomorphic adenoma, polymorphous low-grade adenocarcinoma, and adenoid cystic carcinoma. Oral surgery, oral medicine, oral pathology and oral radiology 116(6): 743-751.
Furger KA, Menon RK, Tuck AB, Bramwell VH, Chambers AF (2001). The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 1(5): 621-632.
Furuyama K, Doi R, Mori T, Toyoda E, Ito D, Kami K, et al. (2006). Clinical significance of focal adhesion kinase in resectable pancreatic cancer. World journal of surgery 30(2): 219-226.
Giovannetti E, Funel N, Peters GJ, Del Chiaro M, Erozenci LA, Vasile E, et al. (2010). MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer research 70(11): 4528-4538.
Graessmann M, Berg B, Fuchs B, Klein A, Graessmann A (2007). Chemotherapy resistance of mouse WAP-SVT/t breast cancer cells is mediated by osteopontin, inhibiting apoptosis downstream of caspase-3. Oncogene 26(20): 2840-2850.
Hadnagy A, Gaboury L, Beaulieu R, Balicki D (2006). SP analysis may be used to identify cancer stem cell populations. Experimental cell research 312(19): 3701-3710.
Hagmann W, Jesnowski R, Faissner R, Guo C, Lohr JM (2009). ATP-binding cassette C transporters in human pancreatic carcinoma cell lines. Upregulation in 5-fluorouracil-resistant cells. Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.] 9(1-2): 136-144.
Hagmann W, Jesnowski R, Lohr JM (2010). Interdependence of gemcitabine treatment, transporter expression, and resistance in human pancreatic carcinoma cells. Neoplasia (New York, N.Y.) 12(9): 740-747.
Haraguchi N, Utsunomiya T, Inoue H, Tanaka F, Mimori K, Barnard GF, et al. (2006). Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 24(3): 506-513.
Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. (2003). Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer cell 4(6): 437-450.
Hong YB, Kang HJ, Kwon SY, Kim HJ, Kwon KY, Cho CH, et al. (2010). Nuclear factor (erythroid-derived 2)-like 2 regulates drug resistance in pancreatic cancer cells. Pancreas 39(4): 463-472.
Hruban RH, van Mansfeld AD, Offerhaus GJ, van Weering DH, Allison DC, Goodman SN, et al. (1993). K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. The American journal of pathology 143(2): 545-554.
Hsieh IS, Huang WH, Liou HC, Chuang WJ, Yang RS, Fu WM (2013). Upregulation of drug transporter expression by osteopontin in prostate cancer cells. Molecular pharmacology 83(5): 968-977.
Huanwen W, Zhiyong L, Xiaohua S, Xinyu R, Kai W, Tonghua L (2009). Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Molecular cancer 8: 125.
Hui RC, Francis RE, Guest SK, Costa JR, Gomes AR, Myatt SS, et al. (2008). Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 (MDR1) in K562 leukemic cells. Molecular cancer therapeutics 7(3): 670-678.
Hwang JH, Voortman J, Giovannetti E, Steinberg SM, Leon LG, Kim YT, et al. (2010). Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 5(5): e10630.
Imano M, Satou T, Itoh T, Sakai K, Ishimaru E, Yasuda A, et al. (2009). Immunohistochemical expression of osteopontin in gastric cancer. Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract 13(9): 1577-1582.
Ji HF, Pang D, Fu SB, Jin Y, Yao L, Qi JP, et al. (2013). Overexpression of focal adhesion kinase correlates with increased lymph node metastasis and poor prognosis in non-small-cell lung cancer. Journal of cancer research and clinical oncology 139(3): 429-435.
Jonckheere N, Skrypek N, Van Seuningen I (2010). Mucins and pancreatic cancer. Cancers (Basel) 2(4): 1794-1812.
Kale S, Raja R, Thorat D, Soundararajan G, Patil TV, Kundu GC (2014). Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via alpha9beta1 integrin. Oncogene 33(18): 2295-2306.
Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer cell 3(6): 537-549.
Kim JH, Skates SJ, Uede T, Wong KK, Schorge JO, Feltmate CM, et al. (2002). Osteopontin as a potential diagnostic biomarker for ovarian cancer. JAMA : the journal of the American Medical Association 287(13): 1671-1679.
