請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18412完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉開溫 | |
| dc.contributor.author | Chih-Wei Kao | en |
| dc.contributor.author | 高志維 | zh_TW |
| dc.date.accessioned | 2021-06-08T01:03:56Z | - |
| dc.date.copyright | 2014-09-03 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-25 | |
| dc.identifier.citation | Abel, S. and Theologis, A. (1996). Early genes and auxin action. Plant Physiol. 111: 9-17.
Bailey-Serres, J. and Mittler, R. (2006). The roles of reactive oxygen species in plant cells. Plant Physiol. 141: 311. Baltruschat, H., Fodor, J., Harrach, B.D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A., Kogel, K.H., Schafer, P., Schwarczinger, I., Zuccaro, A., and Skoczowski, A. (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol. 180: 501-510. Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B., and Feldmann, K.A. (1996). Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948-950. Butehorn, B., Rhody, D., and Franken, P. (2000). Isolation and characterisation of Pitef1 encoding the translation elongation factor EF-1α of the root endophyte Piriformospora indica. Plant Bio. 2: 687-692. Cleland, R. (1973). Auxin-induced hydrogen ion excretion excretion from Avena coleoptiles. 70: 3092-3093. Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005a). The F-box protein TIR1 is an auxin receptor. Nature 435: 441-445. Dharmasiri, N., Dharmasiri, S., Weijers, D., Lechner, E., Yamada, M., Hobbie, L., Ehrismann, J.S., Jurgens, G., and Estelle, M. (2005b). Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9: 109-119. Dong, S., Tian, Z., Chen, P.J., Senthil, Kumar. R., Shen, C.H., Cai, D., Oelmullar, R., and Yeh, K.W. (2009). The maturation zone is an important target of Piriformospora indica in Chinese cabbage roots. J Exp Bot. 14:4529-40. Dreher, K.A., Brown, J., Saw, R.E., and Callis, J. (2006). The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell 18: 699-714. Druege, U., Baltruschat, H., and Franken, P. (2007). Piriformospora indica promotes adventitious root formation in cuttings. Sci. Hortic. 112: 422-426. Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., and Palme, K. (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226-2230. Guilfoyle, T.J. and Hagen, G. (2007). Auxin response factors. Curr. Opin. Plant Biol. 10: 453-460. Hardtke, C.S., Ckurshumova, W., Vidaurre, D.P., Singh, S.A., Stamatiou, G., Tiwari, S.B., Hagen, G., Guilfoyle, T.J., and Berleth, T. (2004). Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131: 1089-1100. Kepinski, S. and Leyser, O. (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446-451. Kim, J., Harter, K., and Theologis, A. (1997). Protein-protein interactions among the Aux/IAA proteins. Proc. Natl. Acad. Sci. USA 94: 11786-11791. Kumar, M., Yadav, V., Tuteja, N., and Johri, A.K. (2009). Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155: 780-790. Lee, Y.C., Johnson, J.M., Chien, C.T., Sun, C., Cai, D., Lou, B., Oelmuller, R., and Yeh, K.W. (2011). Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant Microbe Interact. 24: 421-31. Leyser, H.M.O., Lincoln, C.A., Timpte, C., Lammer, D., Turner, J., and Estelle, M. (1993). Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364: 161-164. Ljung, K., Hull, A.K., Celenza, J., Yamada, M., Estelle, M., Normanly, J., and Sandberg, G. (2005). Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell. 17: 1090-1104. Marchant, A., Bhalerao, R., Casimiro, I., Eklof, J., Casero, P.J., Bennett, M., and Sandberg, G. (2002). AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14: 589-597. Mockaitis, K. and Estelle, M. (2008). Auxin receptors and plant development: a new signaling paradigm. Annu. Rev. Cell Dev. Biol. 24: 55-80. Noctor, G. and Foyer, C.H. (1998). ASCORBATE AND GLUTATHIONE: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol. 49:249-279. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G.,and Foyer, C.H. (2012). Glutathione in plants: an integrated overview. Plant Cell Environ. 35:454-84. Ogawa, K., Tasaka, Y., Mino, M., Tanaka, Y., and Iwabuchi, M. (2001). Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiol. 42:524-30. Peskan-Berghofer, T., Shahollari, B., Giong, P. H., Hehl, S., Markert, C., Blanke, V., Kost, G., Varma, A., and Oelmuller, R. (2004). Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol. Plant. 122: 465-477. Pickett, F.B., Wilson, A.K., and Estelle, M. (1990). The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol. 94: 1462-1466. Qiang, X., Zechmann, B., Reitz, M.U., Kogel, K.H., and Schafer, P. (2012). The mutualistic fungus Piriformospora indica colonizes Arabidopsis roots by inducing an endoplasmic reticulum stress-triggered caspase-dependent cell death. Plant cell 24:794-809 Rai, M., Acharya, D., Singh, A., and Varma, A. (2001). Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11: 123-128. Rai, M. and Varma, A. (2005). Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees. Electron. J. Bio. 8: 107-110. Rayle, D.L. and Cleland, R. (1970). Enhancement of wall loosening and elongation by acid solutions. Plant Physiol. 46: 250-253. Raven, J.A. (1975). Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol. 74: 163-172. Rouse, D., Mackay, P., Stirnberg, P., Estelle, M., and Leyser, O. (1998). Changes in auxin response from mutations in an AUX/IAA gene. Science 279: 1371-1373. Rubery, P.H. and Sheldrake, A.R. (1974). Carrier-mediated auxin transport. Planta 118: 101-121. Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J., and Estelle, M. (1998). The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev. 12: 198-207. Sahay, N.S. and Varma, A. (1999). Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS. Microbiol. Lett. 181: 297-302. Schafer, P., Pfiffi, S., Voll, L.M., Zajic, D., Chandler, P.M., Waller, F., Scholz, U., Pons-Kuhnemann, J., Sonnewald, S., Sonnewald, U., and Kogel, K.H. (2009). Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J. 8: 107-110. Shahollari, B., Varma, A., and Oelmuller, R. (2005). Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J. Plant Physiol. 162: 945-958. Shahollari, B., Vadassery, J., Varma, A., and Oelmuller, R. (2007). A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J. 50: 1-13. Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A., and Oelmuller, R. (2005). The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J. Biol. Chem. 280: 26241-26247. Sherameti, I., Tripathi, S., Varma, A., and Oelmuller, R. (2008). The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol. Plant Microbe Interact. 21: 799-807. Sherameti, I., Venus, Y., Drzewiecki, C., Tripathi, S., Dan, V.M., Nitz, I., Varma, A., Grundler, F.M., and Oelmuller, R. (2008). PYK10, a β-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J. 54: 428-439. Sirrenberg, A., Gobel, C., Grond, S., Czempinski, N., Ratzinger, A., Karlovsky, P., Santos, P., Feussner, I., and Pawlowski, K. (2007). Piriformospora indica affects plant growth by auxin production. Physiol. Plant. 131: 581-589. Ulmasov, T., Hagen, G., and Guilfoyle, T.J. (1997). ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865-1868. Vadassery, J., Tripathi, S., Prasad, R., Varma, A., and Oelmuller, R. (2009). Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J. Plant Physiol. 162: 945-958. Vanneste, S. and Friml, J. (2009). Auxin: a trigger for change in plant development. Cell. 136: 1005-1016. Verma, S., Varma, A., Rexer, K.H., Hassel, A., Kost, G., Sarbhoy, A., Bisen, P., Butehorn, B., and Franken, P. (1998). Piriformospora indica, gen.et sp.nov., a new root-colonizing fungus. Mycologia 90: 895-909. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., Wettstein, D., Franken, P., and Kogel, K.H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA 102: 13386-13391. Yang, Y., Hammes, U.Z., Taylor, C.G., Schachtman, D.P., and Nielsen, E. (2006). High-affinity auxin transport by the AUX1 influx carrier protein. Curr.Biol. 16: 1123-1127. Ye W., Shen, C.H., Lin, Y., Chen, P.J., Xu, X., Oelmuller, R., Yeh, K.W., and Lai, Z. (2014). Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica. PLoS One. 9:e84920. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18412 | - |
| dc.description.abstract | 印度梨型孢真菌 ( Piriformospora indica, P. indica ) 是一種新的根部內共生性真菌 ( root endophyte fungus ),屬於擔子菌門 ( Basidiomycoya )、蕈菌綱 ( Hymenomycetes )、梨型孢屬的真菌。已知對植物的生長發育有促進的作用,可以增加植物生物量 ( biomass ),也可以幫助宿主植物對抗逆境、增加抗氧化能力以及對病原菌具有抗性。本實驗以小白菜 ( Brassica campestris subsp. chinensis L. ) 作為與P. indica 共生的實驗植物,將其栽種於土壤中,P. indica可促進宿主小白菜根部的生長發育,藉使其地上部葉片與生物量皆大於未與P. indica共生之小白菜,除了促進小白菜生長,P. indica也可藉由還原態glutathione ( GSH ) 的提升來幫助小白菜對抗鹽、乾旱以及熱逆境。先前的研究已知P. indica對小白菜的生長促進作用是經由加強生長素 ( auxin ) 生合成與運輸、細胞膜轉運及根毛生長等各類型基因之表現而達成,本論文想進一步驗證這些基因在生長促進的功能,因此從先前所建立的扣減式cDNA基因庫中,選取促進生長相關之基因,如:AUX1、EXPA17、GSTU、PIN3、RHD4和V-ATPase,進行個別轉植於阿拉伯芥中,大量表現並分析阿拉伯芥之生理及型態變化。結果顯示,這些基因轉殖株分別顯現glutathione含量提升,促進植物的根部生長、根系密集或其地上部葉片生長旺盛,其中35S::BcGSTU 轉殖株亦可幫助植物提升對鹽和乾旱的耐受性。綜合結果,我們證明P. indica 促進小白菜誘導生長相關基因之表現後可促進小白菜生長,提升GSH的含量,並且藉由降低因為逆境而產生的H2O2累積來抵抗逆境,保護植物。 | zh_TW |
| dc.description.abstract | Piriformospora indica (P. indica) is a new root endophytic fungus belonging to the Hymenomycetes of the Basidiomycota. P. indica interacts with the roots of various mono- and dicotyledonous plants, showing the positive effect on biomass production. In addition to this growth promoting effect, P. indica also has the potential to induce resistance to fungal disease and to increase the antioxidative activities of plants. After the colonization of P. indica, plant becomes more tolerance to salt and drought. In this study, we used Chinese cabbage (Brassica campestris subsp. chinensis L.) for colonization with P. indica. After colonization for 7 days, six genes expression level of glutathione-S-transferase parC (BcGSTU), aux resistant 1 (BcAUX1) , efflux carrier, (BcPIN3), V-type proton ATPase (BcV-ATPase), expansin A17 (BcEXPA17),and root hair defective 4 (BcRHD4) were up-regulated and we have constructed above genes in pCAMBIA1300-35S-nos vector and tend to investigate gene function of the overexpressing cabbages. In glutathione assay, we found out the concentration of glutathione increased especially in leaves when Chinese cabbage colonized with P. indica. According to this result, we studied the tolerance Chinese cabbage colonized with P. indica under different stress. The results show that Chinese cabbage colonized with P. indica reduced the concentration of hydrogen peroxidase under NaCl stress indicated P. indica could enhance the salt tolerance of Chinese cabbage. We overexpressed these six gene in Arabidopsis and found out these gene could up-regulate the glutathione content and promote the growth of laterial roots, root length, and biomass. 35S::BcRHD4 could promote root hiars and 35S::BcGSTU could against the salt stress and drought sress. We figured out that glutathione play a role in plant growth and tolerance by P. indica colonized with Chinese cabbage. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T01:03:56Z (GMT). No. of bitstreams: 1 ntu-103-R00b42026-1.pdf: 2592142 bytes, checksum: 46bebabd7e47ab5c2d15388d187179d2 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書 i 致謝 ii 目錄 iii 圖表目錄 v 附錄目錄 vi 中文摘要 vii 英文摘要 viii 第一章 前言 9 第一節 印度梨型孢真菌簡介 9 第二節 植物生長相關訊息傳遞與運輸 10 第三節 本論文研究目的 14 第二章 材料與方法 15 第一節:實驗材料 15 第二節:P. indica與小白菜之共生 15 2.1 小白菜無菌栽培 15 2.2 印度梨型孢真菌 ( P. indica ) 繼代培養 16 2.3 印度梨型孢真菌 ( P. indica ) 與小白菜共生 16 2.4 印度梨型孢真菌 ( P. indica ) 與小白菜共生之土壤栽培 17 第三節:基因表現量測定 17 3.1 抽取總體 RNA 17 3.2 RNA電泳 18 3.3 合成cDNA 19 3.4 以反轉錄聚合酶連鎖反應 (RT-PCR) 鑑定基因表現量 20 3.5 以即時聚合酶連鎖反應 (Real time PCR,qPCR) 鑑定目標基因表現量 21 第四節:載體構築及其他基本分生技術 21 4.1 質體抽取 21 4.2 製備欲構築的基因片段 22 4.3 TAE Agarose膠純化(gel elution) 23 4.4 TA cloning 23 4.5限制酶切割反應 24 4.6 接合反應 (Ligation) 24 4.7大腸桿菌的轉形與鑑定 25 4.6農桿菌的轉型與鑑定 26 第五節:基因全長釣取及啟動子釣取 27 第六節:阿拉伯芥種植、轉殖及處理 33 6.1 阿拉伯芥無菌播種 33 6.2 阿拉伯芥農桿菌轉殖 34 6.3 轉基因阿拉伯芥檢測 35 第三章 結果 37 第一節:小白菜與P. indica共生後的生長促進情形 37 第二節:小白菜與P. indica共生後對逆境之反應 37 第三節:P. indica促進小白菜生長之基因表現量分析 38 第四節:植物基因轉殖 39 第五節:阿拉伯芥轉殖株的觀察 39 第六節:阿拉伯芥轉殖株在逆境下的生長情形 40 第四章 討論 41 參考文獻 44 圖表 54 附錄 70 | |
| dc.language.iso | zh-TW | |
| dc.title | 印度梨型孢真菌促進小白菜生長相關基因之功能性探討 | zh_TW |
| dc.title | Functional characterization of selective genes responsible for growth promotion in Chinese cabbage (Brassica campestris subsp. Chinensis L.) colonized by
Piriformospora indica | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝旭亮,張孟基,王恆隆,林玉玲 | |
| dc.subject.keyword | 印度梨型孢真菌,小白菜,生長基因, | zh_TW |
| dc.subject.keyword | Piriformospora indica,Chinese cabbage,growth promotion, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-08-25 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
