Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18423
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴喜美
dc.contributor.authorPo-Chien Chengen
dc.contributor.author鄭博謙zh_TW
dc.date.accessioned2021-06-08T01:04:29Z-
dc.date.copyright2014-09-10
dc.date.issued2014
dc.date.submitted2014-08-20
dc.identifier.citation行政院衛生福利部食品藥物管理署。(2013)。全穀產品宣稱及標示原則。FDA食字第1021301154號。https://consumer.fda.gov.tw/Law/Detail.aspx?nodeID=518&lawid=289.
黃玉嬋。2006。不同榖物澱粉之性質對冷藏烏龍麵品質的影響。國立臺灣大學碩士論文。
高福成,王海毆.。1997。現代食品工程高新技術。中國輕工業出版社。pp.560-569。
AACC. (2000). Approved Method of American Association of Cereal Chemists.AACC Inc., MN, USA.
Alonso, R.; Orue, E.; Zabalza, M. J.; Grant, G.; Marzo F. (2000). Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins. Journal of the Science of Food and Agriculture, 80, 397–403.
Anese, M.; Nicoli, M. C.; Massini, R.; Lerici, C. R. (1999). Effects of drying processing on the Maillard reaction in pasta. Food Research International, 32, 193-199.
Arendt, E. K. & Zannini, E. (2013). Cereal Grains for the Food and Beverage Industries. 11 – Buckwheat. A volume in Woodhead Publishing Series in Food Science, Technology and Nutrition. pp. 369–408.
Badi, S. M.; Hoseney, R. C. (1976). Use of sorghum and pearl millet flours in cookies. Cereal Chemistry, 53, 733–738.
Bonafaccia, G.; Marocchini, M.; Kreft, I. (2003). Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chemistry, 80, 9–15.
Cabrera-Chavez, F., Calderon de la Barca, A.M., Islas-Rubio, A.R. et al. (2012). Molecular rearrangements in extrusion processes for the production of amaranth-enriched, gluten free rice pasta. LWT- Food Science and Technology, 47, 421–426.
Chillo, S.; Laverse J.; Falcone, P. M.; Protopapa, A.; Del Nobilea, M. A. (2008). Influence of the addition of buckwheat flour and durum wheat bran on spaghetti quality. Journal of Cereal Science, 47, 144–152.
Chuang, G. C.; Yeh, A.I. (2006). Rheological characteristics and texture attributes of glutinous rice cakes (mochi). Journal of Food Engineering, 74, 314–323.
Chung, H. J.; Cho, A.; Lim, S. T. (2014). Utilization of germinated and heat-moisture treated brown rices in sugar-snap cookies. LWT - Food Science and Technology, 57, 260-266.
Clerici, M. T. P. S.; Airoldi, C.; El-Dash, A.A. (2009). Production of acidic extruded rice flour and its influence on the qualities of gluten-free bread. Lebensmittel Wissenschaft und Technologie, 42, 618–623.
Debbouz, A.; Pitz, W. J.; Moore, W. R.; Dappolonia, B. L. (1995). Effect of bleaching on durum-wheat and spaghetti quality. Cereal Chemistry, 72, 128–131.
Ding, Q. B.; Ainsworth, P.; Tucker, G.; Marson, H. (2005). The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks Journal of Food Engineering, 66, 283–289.
Englyst, H. N.; Kingman, S. M.; Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46, 3–50.
Fu, B.X. Schlichting, L.; Pozniak, C. J.; Singh, A. K. (2013). Pigment loss from semolina to dough: Rapid measurement and relationship with pasta colour. Journal of Cereal Science, 57, 560–566
Fuentes-Zaragoza, E.; Riquelme-Navarrete, M. J.; Sanchez-Zapata, E.; Perez-Alvarez, J. A. (2010). Resistant starch as functional ingredient: A review. Food Research International, 43, 931–942.
Fukushima M.; Fujii S.; Yoshimura Y.; Endo T.; Nakano, Masuo. (1999)Effect of rice bran on intraintestinal fermentation and cholesterol metabolism in cecectomized rats. Nutrition Research, 19, 235–245.
Gaonkar, A. G.; Vasisht, N.; Khare, A. R.; Sobel, R. (2014). Microencapsulation in the Food Industry: A Practical Implementation Guide, pp. 81–84
Gimeneza, M. A.;Gonzalezb, R. J.; Wagnerc, J.; Torresb, R.; Loboa, M. O.; Sammana, N. C. (2013). Effect of extrusion conditions on physicochemical and sensorial properties of corn-broad beans (Vicia faba) spaghetti type pasta. Food Chemistry, 136, 538–545.