Konig J, Cui Y, Nies AT, Keppler D (2000). Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. The Journal of biological chemistry 275(30): 23161-23168.
Konig J, Hartel M, Nies AT, Martignoni ME, Guo J, Buchler MW, et al. (2005). Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. Int J Cancer 115(3): 359-367.
Kruger TE, Miller AH, Godwin AK, Wang J (2014). Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers. Critical reviews in oncology/hematology 89(2): 330-341.
Li Y, Revalde JL, Reid G, Paxton JW (2011). Modulatory effects of curcumin on multi-drug resistance-associated protein 5 in pancreatic cancer cells. Cancer chemotherapy and pharmacology 68(3): 603-610.
Lo M, Tsao MS, Hedley D, Ling V (2009). Gene expression profiling of adenosine triphosphate-binding cassette transporters in response to K-ras activation and hypoxia in human pancreatic cancer cell cultures. Pancreas 38(1): 85-93.
Lonardo E, Hermann PC, Heeschen C (2010). Pancreatic cancer stem cells - update and future perspectives. Mol Oncol 4(5): 431-442.
Long J, Zhang Y, Yu X, Yang J, LeBrun DG, Chen C, et al. (2011). Overcoming drug resistance in pancreatic cancer. Expert opinion on therapeutic targets 15(7): 817-828.
Luo X, Ruhland MK, Pazolli E, Lind AC, Stewart SA (2011). Osteopontin stimulates preneoplastic cellular proliferation through activation of the MAPK pathway. Molecular cancer research : MCR 9(8): 1018-1029.
Ma J, Dong C, Ji C (2010). MicroRNA and drug resistance. Cancer Gene Ther 17(8): 523-531.
Michl P, Gress TM (2013). Current concepts and novel targets in advanced pancreatic cancer. Gut 62(2): 317-326.
Mohelnikova-Duchonova B, Soucek P (2010). [The role of membrane transporters in cellular resistance of pancreatic carcinoma to gemcitabine]. Klin Onkol 23(5): 306-310.
Morse DL, Balagurunathan Y, Hostetter G, Trissal M, Tafreshi NK, Burke N, et al. (2010). Identification of novel pancreatic adenocarcinoma cell-surface targets by gene expression profiling and tissue microarray. Biochemical pharmacology 80(5): 748-754.
Mueller MT, Hermann PC, Heeschen C (2010). Cancer stem cells as new therapeutic target to prevent tumour progression and metastasis. Front Biosci (Elite Ed) 2: 602-613.
Nambaru PK, Hubner T, Kock K, Mews S, Grube M, Payen L, et al. (2011). Drug efflux transporter multidrug resistance-associated protein 5 affects sensitivity of pancreatic cancer cell lines to the nucleoside anticancer drug 5-fluorouracil. Drug metabolism and disposition: the biological fate of chemicals 39(1): 132-139.
Nemoto H, Rittling SR, Yoshitake H, Furuya K, Amagasa T, Tsuji K, et al. (2001). Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 16(4): 652-659.
Pan HW, Ou YH, Peng SY, Liu SH, Lai PL, Lee PH, et al. (2003). Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98(1): 119-127.
Parsons JT (2003). Focal adhesion kinase: the first ten years. Journal of cell science 116(Pt 8): 1409-1416.
Polat B, Wohlleben G, Katzer A, Djuzenova CS, Technau A, Flentje M (2013). Influence of osteopontin silencing on survival and migration of lung cancer cells. Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al] 189(1): 62-67.
Queiroz KC, Ruela-de-Sousa RR, Fuhler GM, Aberson HL, Ferreira CV, Peppelenbosch MP, et al. (2010). Hedgehog signaling maintains chemoresistance in myeloid leukemic cells. Oncogene 29(48): 6314-6322.
Rangaswami H, Bulbule A, Kundu GC (2006). Osteopontin: role in cell signaling and cancer progression. Trends in cell biology 16(2): 79-87.
