請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18410
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 方煒(Wei Fang) | |
dc.contributor.author | Zong-Han Yang | en |
dc.contributor.author | 楊宗翰 | zh_TW |
dc.date.accessioned | 2021-06-08T01:03:50Z | - |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-12 | |
dc.identifier.citation | 1. 方煒。2001。自動化植物工廠。出自〝設施栽培自動化專輯〞,103-111。林達德、李桂芝主編。台北:國立台灣大學生物產業機電工程學系。 2. 方煒。2011。完全控制型植物工廠。初版,20-45。台北:豐年社。 3. 方煒。2011。太陽光型植物工廠-永續性的先進植物工廠。初版,28-36。台北:豐年社。 4. 方煒。2012。人工光型植物工廠。初版,51-59。台北:豐年社。 5. 方煒。2012。臺灣植物工廠發展現況與展望。精密設施工程與植物工場實用化技術研討會。16-23。台南:台南區農業改良場。 6. 方煒。2014。泛用型水耕栽培床架。中華民國發明專利第 M489475 號。 7. 呂秀英。2011。正確使用統計圖表呈現處理間比較。台灣農業研究 60(1):61-71。 8. 沈再發。2009。培養液組成之理論和實際(上)。農業試驗所技術服務。20(2):26-30。 9. 沈再發。2009。培養液組成之理論和實際(中)。農業試驗所技術服務。20(3):37-41。 10. 沈再發。2009。培養液組成之理論和實際(下)。農業試驗所技術服務。20(4):37-42。 11. 林佳妮、劉景平。2009。紅光處理對茶樹兒茶素及葉綠素含量之影響。嘉大農林學報6(2):34-51。 12. 林郁馨、楊純明。2011。利用光週期調節花卉之開花期。農業試驗所技術服務 87:31-34。 13. 韋友歡、黃秋嬋、王慧珏、潘紅。2010。陰生植物與陽生植物色素含量的比較分析。湖北農業科學。49(5):1126-1129。 14. 倪紀恒、陳學妤、陳春宏、徐強。2009。補充不同光質對溫室黃瓜生長發育、光合和前期產量的影響。中國農業科學 42(7):2615-2623。 15. 孫令強、李召虎、段留生、魏志剛、王倩。2006。UV-B輻射對黃瓜幼苗生長和光合作用的影響。華北農學報 21(6):79-82。 16. 陳品如。2012。植物工廠之菠菜水耕研究。碩士論文。台北:國立台灣大學園藝學研究所。 17. 曹幸之、羅筱鳳。2001。蔬菜II。三版,78-80。台南:復文書局。 18. 黃煒哲。2019。植物工廠內仿生栽培之研究—陽光與靜電場。碩士論文。台北:台灣大學生物產業機電工程學研究所。 19. 楊暉、焦光聯、馮虎元、安黎哲、王勛陵。2004。紫外-B輻射對番茄幼苗生長、POD和IAA氧化酶活性的影響。西北植物學報24(5):826-830。 20. 葉忠晏。2018。光質與光週期對植物工廠內’美和’菠菜生育之影響。碩士論文。台北:台灣大學生物產業機電工程學研究所。 21. 趙玉萍、鄒志榮、白鵬威、任雷、李鵬飛。2010。不同溫度對溫室番茄生長發育及產量的影響。西北農業學報。19(2):133-137。 22. 蔡尚光。1991。植物工場。初版。106-118。台北:淑馨出版社。 23. 蔣德安。2018。植物生理學。初版,395-404。台北:五南圖書出版。 24. 魏夢麗、呂秀英。1999。決定係數(R2)在迴歸分析中的解釋及正確使用。科學農業 47(11,12): 341-345。 25. 薛聰賢。2000。台灣蔬果實用百科1。初版,24-25。台北:農學社。 26. 鍾興穎。2019。植物工廠中調整光質與養液配方生產高附加價值芽菜與萵苣。博士論文。台北:台灣大學生物產業機電工程學研究所。 27. Borthwick, H. A., S. B. Hendricks, M. W. Parker, E. H. Toole, and Vivian K. Toole. 1952. A Reversible Photoreaction Controlling Seed Germination. Proceedings of the National Academy of Sciences of the United States of America. 38(8):662–666. 28. Brown, C. S., A. C. Schuerger, and J. C. Sager. 1995. Growth and Photomorphogenesis of Pepper Plants under Red Light-emitting Diodes with Supplemental Blue or Far-red Lighting. American Society for Horticultural Science. 120(5):808-813. 29. Chia, P. L. and C. Kubota. 2010. End-of-day Far-red Light Quality and Dose Requirements for Tomato Rootstock Hypocotyl Elongation. American Society for Horticulture Science. 45(10):1501-1506. 30. Chun, C., T. Kozai, C. Kubota, and K. Okabe. 2000. Manipulation of Bolting and Flowering in Spinach (Spinacia oleracea L.) Transplant Production System Using Artificial Light. ISHS Acta Horticulture. 515:201-206. 31. Chun, C., W. Ayumi, H.H. Kim, T. Kozai, and J. Fuse. 2000. Bolting and Growth of Spinacia oleracea L. Can be Altered by Modifying the Photoperiod during Transplant Production. American Society for Horticultural Science. 35(4):624-626. 32. Chung, H.Y., M. Y. Chang, C. C. Wu, and W. Fang. 2018. Quantitative Evaluation of Electric Light Recipes for Red Leaf Lettuce Cultivation in Plant Factories. HortTechnology. 28. 755-763. 33. Craig, D.S. and E.S. Runkle. 2012. Using LEDs to Quantify the Effect of the Red to Far-Red Ratio og Night-Interruption Lighting on Flowering pf Photoperiodic Crops. ISHS Acta Horticulture. 956:179-185. 34. European Commission. 2011. Commission Regulation (EU) No 1258/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for nitrates in foodstuffs Text with EEA relevance. Official Journal of European Union. OJ L 320, 3.12.2011. 15–17. 35. Fang, W. 2019. Total Performance Evaluation in Plant Factory With Artificial Lighting. In “Plant Factory Using Artificial Light”, Masakazu Anpo, Hirokazu Fukuda, Teruo Wada, 155-165. Elsevier. 36. Garner, W.W. and H. A. Allard. 1920. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Monthly Weather Review. 48(7):415. 37. Giri, A., B. Armstrong, and C. B. Rajashekar. 2016. Elevated Carbon Dioxide Level Suppresses Nutritional Quality of Lettuce and Spinach. American Journal of Plant Sciences, 7:246-258. 38. Goto, E. 2012. Plant production in a closed plant factory with artificial lighting. ISHS Acta horticulturae 956:37-49. 39. Ito, A., H. Shimizu, R. Hiroki, H. Nakashima, J. Miyasaka, and K. Ohdoi. 2014. Effect of different durations of root area chilling on the nutritional quality of spinach. IFAC Proceedings Volumes. 47(3):4406-4410. 40. Jung, J.H., M. Domijan, C. Klose, S. Biswas, D. Ezer, M. Gao, A. K. Khattak, M. S. Box, V. Charoensawan, S. Cortijo, M. Kumar, A. Grant, J. C. W. Locke, E. Schäfer, K. E. Jaeger, and P. A. Wigge. 2016. Phytochromes function as thermosensors in Arabidopsis. Science 354(6314):886-889. 41. Kalaitzoglou, P., W. van Leperen, J. Harbinson, M. van der Meer, S. Martinakos, K. Weerheim, C. C. S. Nicole, and L. F. M. Marcelis. 2019. Effects of Continuous or End-of-Day Far-Red Light on Tomato Plant Growth, Morphology, Light Absorption, and Fruit Production. Frontiers in Plant Science. 10:322. 42. Kim, H. H., G. D. Goins, R. M. Wheeler, and J.C. Sager. 2004. Green-light Supplementation for Enhanced Lettuce Growth under Red- and Blue-light-emitting Diodes. HortScience. 39(7):1617-1622. 43. Kim, Y.J, H. J. Lee, and K. S. Kim. 2011. Night interruption promotes vegetative growth and flowering of Cymbidium. Scientia Horticulturae. 130(4):887-893. 44. Kinoshita, T., M. Doi, N. Suetsugu, T. Kagawa, M.Wada, and K.I. Shimazaki. 2001. phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414. 656–660. 45. Kozai, T., K. Ohyama, and C. Chun. 2006. Commercialized closed systems with artificial lighting for plant production. ISHS Acta horticulture. 711:61-70. 46. Kozai, T., K. Fujiwara., and E. S. Runkle. 2016. Led Lighting for Urban Agriculture. 1st ed. Springer Singapore, Singapore. 47. Lee, M. J., S.Y. Park, and M. M. Oh. 2015. Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting diodes. Horticulture, Environment, and Biotechnology. 56:186-194. 48. Lefsrud, M. G., D. A. Kopsell, D. E. Kopsell, and J. C. Celentano. 2005. Air Temperature Affects Biomass and Carotenoid Pigment Accumulation in Kale and Spinach Grown in a Controlled Environment. American Society for Horticultural Science. 40(7):2026-2030. 49. Legris, M., C. Nieto, R. Sellaro, S. Prat, and J. J. Casal. 2017. Perception and signalling of light and temperature cues in plants. The Plant Journal 90:683-697. 50. Li, J., S. Hikosaka, and E. Goto. 2011. Effects of Light Quality and Photosynthetic Photon Flux on Growth and Carotenoid Pigments in Spinach (Spinacia oleracea L.). ISHS Acta horticulture. 907:105-110. 51. Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany. 67(1):59-64. 