Gonzalez-Soto, R. A.; Mora-Escobedo, R.; Hernandez- Sanchez, H.; anchez-Rivera, M.; Bello-Perez, S. L. A. (2007). Extrusion of banana starch: Characterization of the extrudates. Journal of the Sciences and Food and Agriculture, 87, 348–356.
Gonzalez-Soto, R.A.; Sanchez-Hernandez, L.; Solorza-Feria, J.; Nunez-Santiago, C.; Flores-Huicochea, E.; Bello-Perez, L. A. (2006). Resistant starch production from non-conventional starch sources by extrusion. Food Science and Technology International, 12, 5–11.
Grela, E. R.; Jensen, S. K.; Jakobsen, K. (1999). Fatty acid composition and content of tocopherols and carotenoids in raw and extruded grass pea (lathyrus sativus L). Journal of the Science of Food and Agriculture, 79, 2075–207.
Gueguen, J.; Barbot, J. (1988).Quantitative and qualitative variability of pea (Pisum sativum L.) protein composition. Journal of the Science of Food and Agriculture, 42, 209–224.
Gujral, H. S.; Rosell, C. M. (2004). Improvement of the bread making quality of rice flour by glucose oxidase. Food Research International, 37, 75–81.
Hallfrisch, J.; Behall, K. M. (2000). Mechanisms of the effects of grains on insulin and glucose responses. J Am Coll Nutr, 19, 320S–325S
Haralampu, S. G. (2000). Resistant starch – A review of the physical properties and biological impact of RS3. Carbohydrate Polymers, 41, 285–292.
Heinemann, Riana, J. B.; Xu, Zhimin; Godber, J. Samuel; Lanfer-Marquez, Ursula, M., (2008). Tocopherols, tocotrienols, and gamma-oryzanol contents in Japonica and Indica subspecies of rice Oryza sativa L cultivated in Brazil. Cereal Chemistry, 85, 243-247
Holasova, M.; Fiedlerova, V.; Smrcinova, H.; Orsak, M.; Lachman, J.; Vavreinova, S. (2002). Buckwheat-the source of antioxidant activity in functional foods. Food Research International, 35, 207–211.
Huth, M.; Dongowski, G.; Gebhard, E.; Flamme, W. (2000). Functional properties of dietary fibre enriched extrudates from barley. Journal of Cereal Science, 32, 115–128.
Italian Government Printing Office. (2012). Rules for the Review of Legislation on Production of Flour and Pasta. http://www.comune.jesi.an.it/opencms/export/jesiit/sitoJesiItaliano/MenuPrincipale/ServiziOn-Line/GazzetteLeggi/index.html.
Inglett, G. E.; Chen, D. J.; Berhow, M.; Lee, S. (2011). Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions. Food Chemistry, 125, 923–929
Ishihara, K.; Oyaizu, S.; Fukuchi, Y.; Mizunoya, W.; Segawa, K.; Takahashi, M.; Mita, Y.; Fukuya, Y.; Fushiki, T.; Yasumoto, K. A. (2003). Soybean peptide isolate diet promotes postprandial carbohydrate oxidation and energy expenditure in type II diabetic mice. J. Nutr, 133, 752-757.
Jenkins, D.J.; Kendall, C.W.; Augustin, L.S.; Franceschi, S.; Hamidi, M.; Marchie, A.; Jenkins, A. L.; Axelsen, M. (2002). Glycemic index: Overview of implications in health and disease. American Journal of Clinical Nutrition, 76, 266S–273S.
Jiang, P.; Burczynski, F.; Campbell, C.; Pierce, G. Austria, J. A.; Briggs C. J. (2007). Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F-tataricum, and F-homotropicum and their protective effects against lipid peroxidation. Food Research International, 40, 356–364.
Joye, I. J.; Lamberts, L.; Brijs, K. Delcour, J. A. (2011). In situ production of γ-aminobutyric acid in breakfast cereals. Food Chemistry, 129, 395-401.
Kadan, R. S.; Robinson, M. G.; Thibodeaux, D. P.; Pepperman Jr. A. B.. (2001). Texture and other physicochemical properties of whole rice bread. Journal of Food Science, 66, 940–944.
Kahlon, T. S. & Chow, F. I. (2000). In vitro binding of bile acids by rice bran, oat bran, wheat bran, and corn bran. Cereal Chem, 77, 518-521.
Kawadata, K.; Yamamoto, T.; Hara, A.; Shimizu, M.; Yamada, Y.; Matsunaga, K.; Tanaka, T.; Mori, H. (2000). Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Lett, 157, 15-21.
Kerckhoffs, D. A.; Hornstra, G.; Mensink, R. P. (2003). Cholesterol-lowering effect of beta-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when beta-glucan is incorporated into bread and cookies. The American Journal of Clinical Nutrition, 78, 221-227.
Khongsak Srikaeo & Janya Sangkhiaw. (2014). Effects of amylose and resistant starch on glycaemic index of rice noodles. LWT - Food Science and Technology, In Press, Corrected Proof.
Kim, D. N.; Bae, I. Y.; Inglett, G. E.; Lee, S. (2009). Effect of hydrothermal treatment on the physicochemical, rheological and oil-resistant properties of rice flour. Journal of Texture Studies, 40, 192–207.
Krkoškova,B. & Mrazova, Z. (2005). Prophylactic components of buckwheat. Food Research International ,38, 561-568.
Kumamoto, H.; Matsubara, Y.; Iizuka, Y.; Okamoto, K. Yokoi, K. (1985). Structure and hypotensive effect of flavonoid glycosides in Kinkan (fortunella japonica) peelings. Agricultural and Biological Chemistry, 49, 2613–2618.
Kuuku Biney & Trust Beta. (2014). Phenolic profile and carbohydrate digestibility of durum spaghetti enriched with buckwheat flour and bran. LWT - Food Science and Technology. 57, 569–579.
Lawton, B. T.; Henderson, G. A.; Derlatka, E. J. (1972). The effects of extruder variables on the gelatinization of corn starch. Canadian Journal of Chemical Engineering, 50, 168–171.
Lee, J. S. (2000). Effects of germinated-buckwheat on blood pressure, plasma glucose and lipid levels of spontaneously hypertensive rats. Korean Journal of Food Science and Technology, 32, 206–211.
Lee, J. S.; Son, H. S. Maeng, Y. S.; Chang, Y. K.; Ju J. S. Effects of buckwheat on organ weight, glucose and lipid metabolism in streptozotocin-induced diabetic rats. Korean Journal of Nutrition, 27, 819–827.
Lehmann, U.; Robin, F.; (2007). Slowly digestible starch—its structure and health implications: A review. Trends in Food Science & Technology, 18, 346–355.
Li, D.; Li, X.; Ding, X.; Park, K. (2008). A process for preventing enzymatic degradation of rutin in tartary buckwheat (Fagopyrum tataricum Gaertn) flour. Food Science and Biotechnology, 17, 118–122.
Liu, C.; Zhang, Y.; Liu, W.; Wan, J.; Wang,W.; Wu, L.; Zuo, N.; Zhou, Y.; Yin Z. (2011). Preparation, physicochemical and texture properties of texturized rice produce by Improved Extrusion Cooking Technology. Journal of Cereal Science, 54, 473–480.
Ludwig, D. S. 2000. Dietary Glycemic Index and Obesity. American Society for Nutritional Sciences 130, 280S-283S.
Malcolmson, L.J. (2003). PASTA AND MACARONI : Dietary Importance. Encyclopedia of Food Sciences and Nutrition (Second Edition), pp. 4378–4380.
Manthey, F. A.; Yalla, S. R.; Dick, T. J.; Badaruddin, M. (2004). Extrusion properties and cooking quality of spaghetti containing buckwheat bran flour. Cereal Chemistry, 81, 232-236.
Marcella Hazan.(1992). Essentials of Classic Italian Cooking, Knopf, ISBN 0-394-58404-X
Marti, A. Seetharaman, K. Pagani, M. A. (2010). Rice-based pasta: a comparison between conventional pasta-making and extrusion-cooking. Journal of Cereal Science, 52, 404–409.
Matsuo, R. R. (1994). Durum wheat: its unique pasta-making properties. Springer US, pp. 169-178.
Menezes, E. W.; Tadini, C. C.; Tribess, T. B.; Zuleta, A.; Binaghi, J.; Pak, N. (2011). Chemical composition and nutritional value of unripe banana flour (Musa acuminate, var: Nanicao). Plant Foods for Human Nutrition, 66, 231–237.
Mestres, C.; Colonna, P.; Buleon, A. (1998). Characteristics of starch networks within rice flour noodles and mungbean starch vermicelli. Journal of Food Science, 53, 1809–1812.
Moore, M. M.; Schober, T. J.; Dockery, P.; Arendt, E. K.; (2004). Textural comparisons of gluten-free and wheat-based doughs, batters, and breads. Cereal Chemistry, 81, 567–575.
Munck, L.; (1995). New milling technologies and products: Whole plant utilization by milling and separation of the botanical and chemical components. In: Dendy, D.A.V. (Ed.), Sorghum and Millets: Chemistry and Technology. American Association of Cereal Chemists, St. Paul, MN, USA, pp. 223–281.
Murty, D. S.; Kumar, K. A.; (1995). Traditional uses of sorghum and millets. In: Dendy, D.A.V. (Ed.), Sorghum and Millets: Chemistry and Technology. American Association of Cereal Chemists, St. Paul, MN, USA, pp. 185–221.
Nugent, A. P. (2005). Health properties of resistant starch. British Nutrition Foundation Nutrition Bulletin, 30, 27–54.
Ohtsubo, K.; Suzuki, K.; Yasui, Y.; Kasumi, T. (2005). Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. Journal of Food Composition and Analysis, 18, 303–316
Olatunji, O.; Koleoso, O. A.; Oniwinde, A. B. (1992a). Recent experience on the milling of sorghum, millet, and maize for making nonwheat bread, cake, and sausage in Nigeria. In: Gomez, M. I.; House, L. R.; Rooney, L.W.; Dendy, D.A.V. (Eds.), Utilization of Sorghum and Millets. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India, pp. 83–88.
Olatunji, O.; Osibanjo, A.; Bamiro, E.; Ojo, O.; Bureng, P. (1992b). Improvement in the quality of non-wheat composite bread. In: Fifth Quadrennial Symposium on Sorghum and Millets. International Association for Cereal Science and Technology, Schwechat, Austria, pp. 45–54.
Oomah, B. D.; Mazza, G. (1996). Flavonoids and antioxidative activities in buckwheat. Journal of Agricultural and Food Chemistry, 44, 1746–1750
Osaki, S.; Kimura, T.; Sugimoto, T.; Hizukuri, S.; Iritani, N. (2001). L-Arabinose feeding prevents increase due to dietary sucrose in lipoenic enzymes and triacylglycerol levels in rats. Journal of Nutrition, 131, 796-799.
Park, J. H.; Jeong, H. J.; de Lumen, B. O. (2007). In vitro digestibility of the cancer-preventive soy peptides lunasin and BBI. Journal of Agricultural and Food Chemistry, 55, 10703-10706.
Petitot, M. Barron, C.; Morel, M. H.; Micard, V. (2010a). Impact of legume flour addition on pasta structure: consequence on its in vitro starch digestibility. Food Biophysics, 5, 284–299.
Petitot, M. L.; Minier, B. C.; Micard, V. (2010b). Fortification of pasta with split pea and faba bean flours: pasta processing and quality evaluation. Food Research International, 43, 634–641.
Petitot,M.; Boyer, L.; Minier, C.; Micard, V. (2010). Fortification of pasta with split pea and faba bean flours: Pasta processing and quality evaluation. Food Research International, 43, 634–641
Ranhotra, G. S.; Loewe, R. J.; Puyat, L. V. (1975). Preparation and evaluation of soy-fortified gluten-free bread. Journal of Food Science, 40, 62–64.
Rao, R. S. P. & Muralikrishna, G. (2006). Water should feruloyl arabinoxylans from rice and ragi: Change upon malting and their consequence on antioxidant activity. Phytochem, 67, 91-99
Rayas-Duarte, P.; Mock, C. M.; Satterlee, L. D. (1996). Quality of spaghetti containing buckwheat, amaranth, and lupin flours. Cereal Chemistry, 73, 381–387
Renzetti, S.; Bello, F. D.; Arendt, E. K. (2008). Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase. Journal of Cereal Science, 48, 33-45.
Rice-Evans, C. A.; Miller, J.; Paganga, G. (1997) Antioxidant properties of phenolic compounds. Trends in Plant Science, 2, 152–159
Ronda, F.; Oliete, B.; Gomez, M.; Caballero, P. A.; Pando, V. (2011). Rheological study of layer cake batters made with soybean protein isolate and different starch sources. Journal of Food Engineering, 102, 272–277.
Rosin, P. M.; Lajolo, F. M.; Menezes, E. W. (2002). Measurement and Characterization of Dietary Starches. Journal of Food Composition and Analysis, 15, 367–377.
Sajilata, M. G.; Singhal, R. S.; Kulkarni, P. R. (2006). Resistant starch – A review. Comprehensive Reviews in Food Science and Food Safety, 5, 1–17.