Rao G, Wang H, Li B, Huang L, Xue D, Wang X, et al. (2013). Reciprocal interactions between tumor-associated macrophages and CD44-positive cancer cells via osteopontin/CD44 promote tumorigenicity in colorectal cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 19(4): 785-797.
Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C, et al. (2010). Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. Journal of the National Cancer Institute 102(5): 340-351.
Rittling SR (2011). Osteopontin in macrophage function. Expert reviews in molecular medicine 13: e15.
Rittling SR, Chambers AF (2004). Role of osteopontin in tumour progression. British journal of cancer 90(10): 1877-1881.
Rudland PS, Platt-Higgins A, El-Tanani M, De Silva Rudland S, Barraclough R, Winstanley JH, et al. (2002). Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer research 62(12): 3417-3427.
Sandilands E, Serrels B, McEwan DG, Morton JP, Macagno JP, McLeod K, et al. (2012). Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nature cell biology 14(1): 51-60.
Santisteban M (2010). ABC transporters as molecular effectors of pancreatic oncogenic pathways: the Hedgehog-GLI model. J Gastrointest Cancer 41(3): 153-158.
Schinkel AH, Jonker JW (2003). Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Advanced drug delivery reviews 55(1): 3-29.
Schmidt S, Nakchbandi I, Ruppert R, Kawelke N, Hess MW, Pfaller K, et al. (2011). Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. The Journal of cell biology 192(5): 883-897.
Schultze A, Fiedler W (2011). Clinical importance and potential use of small molecule inhibitors of focal adhesion kinase. Anti-cancer agents in medicinal chemistry 11(7): 593-599.
Scotto KW (2003). Transcriptional regulation of ABC drug transporters. Oncogene 22(47): 7496-7511.
Senger DR, Wirth DF, Hynes RO (1979). Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell 16(4): 885-893.
Shojaei F, Scott N, Kang X, Lappin PB, Fitzgerald AA, Karlicek S, et al. (2012). Osteopontin induces growth of metastatic tumors in a preclinical model of non-small lung cancer. Journal of experimental & clinical cancer research : CR 31: 26.
Sims-Mourtada J, Izzo JG, Ajani J, Chao KS (2007). Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene 26(38): 5674-5679.
Sodek J, Ganss B, McKee MD (2000). Osteopontin. Crit Rev Oral Biol Med 11(3): 279-303.
Stavrovskaya AA, Stromskaya TP (2008). Transport proteins of the ABC family and multidrug resistance of tumor cells. Biochemistry (Mosc) 73(5): 592-604.
Stokes JB, Adair SJ, Slack-Davis JK, Walters DM, Tilghman RW, Hershey ED, et al. (2011). Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Molecular cancer therapeutics 10(11): 2135-2145.
Sturm PD, Hruban RH, Ramsoekh TB, Noorduyn LA, Tytgat GN, Gouma DJ, et al. (1998). The potential diagnostic use of K-ras codon 12 and p53 alterations in brush cytology from the pancreatic head region. The Journal of pathology 186(3): 247-253.
Takayanagi S, Kataoka T, Ohara O, Oishi M, Kuo MT, Ishikawa T (2004). Human ATP-binding cassette transporter ABCC10: expression profile and p53-dependent upregulation. J Exp Ther Oncol 4(3): 239-246.
Tanaka M, Okazaki T, Suzuki H, Abbruzzese JL, Li D (2011). Association of multi-drug resistance gene polymorphisms with pancreatic cancer outcome. Cancer 117(4): 744-751.
Thoms JW, Dal Pra A, Anborgh PH, Christensen E, Fleshner N, Menard C, et al. (2012). Plasma osteopontin as a biomarker of prostate cancer aggression: relationship to risk category and treatment response. British journal of cancer 107(5): 840-846.
Tilli TM, Franco VF, Robbs BK, Wanderley JL, da Silva FR, de Mello KD, et al. (2011). Osteopontin-c splicing isoform contributes to ovarian cancer progression. Molecular cancer research : MCR 9(3): 280-293.
Tuck AB, Chambers AF (2001). The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia 6(4): 419-429.
Tuck AB, O'Malley FP, Singhal H, Harris JF, Tonkin KS, Kerkvliet N, et al. (1998). Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer 79(5): 502-508.