52. Matsuda, R., K. O. Kaneko, K. Fujiwara, and K. Kurata. 2007. Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Science and Plant Nutrition. 53(4):459-465. 53. Matsuda, R., N. Ozawa, and K. Fujiwara. 2014. Leaf photosynthesis, plant growth, and carbohydrate accumulation of tomato under different photoperiods and diurnal temperature differences. Scientia Horticulturae. 170:150-158. 54. Nicole, C.C.S., F. Charalambous, S. Martinakos, S. van de Voort, Z. Li, M. Verhoog, and M. Krijn. 2016. Lettuce growth and quality optimization in a plant factory. ISHS Acta Horticulture. 1134:231-238. 55. Nishimura, T., S. M. A. Zobayed, T.Kozai, and E. Goto. 2007. Medicinally Important Secondary Metabolites and Growth of Hypericum perforatum L. Plants as Affected by Light Quality and Intensity. Environmental Control in Biology. 45(2):113-120. 56. Nxawe, S., C. P. Laubscher, and P. A. Ndakidemi. 2009. Effect of regulated irrigation water temperature on hydroponics production of Spinach (Spinacia oleracea L.). African Journal of Agricultural Research 4(12):1442-1446. 57. Proietti, S., S. Moscatello, G. Colla, and Y. Battistelli. 2004. The effect of growing spinach (Spinacia oleracea L.) at two light intensities on the amounts of oxalate, ascorbate and nitrate in their leaves. The Journal of Horticultural Science and Biotechnology 79(4): 606-609. 58. Proietti, S., S. Moscatello, G. A. Giacomelli, and A. Battistelli. 2013. Influence of the interaction between light intensity and CO2 concentration on productivity and quality of spinach (Spinacia oleracea L.) grown in fully controlled environment. Advance in Space Research. 52(6):1193-1200. 59. Sager, J.C., W. O. Smith, J. L. Edwards, and K. L. Cyr. 1988. Photosynthetic Efficiency and Phytochrome Photoequilibria Determination Using Spectral Data. American Society of Agricultural and Biological Engineers Transactions of the ASAE. 31 (6):1882-1889. 60. Taiz, L. and E. Zeiger. 2010. Plant physiology. Fifth edtion, 493-515. Sunderland Massachusetts U.S.A :Sinauer Associates Inc. 61. Zou, T., C. Huang, P. Wu, L. Ge, and Y. Xu. 2020. Optimization of Artificial Light for Spinach Growth in Plant Factory Based on Orthogonal Test. Plants. 9(4):490. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18410 | - |
dc.description.abstract | 本研究旨在探討光敏素光穩態平衡 (Photostationary Equilibrium) 與抑制長日植物 (以菠菜為例) 開花的相關性,於明期與暗期分別以冷白 (Cool White, CW) 與遠紅光 (Far-Red, FR) LED 為光源,於全人工光型植物工廠內栽培美和菠菜,目標在維持較長明期以確保產量之同時仍能抑制菠菜開花。 實驗分四個主題進行探討:1. 補充遠紅光之時機,2. 補充遠紅光之總量、強度與均勻度,3. 明期之極限,4. 溫度等對菠菜生長與開花的影響。實驗共 21 個處理組,計算各處理組的光敏素光穩態平衡指標 (PhotoStationary State, PSS),並量測開花率,結果發現兩者相關性很低,進而加入暗期時間與溫度的影響來修正 PSS 模式,最終建立考慮全光譜 (T-PSS) 與只考慮紅光與遠紅光波段的日累積光量 (D-PSS) 兩種修正 PSS 模式,建立其與開花率的相關性,R2 值由 PSS 模式的 0.2 進步到 T-PSS 的 0.92 與 D-PSS 的 0.91。 本研究建立的兩種修正 PSS 模式可成功描述明期 (CW) 與暗期補光 (FR) 及暗期的時間長度與溫度對兩型光敏素之間相互轉換的關係,所建立的方法對於探討其他植物的光敏素轉換應具備參考價值。 | zh_TW |
dc.description.abstract | The purpose of this study is to explore the correlation between the photostationary equilibrium of phytochromes and the inhibition of the flowering of long-day plants by using spinach as an example. Cool white (CW) and far-red (FR) LEDs are used as light source to cultivate spinach ‘Meiho’ in plant factory with artificial light. The goal is to maintain a longer light period to ensure the yield and to inhibit the flowering of spinach at the same time. The experiments are divided into four parts: 1. Timing to apply the far-red light. 2. The total amount, intensity and uniformity of supplementing far-red light. 3. The limit of light period 4. Temperature. The effects of the above mentioned four targeting parameters on the growth and flowering of spinach were compared. Totally, there are 21 treatment groups in the experiments. The phytochrome photostationary state (PSS) of each treatment is calculated, and the flowering rate is measured. The result shows that the correlation between the two is quite low. The influence of duration and the temperature during the dark period were considered. As a result, two modified PSS models were established: the 1st one considers 300~800 nm (T-PSS) and the other considers only the red (600~700 nm) and far-red (700~800 nm) light bands (D-PSS). The R2 value of the correlation of specific index of the three models with flowering rate has increased from 0.2 in PSS to 0.92 in T-PSS and 0.91 in D-PSS model. Two modified PSS models developed in this study can successfully demonstrate the impact of the CW light during the light period, FR light, duration and temperature of the dark period on the conversion between the Pr and Pfr. The method developed should be valuable to further explore the conversion of phytochrome of other plants. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T01:03:50Z (GMT). No. of bitstreams: 1 U0001-1208202016243300.pdf: 4574620 bytes, checksum: 95379a6bcf91cc5c97a69b5ee181af21 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章、前言與研究目的 1 1.1 前言 1 1.2 研究目的 2 第二章、文獻探討 3 2.1 植物工廠 3 2.2 影響植物生長與開花的環境因子 6 2.2.1 光質 6 2.2.2 光量 10 2.2.3 光週期 10 2.2.4 光敏素 12 2.2.5 溫度 15 2.3 菠菜 18 第三章、材料與方法 23 3.1 實驗場域與環境控制 23 3.1.1 實驗場域 23 3.1.2 環境控制 25 3.2 水耕資材 27 3.3 栽培作物與養液成分 28 3.3.1 栽培作物 28 3.3.2 養液成分 28 3.4 量測儀器與分析藥品 29 3.4.1 量測儀器 29 3.4.2 分析藥品 29 3.5 量測方法 30 3.5.1 鮮重量測 30 3.5.2 硝酸鹽含量量測 30 3.5.3 光合色素含量量測 30 3.6 電力產能與光子產能 32 3.6.1 電力產能 (Energy Yield, EY) 32 3.6.2 光子產能 (Photon Yield, PY) 33 3.6.3 電力產能與光子產能之延伸指標 34 3.7 研究方法 35 3.7.1 菠菜種子之催芽與育苗 35 3.7.2 補充遠紅光之時機對於菠菜生長與開花影響之探討 36 3.7.3 補充遠紅光的總量、強度與均勻度對菠菜生長與開花影響之探討 40 3.7.4 補充遠紅光可抑制開花之明期極限探討 47 3.7.5 環境溫度對於菠菜生長與開花影響之探討 50 3.7.6 依據光源的光譜建立遠紅光與菠菜開花之間的相關性 53 3.8 統計方法 60 第四章、結果與討論 61 4.1 補充遠紅光之時機對於菠菜生長與開花影響之探討 61 4.2 補充遠紅光的總量、強度、均勻度對於菠菜生長與開花影響之探討 65 4.3 補充遠紅光可抑制開花之明期極限探討 73 4.4 環境溫度對於菠菜生長與開花影響之探討 78 4.5 光穩態平衡模式 (PSS′) 與美和菠菜開花之相關性 86 4.6 含溫度校正的光穩態平衡模式 (T-PSS) 與美和菠菜開花之相關性 89 4.7 含溫度校正的光穩態平衡模式 (T-PSS) 的進階分析 92 4.8 以日累積光量計算之光穩態平衡模式 (D-PSS) 與美和菠菜開花之相關性 93 4.9 遠紅光是否影響明期時數之探討 97 4.10 以 T-PSS 與D-PSS 建立相對開花反應 99 第五章、結論 103 第六章、建議 105 參考文獻 107 | |
dc.language.iso | zh-TW | |
dc.title | 以菠菜開花率修正光穩態平衡模式 | zh_TW |
dc.title | Modified Photostationary Equilibrium Model in Flowering of Spinach | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊雯如(Wen-Ju Yang),陳世芳(Shih-Fang Chen) | |
dc.subject.keyword | 植物工廠,光週期,遠紅光,開花率,光敏素,光穩態平衡, | zh_TW |
dc.subject.keyword | Plant factory,Photoperiod,Far-red,Flowering rate,Phytochrome,Photostationary equilibrium (PSE),Photostationary state (PSS), | en |
dc.relation.page | 113 | |
dc.identifier.doi | 10.6342/NTU202003121 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物機電工程學系 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1208202016243300.pdf 目前未授權公開取用 | 4.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。