Samoto, M.; Fukuda, Y.; Takahashi, K.; Tabuchi, K.; Hiemori, M.; Tuji, H.; Ogawa, T. Kawamura, Y. (1997). Substantially complete removal of three major allergenic soybean proteins (Gly m Bd 30K, Gly m Bd 28K, and the a-subunits of conglycinin) from soy protein by using a mutant soybean, Tohoku 124, Bioscience, biotechnology, and biochemistry, 61, 2148-2150.
Sarawong, C.; Schoenlechner, R.; Sekiguchi, K.; Berghofer, E. P.; Ng, K.W. (2014). Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chemistry, 143, 33-39.
Schober, T. J.; Messerschmidt, M.; Bean, S. R.; Park, S. H.; Arendt, E. K. (2005). Gluten-free bread from sorghum: quality differences among hybrids. Cereal Chemistry, 82, 394–404.
Shahidi, F. & Naczk, M. (1995). Food phenlics. P.19. Technomic Publishing Co. Inc. Pennsylvania.
Sharma, P.; Gujral, H.; Singh, S. B. (2012). Antioxidant activity of barley as affected by extrusion cooking. Food Chemistry, 131, 1406–1413.
Sirirat, S.; Charutigon, Ch.; Rungsardthong, V. (2005). Preparation of Vermicelli by direct extrusion. The Journal of KMITNB, 15, 39–45.
Sivaramakrishnan, H. P.; Senge, B.; Chattopadhyay, P. K. (2004). Rheological properties of rice dough for making rice bread. Journal of Food Engineering, 62, 37–45.
Slavin, J. L.; Jacobs D.; Marquart, L.; Wiemer, K. (2001). The role of whole grains in disease prevention. J Am Diet Assoc, 101, 780–785.
Suzuki, T.; Honda, Y.; Funatsuki, W.; Nakatsuka, K. (2002). Purification and characterization of flavonol 3-glucosidase, and its activity during ripening in tartary buckwheat seeds. Plant Science, 163, 417–423.
Tiwari, U. & Cummins, E. (2009). Nutritional importance and effect of processing on tocols in cereals. Trends in Food Science and Technology, 20, 511–520.
Topping, D. L.; Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81, 1031–1064.
Trpmibino, S.; Serini, S.; Nicuolo, F. D.; Celleno, L; Ando, S.; Picci, N.; Calviello, G.; Palozza, P. (2004). Antioxidant effect of ferulic acid isolate membranes and intact cell: synergistic interactions with α-tocopherol, β-carotene, and ascorbic acid. J. Agric. Food Chem, 52, 2411-20.
Tudorica,C. M.; Kuri, V.; Brennan, C. S.(2002). Nutritional and physicochemical characteristics of dietary fiber enriched pasta. Journal of Agricultural and Food Chemistry, 50 , 347–356.
Turabi, E.; Sumnu, G.; Sahin, S. (2008). Optimization of baking of rice cakes in infrared-microwave combination oven by response surface methodology. Food and Bioprocess Technology, 1, 64–73.
U.S. Government Printing Office. (1998). Requirements for Specific Standardized Macaroni and Noodle Products. http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&sid=7162819b59439ea6f4fd032034b15966&rgn=div5&view=text&node=21:2.0.1.1.26&idno=21#se21.2.139_1110.
Vasanthan, T.; Gaosong, J.; Yeung, J.; Li, J. (2002). Dietary fiber profile of barley flour as affected by extrusion cooking. Food Chemistry, 77, 35–40.
Yalcin, S.; Basman, A. (2008). Quality characteristics of corn noodles containing gelatinized starch, transglutaminase and gum. Journal of Food Quality, 31, 465–480.
Yasuda, T. & Nakagawa, H. (1994). Purification and characterization of the rutin-degrading enzymes in tartary buckwheat seeds. Phytochemistry, 37, 133–136.
Yoo, J.; Kim, Y.; Yoo, S. H.; Inglett, G. E.; Lee, S. (2012). Reduction of rutin loss in buckwheat noodles and their physicochemical characterization. Food Chemistry, 132, 2107–2111.
Zhao, Y.; Manthey, F.; Chang, S.; Hou, H. J.; Yuan, S. (2005). Quality characteristics of spaghetti as affected by green and yellow pea, lentil, and chickpea flours. Journal of Food Science, 70, S371–S376.
Zhao, Z.; Egashira, Y.; Sanada, H. (2004). Ferulic acid is quickly absorbed from rat stomach as the free form and then conjugated mainly in liver. Journal of Nutrition, 134, 3083-3088.
Zieliński, H.; Kozlowska, H.; Lewczuk, B. Bioactive compounds in the cereal grains before and after hydrothermal processing. Innovative Food Science and Emerging Technologies, 2, 159–169.
Zielinski, H.; Michalska, A. Piskula, M. K.; Kozlowska, H. (2006) Antioxidants in thermally treated buckwheat groats. Molecular Nutrition & Food Research, 50, 824–832.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18423-
dc.description.abstract以全穀物利用之概念,選用國產稻米、苦蕎及黃豆為主原料,開發三種適合冷凍貯藏運送之類西式米麵條產品(pasta-like rice product),其分別為糙米麵、多榖麵 (糙米-苦蕎)及穀豆麵(糙米-黃豆)。試驗中,探討原料種類、原料粉規格、雙軸擠壓製程中進料水量(30、40及50 %)及螺軸轉速(300及500 rpm)對西式米麵條產品之製作與品質影響,並且針對特定機能性成分進行分析,探討擠壓製程及原料性質對特定機能性成分之影響。試驗結果發現,粉料平均粒徑小於150μm及破損澱粉含量介於16-26%,有助於提高澱粉糊化程度,另外,適當直鏈澱粉(24-26 %)含量有助麵條回凝成形並且與適口性有關。多榖麵中,所使用之30 %帶殼苦蕎粉,含有纖維粒徑小於10 μm者,因保水性佳可降低煮麵損失率及提高麵條最大截切力。在高螺軸轉速及低加水量時,由於擠壓套筒末端內壓驟升,致使麵條有部分膨發現象,導致產品外觀及煮麵品質不佳。擠壓時,最適進料水量主要決定於原料粉之性質,但由煮麵性質測定結果發現加水量改變對煮麵損失率之影響顯著大於螺軸轉速的差異,而熟麵條之最大截切力與烹煮損失率則呈負相關性。擠壓時,以相同加水量製作之麵條,其糊液黏度測定結果顯示,回凝黏度值隨著螺軸轉速提高而下降,推測在高螺軸轉速下,剪切力提高,發生澱粉降解現象。在麵條機能性成分分析方面,體外消化試驗結果顯示,榖物原料中含有7-11%之抗解澱粉,而擠壓麵條亦有3-10%抗解澱粉,但由熱性質分析結果得知,擠壓麵條中主要為第三型抗解澱粉。慢速水解澱粉及抗解澱粉對於升糖指數(estimated glycermic index, eGI)有高度負相關性。另外,由於多穀麵(糙米-苦蕎)中含有15%之帶殼苦蕎粉,其eGI顯著低於其他兩種麵條;經過擠壓蒸煮過程,麵條之總酚化合物、維生素E及米糠醇含量有下降趨勢。多榖麵(糙米-苦蕎)中蘆丁含量豐富,且經擠壓過程蘆丁受酵素作用轉化為槲皮素,使得抗氧化能力提高。本試驗所開發的三種全穀物類西式米麵條富含膳食纖維(2.6-6.4%),為日常膳食之良好來源。zh_TW
dc.description.abstractThe objective of this study was to establish the technique to produce whole grain non-gluten pasta-like products made with the domestic grown grains and legumes by using a twin-screw extruder. Three major whole grain pasta-like rice products (PLP) were developed, which are whole rice (brown rice), whole multigrain (brown rice and tartary buckwheat) and whole grain and bean (brown rice and soybean). In this study, the factors affecting the quality of whole grain products include the type of raw materials, the specification of flours, feed moisture (30, 40 and 50%) and screw speed (300 and 500 rpm) during extrusion processing. The specific bioactive compounds (including resistant starch, Vit E, γ-oryzanol and rutin) were analyzed. The results show that the particle size of grain flour should be less than 155 μm, the damaged starch content should be within 16-30% and the amylose content of flours should be 24-26% for good quality of whole grain PLP. It's worth noting that small particle size of tartary buckwheat fiber (<10 μm) could reduce the cooking loss and increase the maximum cutting force of whole multigrain PLP. Slightly puffing could be occurred when the noodle was extruded at high pressure resulting from the high screw speed and low feeding water. The appropriate amount of the feeding water of extrusion was depending or the flour properties, which has a greater impact on the extrusion than the screw speed. The maximum cutting force of cooked pasta was negatively correlated with the rate of cooking loos. As the same feeding water applied, a decrease of setback viscosity could be found when high screw speed was applied to make whole grain PLP. This is attributed the starch degradation under high shearing. The resistant starch content of raw flours and whole grain PLP were 7-11% and 3-10 %, respectively. The results of DSC show that resistant starch in whole grain PLP was type III. The amount of slowly digestible starch and resistant starch was positively correlated with eGI. The whole multigrain pasta-like noodle had the lowest eGI than others, attributing to the 30% of hulled tartary buckwheat flour were included. The extrusion had infurior effect on the bioactive compouds, such as total phenolics, Vitamin E and γ-oryzanol. Moreover, rutin was bioconverted into quercetin by rutin degradation enzyme during extrusion process, resulting bitter flavor of whole multigrain PLP. The whole grain pasta-like products developed in this study, containing high dietary fiber content, low sodium content and having good palatability, have great potential and competition in the food market.en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:04:29Z (GMT). No. of bitstreams: 1
ntu-103-R01623025-1.pdf: 3331454 bytes, checksum: d732274dbb0ac5161f68f09563cd79e9 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目 錄
中文摘要……………………………………………………………...……………….....I
Abstract………………………………………………………………………………….II
目錄…………………………………………………………………………………….IV
表目錄………………………………………………………………………………….IX
圖目錄………………………………………………………………………………….XI
第一章、前言…………………………………………………………………….…..…1
第二章、文獻整理…………………………………………………………….……..…2
一、全穀物飲食………………………………………………………………...…2
(一) 全穀物飲食之簡介…………………………………………………..…2
(二) 全穀物之營養觀點……………………………………....….………..…3
1. 膳食纖維…………………………………………………………..…3
2. 植物性化學物質…………………………………………………..…4
3. 不飽合脂肪酸……………………………………………………..…6
4. 抗解澱粉………………………………………………………..……6
(1) 抗解澱粉之分類…………………………………..……..……7
(2) 影響生成抗解澱粉之因素………………………..…..………8
(三) 全榖物飲食之升糖指數……………………………………..…………9
(四) 全穀物應用於無麩質食品……………………………..….…….……10
二、西式麵條………………………………………………………….……....…12
(一) 西式麵條之簡介……………………………………..…………..……12
(二) 製作西式麵條之原料………………………………..……………..…13
1. 杜蘭小麥………………………………….……….…………..……13
2. 無麩質原料…………………………………………………………13
(三) 市售西式麵條之規格…………………………………………………14
三、擠壓加工技術…………………………………………….………...…..……15
(一) 擠壓技術之簡介…………………………………….…….….…..……15
(二) 擠壓機基本設備及種類…………………………….…….….…..……14
1. 單軸擠壓機 (Single-screw extruder) …………………………...…16
2. 雙軸擠壓機 (Twin-screw extruder) ………………………….……17
(三) 擠壓加工對於產品之影響……………………………………………18
(四) 擠壓加工之應用趨勢…………………………………………………18
實驗架構……………………………………………………………………..……..….20
第三章、材料與方法…………………………………………………………….……21
一、材料………………………………………………….…..……………..……21
二、生產全榖物西式米麵條及設備…………………………………….………22
(一) 磨粉試驗…………………………………………………..……..……22
(二) 配粉試驗…………………………………………..…………..………22
(三) 雙軸擠壓機設定……………………………………………....………21
(四) 麵條整形及包裝……………………………………………..……..…23
三、分析方法……………………………………………………..…...…………23
(一) 一般成分分析……………………………………………….…………23
1. 水分含量測定………………………………………………………23
2. 粗蛋白含量測定……………………………………………………23
3. 粗脂肪含量測定……………………………….….……..…………23
4. 灰分測定…………………………………………….…...…………24
5. 膳食纖維含量測定…………………………………………………24
(二) 總澱粉含量測定………………………………………….……………24
(三) 直鏈澱粉粉含量測定……………………………………….…………25
(四) 粒徑分析……………………………………………….………………25
(五) 破損澱粉含量測定……………………………………..………..……26
(六) 糊液黏度性質分析……………………………………………………27
(七) 色澤測定……………………………………….……………...………27
(八) 水活性測定…………………………………………………....………27
(九) 麵條直徑測定………………………………..……………………..…27
(十) 煮麵試驗分析…………………………………………………………28
(十一) 熟麵質地測定…………………………..……………………..……28
(十二) 熱性質分析…………………………………………..……..………29
(十三) 體外消化試驗……………………………………………....………29
(十四) 推算升糖指數及升糖負荷………………………..……..…………30
(十五) 鈉含量測定……………………………………………..………..…31
(十六) 總酚萃取及含量測定………………………………..……..………31
(十七) DPPH 自由基清除能力……………………………..………...……31
(十八) 添加苦蕎之麵條的蘆丁含量……………………...…………….…32
(十九) 脂溶性抗氧化物質………………………………………..……..…32
(二十) 統計分析……………………………………………………..…..…33
第四章、結果與討論……………………………………………………..……………34
一、原料規格及擠壓機設定……………………………………………………..……34
(一) 原料粉之一般成分分析………………………………………...……..34
(二) 原料粉之規格………………………………………….….……...……36
(三) 配粉試驗………………………………………………………….……38
(四) 擠壓機之操作設定………………………………………..……...……40
二、全榖麵(糙米) ………………………………………………………….….…41
(一) 實際擠壓條件及新鮮麵條水分含量………………………………… 41
(二) 新鮮麵條之外觀色澤………………………………………..…...……41
(三) 新鮮麵條之水活性……………………………………..………..……44
(四) 新鮮麵條之烹煮品質………………………………..…………..……45
1. 煮麵時間………………………………………………..……..……45
2. 煮麵損失率…………………………………………..………..……45
3. 麵條膨潤力及水分含量……………………………..………..……46
(五) 新鮮熟麵條之質地……………………………………..…………..…47
1. 麵條直徑………………………………………..……………..……47
2. 最大截切力………………………………………..…………..……48
3. 表面黏度……………………………………………………..…..…48
(六) 新鮮麵條之糊液黏度性質……………………………..…………..…50
三、多榖麵(糙米-苦蕎) …………………………………………..………..……52
(一) 實際擠壓條件及新鮮麵條水分含量…………………………………52
(二) 新鮮麵條之外觀色澤……………………………………..………..…52
(三) 新鮮麵條之水活性……………………………………………..…..…55
(四) 新鮮麵條之烹煮品質………………………………………..……..…56
1. 煮麵時間………………………………………………..………..…56
2. 煮麵損失率…………………………………………..………..……56
3. 麵條膨潤力及水分含量…………………………………..…..……57
(五) 新鮮熟麵條之質地…………………………………………..……..…58
1. 麵條直徑………………………………………….………….…..…58
2. 最大截切力…………………………………………..…………..…58
3. 表面黏度…………………………………………..…………..……59
(六) 新鮮麵條之糊液黏度性質……………………………………..…..…61
四、榖豆麵(糙米-黃豆) …………………………………………………………63
(一) 實際擠壓條件及新鮮麵條水分含量……………………..………..…63
(二) 新鮮麵條之外觀色澤……………………………………..……..……63
(三) 新鮮麵條之水活性……………………………………..…………..…66
(四) 新鮮麵條之烹煮品質…………………………………………………67
1. 煮麵時間………………………………………………..……….…67
2. 煮麵損失率……………………………………………………...…67
3. 麵條膨潤力及水分含量………………………………..……….…68
(五) 新鮮熟麵條之質地……………………………………………..….…69
1. 麵條直徑………………………………………………….….….…69
2. 最大截切力…………………………………………….….…….…69
3. 表面黏度……………………………………………….…….….…70
(六) 新鮮麵條之糊液黏度性質………………………………….……..…71
五、全榖物西式米麵條之營養及機能性成分分析……………………………73
(一) 良好擠壓條件之麵條分析樣品……………………………..……..…73
(二) 膳食纖維……………………………………………………..…..……76
(三) 抗解澱粉………………………………………………..…………..…75
(四) 推估升糖指數及升糖負荷………………………………..………..…79
(五) 總酚含量及DPPH自由基清除能力....………………………..….…82
(六) 生物活性成分……………………………………………..………..…84
1. 維生素E及米糠醇………………………………………..…….…84
2. 多榖麵(糙米-苦蕎)之蘆丁含量…………………………..……..…86
(七) 營養標示………………………………………………………………87
第五章、結論…………………………………………………………….……………88
第六章、參考文獻…………………………………………………………….………89
dc.language.isozh-TW
dc.title無麩質全榖物西式米麵條之研發zh_TW
dc.titleDevelopment of gluten-free whole grain pasta-like rice productsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張永和,呂廷璋,紹貽沅
dc.subject.keyword全穀物,無麩質,新穎西式米麵條,zh_TW
dc.subject.keywordWhole grain,Gluten-free,Pasta-like rice product,en
dc.relation.page98
dc.rights.note未授權
dc.date.accepted2014-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved