請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18436
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王銘宗 | |
dc.contributor.author | Chuan-Pu Chen | en |
dc.contributor.author | 陳泉蒲 | zh_TW |
dc.date.accessioned | 2021-06-08T01:05:07Z | - |
dc.date.copyright | 2014-09-16 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-20 | |
dc.identifier.citation | Aaker, D. A. (1998). Strategic market management. John Wiley & Sons.
Aburto, L., & Weber, R. (2007). Improved supply chain management based on hybrid demand forecasts. Applied Soft Computing, 7, 136–144. Athiyaman, A., & Robertson, R. W. (1992). Time series forecasting techniques: short-term planning in tourism. International Journal of Contemporary Hospitality Management, 4. Ayeh, J. K., & Lin, S. (2011). “Estimating tomorrow”s tourist arrivals’: forecasting the demand for China’s tourism using the general-to-specific approach. Tourism & Hospitality Research, 11, 197–206. Box, G. E. P., & Jenkins, G. M. (1970). Time Series Analysis Forecasting and Control,. Burger, C. J. S. C., Dohnal, M., Kathrada, M., & Law, R. (2001). A practitioners guide to time-series methods for tourism demand forecasting — a case study of Durban, South Africa. Tourism Management, 22, 403–409. Carey, K. (1991). Estimation of Caribbean tourism demand: Issues in measurement and methodology. Atlantic Economic Journal, 19, 32–40. Chandler, A. D. (1962). Strategy and structure: Chapters in the history of the american enterprise. Massachusetts Institute of Technology Cambridge. Cho, V. (2003). A comparison of three different approaches to tourist arrival forecasting. Tourism Management, 24, 323–330. Claveria, O., & Torra, S. (2014). Forecasting tourism demand to Catalonia: Neural networks vs. time series models. Economic Modelling, 36, 220–228. Coshall, J. T., & Charlesworth, R. (2011). A management orientated approach to combination forecasting of tourism demand. Tourism Management, 32, 759–769. Crouch, G. I. (1994). The Study of International Tourism Demand: A Survey of Practice. Journal of Travel Research, 32, 41–55. Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management Science, 9, 458–467. Dess, G. G., & Beard, D. W. (1984). Dimensions of organizational task environments. Administrative Science Quarterly, 52–73. Dickson, P. H., & Weaver, K. M. (1997). Environmental determinants and individual-level moderators of alliance use. Academy of Management Journal, 40, 404–425. Dritsakis, N. (2004). Cointegration analysis of German and British tourism demand for Greece. Tourism Management, 25, 111–119. Duncan, R. B. (1972). Characteristics of organizational environments and perceived environmental uncertainty. Administrative Science Quarterly, 313–327. Frechtling, D. C., & others. (2001). Forecasting tourism demand: methods and strategies. Forecasting Tourism Demand: Methods and Strategies. Frechtling, D. C., Ritchie, J. R. B., Goeldner, C. R., & others. (1987). Assessing the impacts of travel and tourism-introduction to travel impact estimation. Travel, Tourism, and Hospitality Research. A Handbook for Managers and Researchers, 325–331. Fretchling Douglas, C. (2001). Forecasting Tourism Demand: Methods and Strategies. Butterworth Heinemann, Boston. Goh, C., & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 23, 499–510. Goh, C., & Law, R. (2011). The Methodological Progress of Tourism Demand Forecasting: A Review of Related Literature. Journal of Travel & Tourism Marketing, 28, 296–317. Greenidge, K. (2001). Forecasting tourism demand: An STM approach. Annals of Tourism Research, 28, 98–112. Hamal, K. (1997). Modeling domestic holiday tourism demand in Australia: problems and solutions. Asia Pacific Journal of Tourism Research, 1, 35–46. Han, J., & Kamber, M. (2001). Data Mining, Southeast Asia Edition: Concepts and Techniques. Morgan kaufmann. Hill, C. W. L., & Jones, G. R. (1998). Strategic Management Theory: An Integrated Approach. Houghton Mifflin. Hitt, M. A., Ireland, R. D., & Hoskisson, R. E. (2001). Strategic management: competitiveness and globalization. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79, 2554–2558. Huang, Y.-L. (2013). Forecasting the Demand for Tourism in China by Applying the Skew-t Distribution Model. Chinese Economy, 46, 49–62. Hui, T.-K., & Yuen, C.-C. (1998). An Econometric Study on Japanese Tourist Arrivals in British Columbia and its Implications. The Service Industries Journal, 18, 38–50. Jud, G. D., & Joseph, H. (1974). International demand for Latin American tourism. Growth and Change, 5, 25–31. Jurkovich, R. (1974). A core typology of organizational environments. Administrative Science Quarterly, 380–394. Kim, S., Song, H., & others. (1998). Analysis of inbound tourism demand in South Korea: a cointegration and error correction approach. Tourism Analysis, 3, 25–41. Kotler, P. (1986). Principles of Marketing. Pearson Education, Limited. Kulendran, N., & King, M. L. (1997). Forecasting international quarterly tourist flows using error-correction and time-series models. International Journal of Forecasting, 13, 319–327. Kulendran, N., & Witt, S. F. (2001). Cointegration versus least squares regression. Annals of Tourism Research, 28, 291–311. Kulendran, N., & Witt, S. F. (2003). Leading indicator tourism forecasts. Tourism Management, 24, 503–510. Law, R. (2000). Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting. Tourism Management, 21, 331–340. Law, R., & Au, N. (1999). A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Management, 20, 89–97. Law, R., Mok, H., & Goh, C. (2007). Data Mining in Tourism Demand Analysis: A Retrospective Analysis. In R. Alhajj, H. Gao, J. Li, X. Li, & O. R. Zaïane (Eds.), Advanced Data Mining and Applications (pp. 508–515). Springer Berlin Heidelberg. Lee, K. N. (2011). Forecasting long-haul tourism demand for Hong Kong using error correction models. Applied Economics, 43, 527–549. Levy, S. E., & Hawkins, D. E. (2009). Peace Through Tourism: Commerce Based Principles and Practices. Journal of Business Ethics, 89, 569–585. Li, G., Song, H., & Witt, S. F. (2005). Recent Developments in Econometric Modeling and Forecasting. Journal of Travel Research, 44, 82–99. Lim, C. (1997). Review of international tourism demand models. Annals of Tourism Research, 24, 835–849. Lim, C., & McAleer, M. (2001). Cointegration analysis of quarterly tourism demand by Hong Kong and Singapore for Australia. Applied Economics, 33, 1599–1619. Lim, C., & McAleer, M. (2002). A cointegration analysis of annual tourism demand by Malaysia for Australia. Mathematics and Computers in Simulation, 59, 197–205. Lin, C.-J., & Lee, T.-S. (2013). Tourism Demand Forecasting: Econometric Model Based on Multivariate Adaptive Regression Splines, Artificial Neural Network and Support Vector Regression. Advances in Management and Applied Economics, 3, 1–18. Markides, C. (1997). Strategic innovation. Sloan Management Review, 38, 9–24. Martin, C. A., & Witt, S. F. (1989). Accuracy of econometric forecasts of tourism. Annals of Tourism Research, 16, 407–428. Martino, J. P. (1993). Technological forecasting for decision making. McGraw-Hill, Inc. Mathieson, A. (1982). Tourism: Economic, Physical, and Social Impacts. Longman. Milliken, F. J. (1987). Three types of perceived uncertainty about the environment: State, effect, and response uncertainty. Academy of Management Review, 12, 133–143. Minsky, M. L., & Papert, S. A. (1987). Perceptrons - Expanded Edition: An Introduction to Computational Geometry. MIT press Boston, MA: Morley, C. L. (1992). A microeconomic theory of international tourism demand. Annals of Tourism Research, 19, 250–267. Nathanson, D. A., & Cassano, J. S. (1982). Organization, diversity, and performance. Wharton Magazine, 6, 19–26. Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design considerations and applications. Information & Management, 42, 15–29. Oster, S. M. (1999). Modern competitive analysis. OUP Catalogue. Pankratz, A. (1983). Forecasting with univariate Box-Jenkins models; concepts and casses. Pattie, D. C., & Snyder, J. (1996). Using a neural network to forecast visitor behavior. Annals of Tourism Research, 23, 151–164. Porter, M. (1990). The Comparative Advantage of Nations. London: Macmillan. Qu, H., & Lam, S. (1997). A travel demand model for Mainland Chinese tourists to Hong Kong. Tourism Management, 18, 593–597. Roberts, E. B., & Berry, C. A. (1984). Entering new businesses: selecting strategies for success. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386. Rumelhart, D. E., McClelland, J. L., Group, P. R., & others. (1995). Parallel distributed processing (Vol. 1). MIT press. Shan, J., & Wilson, K. (2001). Causality between trade and tourism: empirical evidence from China. Applied Economics Letters, 8, 279–283. Sheldon, P. J. (1993). Forecasting Tourism: Expenditures versus Arrivals. Journal of Travel Research, 32, 13–20. Shleifer, A. (1986). Implementation cycles. The Journal of Political Economy, 1163–1190. Smeral, E. (1988). Tourism demand, economic theory and econometrics: an integrated approach. Journal of Travel Research, 26, 38–42. Smola, A. J., & Schölkopf, B. (1998). Learning with kernels. Citeseer. Song, H., Gao, B. Z., & Lin, V. S. (2013). Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system. International Journal of Forecasting, 29, 295–310. Song, H., & Li, G. (2008). Tourism demand modelling and forecasting—A review of recent research. Tourism Management, 29, 203–220. Song, H., Li, G., Witt, S. F., & Fei, B. (2010). Tourism demand modelling and forecasting: how should demand be measured? Tourism Economics, 16, 63–81. Song, H., Romilly, P., & Liu, X. (2000). An empirical study of outbound tourism demand in the UK. Applied Economics, 32, 611–624. Song, H., & Witt, S. F. (2003). Tourism Forecasting: The General-to-Specific Approach. Journal of Travel Research, 42, 65–74. Song, H., Witt, S. F., & Jensen, T. C. (2003). Tourism forecasting: accuracy of alternative econometric models. International Journal of Forecasting, 19, 123–141. Song, H., Wong, K. K. F., & Chon, K. K. S. (2003). Modelling and forecasting the demand for Hong Kong tourism. International Journal of Hospitality Management, 22, 435–451. Suykens, J. A. K. (2001). Nonlinear modelling and support vector machines. In Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference, 2001. IMTC 2001 (Vol. 1, pp. 287–294 vol.1). Tay, F. E., & Cao, L. (2001). Application of support vector machines in financial time series forecasting. Omega, 29, 309–317. Vanegas, S., Manuel, & Croes, R. R. (2000). Evaluation of demand: US tourists to Aruba. Annals of Tourism Research, 27, 946–963. Vapnik, V. (2000). The nature of statistical learning theory. springer. Witt, S. F., & Martin, C. A. (1987). Econometric models for forecasting international tourism demand. Journal of Travel Research, 25, 23–30. Witt, S. F., & Witt, C. A. (1995). Forecasting tourism demand: A review of empirical research. International Journal of Forecasting, 11, 447–475. Wong, K. K. (1997). The relevance of business cycles in forecasting international tourist arrivals. Tourism Management, 18, 581–586. Wong, K. K. F., Song, H., Witt, S. F., & Wu, D. C. (2007). Tourism forecasting: To combine or not to combine? Tourism Management, 28, 1068–1078. Wong, K. K. F., Song HaiYan, & Chon, K. S. (2006). Bayesian models for tourism demand forecasting. Tourism Management, 27, 773–780. 交通部觀光局. (2014, June 17). 觀光局新聞稿. 交通部觀光局. 吳柏林. (1995). 時間數列分析導論. 台北: 華泰書局. 張以文. (1995). 企業多角化整體規劃程序之研究 (未出版之碩士論文). 國立政治大學企業管理研究所, 國立政治大學. 施瑞賢. (2003). 來華觀光旅客人數需求預測之研究 (未出版之碩士論文). 朝陽科技大學休閒事業管理系碩士班, 朝陽科技大學. 李明泰. (1996). 核心競力與企業多角化策略之研究, 中山大學企業管理研究所碩士論文. 葉怡成. (2003). 類神經網路模式應用與實作. 儒林. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18436 | - |
dc.description.abstract | 隨著台灣經濟的快速增長,旅遊業已成為國家發展的一個重要的新領域,對國家經濟的發展進行全面性的刺激作用。觀光人口屢屢突破每年人次高峰,隨著此趨勢觀光產業也迎向新的發展階段,觀光旅遊業只要成功吸引外國遊客使旅遊服務的需求增加,能夠為國家的經濟發展、貿易表現作提供重大貢獻。因此,瞭解何種變數會影響旅遊需求以及如何應用這些變數預測國際觀光旅客的來台需求趨勢和預測,給予決策者有效資訊來做策略規劃是非常重要的。
人工智慧技術已經成為經濟建模和預測的重要工具,隨著資訊科技的發展、預測技術的演進與資料的更新,多項新技術已經應用在旅遊需求預測。然而,就預測準確性而言,研究分析顯示始終沒有一個最佳的模型可在多個情形下統一適用和絕對優於其他模型。本研究重新針對預測模式的精確性與適用性進行探討,主要以倒傳遞類神經網路以及支撐向量迴歸模型於國際旅遊需求預測。 本研究主要的貢獻在於透過實證性研究,期望藉由本研究分析結果,對於觀光來台人數預測,有進一步的了解,促進觀光產業對預測模型之了解與共識,並給予觀光產業策略建議,作為觀光領域或預測模型後續研究發展之參考。 | zh_TW |
dc.description.abstract | With the rapid growth of Taiwan's economy, tourism has become an important new areas of national development and comprehensive stimulate national economic development. Tourism population number has exceeded the annual peak year by year. With this trend, the tourism industry also forth to meet a new development phase. As long as attracting foreign tourists, increasing demand for tourism services provide a significant contribution for national economic development and trade performance. Therefore, to understand what variables will affect tourism demand and how to apply variables to predict international tourist arrivals to Taiwan, giving decision-makers information to make strategic planning is very important.
Artificial intelligence technology has become an important tool for economic modeling and forecasting. With the development of information technology, several new technologies have been applied in travel demand forecasting. However, not an optimal model can be applied uniformly and absolutely superior to other models in multiple scenarios. This research discussed the accuracy and applicability of predictive models in back propagation network and support vector regression model for international tourism demand forecasting. It is hoped that this research could provide a better understanding about tourism demand forecasting and give the tourism industry policy recommendations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:05:07Z (GMT). No. of bitstreams: 1 ntu-103-R01546042-1.pdf: 2808669 bytes, checksum: 80ef75849825d15cc5c7488cad6ad80d (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄 V
圖目錄 VII 表目錄 IX 第1章 緒論 1 1.1 背景與動機 1 1.2 研究目的 3 1.3 研究架構 4 1.4 研究限制 5 第2章 文獻回顧 6 2.1 產業現況 6 2.1.1 產業環境 6 2.1.2 多角化策略 11 2.1.3 觀光產業概況 17 2.2 旅遊需求 25 2.2.1 旅遊需求標準 25 2.2.2 觀光需求預測 27 2.2.3 觀光計量經濟模型 32 2.3 類神經網路 45 2.3.1 類神經網路歷史 45 2.3.2 類神經網路的基本架構與運作 51 2.3.3 類神經網路的特點 56 第3章 研究方法 57 3.1 研究流程 57 3.2 研究範圍與資料來源 59 3.3 觀光產業分析 60 3.4 倒傳遞類神經網路 61 3.5 支撐向量迴歸 67 3.6 模型評估 72 第4章 實證結果與分析 74 4.1 觀光產業環境分析 74 4.1.1 觀光產業PEST分析 74 4.1.2 觀光產業SWOT分析 77 4.2 倒傳遞類神經網路之預測結果分析 79 4.2.1 資料前處理 79 4.2.2 倒傳遞類神經網路預測結果 79 4.3 支撐向量迴歸之預測結果分析 82 4.3.1 資料前處理 82 4.3.2 支撐向量迴歸模型之預測結果 83 4.4 綜合分析比較 85 第5章 結論、貢獻與建議 88 5.1 結論 88 5.2 貢獻 88 5.3 建議 89 參考文獻 91 | |
dc.language.iso | zh-TW | |
dc.title | 國際來台旅遊需求預測模型之先期研究 | zh_TW |
dc.title | A Preliminary Study of Forecast Models for International Taiwan Inbound Tourism | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳進生,李舜得,陳柏良,林秀玲,廖昭昌 | |
dc.subject.keyword | 旅遊需求預測,類神經網路,倒傳遞神經網路,支撐向量回歸, | zh_TW |
dc.subject.keyword | Tourism Demand Forecast,Artificial Neural Network,Back Propagation Network,Support Vector Regression, | en |
dc.relation.page | 97 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-08-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。