Tuck AB, O'Malley FP, Singhal H, Tonkin KS, Harris JF, Bautista D, et al. (1997). Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Arch Pathol Lab Med 121(6): 578-584.
Turton NJ, Judah DJ, Riley J, Davies R, Lipson D, Styles JA, et al. (2001). Gene expression and amplification in breast carcinoma cells with intrinsic and acquired doxorubicin resistance. Oncogene 20(11): 1300-1306.
Urquidi V, Sloan D, Kawai K, Agarwal D, Woodman AC, Tarin D, et al. (2002). Contrasting expression of thrombospondin-1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer metastasis. Clinical cancer research : an official journal of the American Association for Cancer Research 8(1): 61-74.
van Heek T, Rader AE, Offerhaus GJ, McCarthy DM, Goggins M, Hruban RH, et al. (2002). K-ras, p53, and DPC4 (MAD4) alterations in fine-needle aspirates of the pancreas: a molecular panel correlates with and supplements cytologic diagnosis. American journal of clinical pathology 117(5): 755-765.
Wang-Rodriguez J, Urquidi V, Rivard A, Goodison S (2003). Elevated osteopontin and thrombospondin expression identifies malignant human breast carcinoma but is not indicative of metastatic status. Breast cancer research : BCR 5(5): R136-143.
Wang F, Xue X, Wei J, An Y, Yao J, Cai H, et al. (2010). hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. British journal of cancer 103(4): 567-574.
Wang KX, Denhardt DT (2008). Osteopontin: role in immune regulation and stress responses. Cytokine & growth factor reviews 19(5-6): 333-345.
Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, et al. (2011). Pancreatic cancer: understanding and overcoming chemoresistance. Nature reviews. Gastroenterology & hepatology 8(1): 27-33.
Weber CE, Li NY, Wai PY, Kuo PC (2012). Epithelial-mesenchymal transition, TGF-beta, and osteopontin in wound healing and tissue remodeling after injury. Journal of burn care & research : official publication of the American Burn Association 33(3): 311-318.
Wu Y, Denhardt DT, Rittling SR (2000). Osteopontin is required for full expression of the transformed phenotype by the ras oncogene. British journal of cancer 83(2): 156-163.
Xie P, Kondeti VK, Lin S, Haruna Y, Raparia K, Kanwar YS (2011). Role of extracellular matrix renal tubulo-interstitial nephritis antigen (TINag) in cell survival utilizing integrin (alpha)vbeta3/focal adhesion kinase (FAK)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B-serine/threonine kinase (AKT) signaling pathway. The Journal of biological chemistry 286(39): 34131-34146.
Yao J, Cai HH, Wei JS, An Y, Ji ZL, Lu ZP, et al. (2010). Side population in the pancreatic cancer cell lines SW1990 and CFPAC-1 is enriched with cancer stem-like cells. Oncol Rep 23(5): 1375-1382.
Zhang H, Guo M, Chen JH, Wang Z, Du XF, Liu PX, et al. (2014). Osteopontin knockdown inhibits alphav,beta3 integrin-induced cell migration and invasion and promotes apoptosis of breast cancer cells by inducing autophagy and inactivating the PI3K/Akt/mTOR pathway. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 33(4): 991-1002.
Zhao B, Sun T, Meng F, Qu A, Li C, Shen H, et al. (2011). Osteopontin as a potential biomarker of proliferation and invasiveness for lung cancer. Journal of cancer research and clinical oncology 137(7): 1061-1070.
Zhu B, Suzuki K, Goldberg HA, Rittling SR, Denhardt DT, McCulloch CA, et al. (2004). Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. J Cell Physiol 198(1): 155-167.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18449-
dc.description.abstract胰臟癌多起源於胰管細胞的突變,而胰臟癌現今仍是最難治癒的癌症之一,比起其他癌症,現今科學對於它的了解也十分有限。在治療上,傳統化療藥物對於疾病進程的改善並無太大幫助,也難以抵擋其轉移至其他器官的能力。臨床統計,在患有胰臟癌的病人當中,只有10~15% 的病人可以進行病灶切除,但經過病灶切除的病人之中只有20% 可以有5年存活,故罹患胰臟癌的病人其預後極差。 由於胰臟癌初期難以察覺,所以發現得到胰臟癌通常為時已晚,若癌細胞已經轉移或評估難以手術切除,此時臨床上多半採用合併gemicitabine和其他化療藥物或只能以支持療法試圖使病人延長生命、減輕痛苦。但是,化療的成果有限,又因為胰臟癌的高度轉移性導致至今沒有一種化療藥物可以完全治癒胰臟癌,而支持療法所使用的藥物則必須審慎使用避免造成病人身體的負擔。即使合併多種療法,現今仍沒有出現可以明顯延長胰臟癌病患壽命的方式,所以人們尋求新的解答,將眼光放在探討胰臟癌的發生機轉,以及從分子生物學的角度切入進而開發新的標靶藥物試圖突破困境。
整體而言,癌症病人除了先天對化療藥物具有抗藥性外,若治療初期有成效,但最終仍產生抗藥性的原因大多是因為多重抗藥性的產生,而這跟ATP-binding cassette (ABC)藥物轉運蛋白有關。這些藥物轉運蛋白位於細胞膜,具有抗藥性的細胞會大量表現這些轉運蛋白,主動將藥物排出細胞,藉以降低化療藥物在胞內的累積濃度,影響治療效果。
人類骨橋蛋白,或稱骨調素 (osteopontin),是一種磷酸化的醣蛋白,文獻指出有些癌症會過度表現人類骨橋蛋白,並且其表現可能和癌症進程與分期有關,包含膀胱癌、大腸癌、腎臟癌、咽喉癌、口腔癌及唾液腺癌。此外,至今研究認為人類骨橋蛋白雖難以作為癌症篩檢及確診的標記,但卻可作為癌症預後指標。
不過對於人類骨橋蛋白和藥物轉運蛋白間的關係令人好奇,但卻甚少研究可以幫助釐清它們之間調控的機轉。因此本篇研究著力於探討在胰臟癌中人類骨橋蛋白對於藥物轉運蛋白的調控,以及探討是否有新的治療方式可以有效降低癌細胞存活率,並探討其中可能的機轉。研究發現外給人類骨橋蛋白在人類胰臟癌細胞(MIA PaCa-2)確實可以使藥物轉運蛋白---ABCB1的mRNA和蛋白量表現增加。接著我們更加確認內生性人類骨橋蛋白在胰臟癌細胞中的地位,我們轉殖一小段具有專一性拮抗人類骨橋蛋白mRNA的shRNA後,發現隨著人類骨橋蛋白的減少,細胞ABCB1的表現量也隨之下降,並且細胞對於化療藥物doxorubicin的感受性增加,使得細胞死亡率顯著上升。此外,在本篇研究中亦發現合併使用αvβ3 integrin 的專一拮抗藥物HSA(C34S)-ARLDDL可以增強doxorubicin毒殺癌細胞的能力。另一方面,若是將轉殖人類骨橋蛋白shRNA的胰臟癌細胞重新給予人類骨橋蛋白,再以化療藥物毒殺,可以發現胰臟癌細胞的存活率提升。此外,為了模擬癌細胞長期接受化療藥物後產生的抗藥性現象,我們用doxorubicin治療癌細胞兩天後,發現藥物轉運蛋白在胰臟癌細胞中的表現確實明顯上升,而且人類骨橋蛋白在細胞中的表現量也顯著變多。已有研究指出ABCB1的增加與PI3K/ Akt調控有關。我們外給人類骨橋蛋白在胰臟癌細胞,確實發現可以增加FAK和Akt的磷酸化,因此,人類骨橋蛋白可能透過FAK/Akt路徑調控ABCB1的表現量。
總而言之,本篇研究證實人類骨橋蛋白可能藉由αvβ3 integrin在胰臟癌細胞降低對於化療藥物的感受性,並且合併使用disintegrin和doxorubicin可以為治療胰臟癌提供一個新的治療策略。
zh_TW
dc.description.abstractPancreatic ductal adenocarcinoma remains a complicated and unsolved issue with conventional cancer treatments having little impact on its disease course. The fact that it is prone to metastasis makes the disease prognosis extremely poor. Survival is dependent on tumor burden and performance status at presentation. Only around 10~15% of patients may undergo resectable surgery, and 20% of them survive to 5 years. For locally advanced, unresectable, and metastatic lesion, treatment is palliative, or to combine gemcitabine-based chemotherapy. However, chemotherapy is never curative to date for metastatic disease due to its drug resistance to currently available treatments, and its potential palliative benefit must be carefully weighed against toxic effects. In addition, no randomized phase III trial has yet established a survival benefit for combination therapy. Therefore, new therapeutic strategies based on the molecular biology of pancreatic cancer seem to hold the greatest promise.
Generally, in cancer patients who do not respond to chemotherapy, multidrug resistance (MDR) is usually mediated by the overexpression of various ATP-binding cassette (ABC) family of drug transporters located on the cytoplasmic side of the membrane, resulting in increased drug efflux from the resistant cell. Several studies using a broad range of tumor cell lines and chemotherapeutic agents have found that cellular transport proteins of the ABC family are involved in the penetration of drugs through the cell membrane and their intracellular accumulation to effective concentrations.
Osteopontin (OPN), a phosphorylated glycoprotein, overexpresses in several cancers and is found to correlate significantly overall with tumor stage, including bladder, colon, kidney, larynx, mouth and salivary gland. In further studies to date, they support the hypothesis that osteopontin detected in tumor cells has a potential utility as a prognostic marker.
Nevertheless, the relationship between osteopontin and drug transporters has not been well-understood. Therefore, in this study, we investigated the effect of osteopontin on the upregulation of drug transporters in pancreatic cancer, and found that treatment of osteopontin significantly upregulated the mRNA expression and protein level of drug transporter---ABCB1 in MIA PaCa-2 cells. We then further confirmed the important role of endogenous osteopontin in contribution to chemoresitance in pancreatic cancer. ABCB1 expression in pancreatic cancer cell was decreased by the knockdown of endogenous osteopontin. On the other hand, the cytotoxicity by doxorubicin was enhanced by the knockdown of osteopontin. HSA(C34S)-ARLDDL, an αvβ3 integrin antagonist, could potentiate cytotoxicity of doxorubicin, etiher at 0.5 μM or at 1 μM. In addition, we also found that osteopontin re-administration would attenuate the cytotoxicity caused by doxorubicin in MIA PaCa-2 cells. In addition, clinically long-term treatment of chemodrugs in patients with cancer would develop multidrug resistance eventually, and this was the common reason that treatment failed in vain. In our study, we treated the pancreatic cancer cells with doxorubicin for two days and verified this consequence. The data showed that long-term treatment of doxorubicin would upregulate the drug transporter and osteopontin expression. It is well-known that PI3K/ Akt pathway mediates ABCB1 expression. Further, we applied osteopontin to MIA PaCa-2 cells and found that osteopontin could increase the phosphorylation level of FAK and Akt.
In conclusion, the result suggested that osteopontin played an important role in the regulation of drug sensitivity through αvβ3 integrin in pancreatic cancer cells, and chemotherapeutic drug in combination with disintegrin as a target therapy might be a promising treatment strategy in pancreatic cancer.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:05:46Z (GMT). No. of bitstreams: 1
ntu-103-R01443010-1.pdf: 4051713 bytes, checksum: a54606be79c672fee568fe177a1925a7 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsAbbreviations....V
摘要............VII
Abstract.........X
Chapter 1 Introduction......1
1-1. Pancreatic cancer...1
1-2. The role of drug transporters in pancreatic cancer.....7
1-3. Osteopontin..........15
1-4. The role of osteopontin in cancer........18
Chapter 2 Materials and Methods..................24
Chapter 3 Results................................33
3-1. Effect of osteopontin on mRNA expression of drug transporters in pancreatic cancer cells..........33
3-2. Osteopontin increases ABCB1 protein expression in a time-dependent manner in MIA PaCa-2 cells........35
3-3. Osteopontin increases ABCB1 protein expression in concentration-dependent manner in MIA PaCa-2 cells......36
3-4. Effect of osteopontin knockdown on ABCB1 protein expression in MIA PaCa-2 cells..........................36
3-5. Cytotoxicity of various chemotherapeutic drugs in MIA PaCa-2 cells..........38
3-6. Effect of disintegrin on the cell viability of MIA PaCa-2 cells..........39
3-7. Effect of CD44 antibody on the cell viability of MIA PaCa-2 cells..........40
3-8. Knockdown of endogenous osteopontin enhances the cytotoxicity of doxorubicin in MIA PaCa-2 cells........40
3-9. Osteopontin attenuates the cytotoxicity caused by doxorubicin in MIA PaCa-2 cells........................41
3-10.Long-term treatment of doxorubicin upregulates the drug transporter and osteopontin expression.................42
3-11.The signaling pathway involved in osteopontin-induced ABCB1 expression.......................................43
Chapter 4 Discussion...................................44
References.............................................67
Figure contents
Chapter 1
Figure 1-1. Anatomy of pancreas...........5
Figure 1-2. Predicted secondary structures of drug efflux transporters of the ATP-binding cassette family.........13
Figure 1-3. The functional motifs of the OPN molecule...17
Chapter 3
Figure 3-1. Induction of ABCB1 mRNA expression by osteopontin in MIA PaCa-2 cells.........................51
Figure 3-2. Osteopontin does not affect mRNA expression of drug transporters in PANC-1 cells.......................52
Figure 3-3. Osteopontin increases ABCB1 protein expression in time-dependent manner in MIA PaCa-2 cells............53
Figure 3-4. Protein level of ABCB1 is increased by osteopontin in specific concentrations..................54
Figure 3-5. Detection of osteopontin protein level after knockdown of OPN in MIA PaCa-2 cells....................55
Figure 3-6. ABCB1 protein level decreases following the knockdown of osteopontin in MIA PaCa-2 cells............56
Figure 3-7. Cytotoxicity of various chemotherapeutic drugs in MIA PaCa-2 cells.....................................57
Figure 3-8. αvβ3 intergrin antagonsist potentiates cytotoxicity of doxorubicin in MIA PaCa-2 cells.........58
Figure 3-9. The neutralizing antibody of CD44 contributes little effect on potentiating cytotoxicity of doxorubicin in MIA PaCa-2 cells........................................59
Figure 3-10. Disintegrin potentiates cytotoxic effect of doxorubicin in MIA PaCa-2 cells.........................60
Figure 3-11. Knockdown of osteopontin increases the drug sensitivity to doxorubicin in MIA PaCa-2 cells..........61
Figure 3-12. Exogenous osteopontin rescues the cell death caused by doxorubicin in MIA PaCa-2 cells...............62
Figure 3-13. Long-term treatment of doxorubicin upregulates the drug transporter and osteopontin expression.........63
Figure 3-14. The signaling pathways involved in OPN-induced ABCB1 expression on MIA PaCa-2 cells....................64
Figure 3-15. Osteopontin increases the phosphorylation of FAK and Akt in MIA PaCa-2 cells.........................65
Figure 3-16. Schematic depiction of the effect of osteopontin on drug transporter upregulation............66
Table contents
Table 1-1. Types of pancreatic cancers and suspect mutations respectively.............................................6
Table 1-2. ABC drug transporters and their tissue specificity.............................................12
Table 1-3. Endogenous and exogenous substrates for ABC transporters............................................14
dc.language.isoen
dc.title探討人類骨橋蛋白在胰臟癌細胞對藥物轉運蛋白的調控作用zh_TW
dc.titleRegulation of drug transporters by osteopontin in pancreatic cancer cellsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林琬琬(Wan-Wan Lin),劉興華(Shing-Hwa Liu)
dc.subject.keyword胰臟癌,人類骨橋蛋白,骨調素,藥物轉運蛋白,組蛋白,艾黴素,zh_TW
dc.subject.keywordPancreatic cancer,osteopontin,drug transporter,integrin,doxorubicin,en
dc.relation.page78
dc.rights.note未授權
dc.date.accepted2014-08-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved