Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18347
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳文中(Wu Wen-Jong)
dc.contributor.authorSung-Yuan Yangen
dc.contributor.author楊淞淵zh_TW
dc.date.accessioned2021-06-08T01:00:49Z-
dc.date.copyright2015-02-04
dc.date.issued2014
dc.date.submitted2014-12-04
dc.identifier.citation1. Guerreiro, C., Air Quality Guidelines:Second Edition. 2 ed. 2001, Denmark: WHO Regional Publications.
2. Atkinson, K.K.G., 邁向物聯網大未來──物聯網基礎架構與應用, in EET 電子工程專輯. 2013.
3. Joshi, G.; Nam, S.; Kim, S. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends. Sensors 2013, 13, 11196-11228.
4. Smith, S.S.L.T.K.R., The Indoor Air Pollution and Exposure Database:Household Pollution Levels in Developing Countries 2003, University of California, Berkeley;TheWorld Health Organisation.
5. Sinton, indoor air pollution database for China, 2005, World Health Organization; Office of Global and Integrated Environmental Health.
6. Foltescu, C.G.F.d.L.V., Air quality in Europe — 2013 report. 2013, Denmark: European Environment Agency.
7. Gerlach, T.W.K.P.F.B.C., <Recent Progress in Organic Electronics.pdf>. Chemistry of Materials, 2004. 16(23).
8. White paper:OE-A Roadmap for organic and printed electronics applications, with forecast for the market entry in large volumes (general availability) for the different applications., 2013, Organic and Printed Electronics Association.
9. Roadmap for Organic Electronics, 5th edition.
10. 應用更多元,軟性電子技術開啟產業新商機,電子工程專輯,(2007).
11. 〝協助傳統產業轉型,技轉軟性壓力感測器〞,工業技術與資訊,(2010).
12. 〝協助傳統產業轉型,技轉軟性壓力感測器〞,工業技術與資訊,(2010).
13. 〝軟性電子潛力大,工研院積極推動相關技術發展〞,電子工程專輯,(2006).
14. 〝採低溫低應力製程,工研院發表7吋軟性彩色顯示器〞,電子工程專輯,(2007).
15. 〝工研院多項軟性電子技術為台灣電子產業寒冬送暖〞,電子工程專輯,(2008).
16. R.G. Liteplo, R.B., M.E. Meek, Health Canada, Ottawa, Canada, and and E.C. R. Chenier, Ottawa, Canada, Concise International Chemical Assessment Document 40, 2002, World Health Organization.
17. Agency for Toxic Substances Disease Registry (ATSDR), Toxicological Profile for Formaldehyde (Draft), Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA, 1997.
18. J. Wang, P. Zhang, J.Q. Qi, P.J. Yao, Silicon-based micro-gas sensors for detecting formaldehyde, Sens. Actuators B 136 (2009) 399–404.
19. L. Daza, S. Dassy, B. Delmon, Chemical sensors based on SnO2 and WO3 for the detection of formaldehyde: cooperative effects, Sens. Actuators B 10 (1993)99–105.
20. S. Huang, H. Qin, P. Song, X. Liu, L. Li, R. Zhang, J. Hu, H. Yan, M. Jiang, The formaldehyde sensitivity of LaFe1−xZnxO3-based gas sensor, J. Mater. Sci. 42 (2007) 9973–9977.
21. C.Y. Lee, C.M. Chiang, Y.H. Wang, R.H. Ma, A self-heating gas sensor with integrated NiO thin film for formaldehyde detection, Sens. Actuators B 122 (2007) 503–510.
22. T. Chen, Z. Zhou, Y. Wang, Effects of calcining temperature on the phase structure and the formaldehyde gas sensing properties of CdO-mixed In2O3, Sens.Actuators B 135 (2008) 219–223.
23. Joshi, G.; Nam, S.; Kim, S. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends. Sensors 2013, 13, 11196-11228.
24. Custodio, V.; Herrera, F.; Lopez, G.; Moreno, J. A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems. Sensors 2012, 12, 13907-13946
25. Maximilian Fleischer, Hans Meixner, Siemens AG, Fast gas sensors based on metal oxides which are stable at high temperatures, Sensors and Actuators B: Chemical, Volume 43, Issues 1-3, September 1997, Pages 1-10.
26. S.S. Joshi, C.D. Lokhande, S.H. Han, A room temperature liquefied petroleum gas sensor based on all-electrodeposited n-CdSe/p-polyaniline junction, Sensors and Actuators B: Chemical, Volume 123, Issue 1, 10 April 2007, Pages 240-245.
27. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.Electric field effect in atomically thin carbon films. Science 2004, 306(5696), 666-669.
28. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.Electric field effect in atomically thin carbon films. Science 2004, 306(5696), 666-669.29.Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat Mater 2007, 6(3), 183-191.
30. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurementof the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321(5887), 385-388.
31. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.;Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008,8(3), 902-907.
32. Das, T.K. and S. Prusty, Graphene-Based Polymer Composites and Their Applications. Polymer-Plastics Technology and Engineering, 2013. 52(4): p. 319-331.
33. Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett. 2008, 8(10),3498-3502.
34. Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H.Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters 2008, 100(20), 206803.
35. Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma,I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters 2008, 8(8), 2277-2282.
36. Pham, V. H.; Cuong, T. V.; Dang, T. T.; Hur, S. H.; Kong,B.-S.; Kim, E. J.; Shin, E. W.; Chung, J. S. Superior conductive polystyrene - chemically converted graphene nanocomposite. J. Mater. Chem. 2011, 21(30).
37. Patil, A. J.; Vickery, J. L.; Scott, T. B.; Mann, S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater. 2009, 21(31), 3159-3164.
38. Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.;Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.;Aksay, I. A.; Prud'homme, R. K.; Brinson, L. C. Functionalized graphene sheets for polymer nanocomposites.Nat. Nanotechnol. 2008, 3(6), 327-331.
39. Zhao, X.; Zhang, Q. H.; Chen, D. J.; Lu, P. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 2010, 43(5), 2357-2363.
40. Yuan, W. and G. Shi, Graphene-based gas sensors. Journal of Materials Chemistry A, 2013. 1(35): p. 10078.
41. J.K. Abraham, B. Philip, A. Witchurch, V.K. Varadan, C. Reddy, A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor, Smart Mater. Struct. 13 (2004) 1045–1049.
42. T. Alizadeh, Chemiresistor sensors array optimization by using the method of coupled statistical techniques and its application as an electronic nose for some organic vapors recognition, Sens. Actuators B 143 (2010) 740–749.
43. V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide, Angew. Chem. Int. Ed. 49 (2010) 1–5.
44. Su, P.-G. and H.-C. Shieh, Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide. Sensors and Actuators B: Chemical, 2014. 190: p. 865-872.
45. Huang, L., et al., Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Research, 2011. 4(7): p. 675-684.
46. Hu, N., et al., Gas sensor based on p-phenylenediamine reduced graphene oxide. Sensors and Actuators B: Chemical, 2012. 163(1): p. 107-114.
47. Zhang, K., W.L. Zhang, and H.J. Choi, Facile fabrication of self-assembled PMMA/graphene oxide composite particles and their electroresponsive properties. Colloid and Polymer Science, 2012. 291(4): p. 955-962.
48. Tripathi, S.N., et al., Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. Journal of Materials Science, 2013. 48(18): p. 6223-6232.
49. Pham, V.H., et al., Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. ACS Appl Mater Interfaces, 2012. 4(5): p. 2630-6.
50. Li, Y.-L., et al., Preparation, thermal stability and electrical properties of PMMA/functionalized graphene oxide nanosheets composites. Materials Chemistry and Physics, 2012. 134(2-3): p. 677-685.
51. Goncalves, G., et al., Graphene oxide modified with PMMA via ATRP as a reinforcement filler. Journal of Materials Chemistry, 2010. 20(44): p. 9927.
52. Mishra, S.K., et al., SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sensors and Actuators B: Chemical, 2014. 199: p. 190-200.
53. Alizadeh, T. and L.H. Soltani, Graphene/poly(methyl methacrylate) chemiresistor sensor for formaldehyde odor sensing. J Hazard Mater, 2013. 248-249: p. 401-6.
54. Abraham, J.K., et al., A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Materials and Structures, 2004. 13(5): p. 1045-1049.
55. Li, Y., H. Wang, and M. Yang, n-Type gas sensing characteristics of chemically modified multi-walled carbon nanotubes and PMMA composite. Sensors and Actuators B: Chemical, 2007. 121(2): p. 496-500.
56. Molla-Abbasi, P., S.R. Ghaffarian, and E. Danesh, Porous carbon nanotube/PMMA conductive composites as a sensitive layer in vapor sensors. Smart Materials and Structures, 2011. 20(10): p. 105012.
57. Alizadeh, T. and F. Rezaloo, A new chemiresistor sensor based on a blend of carbon nanotube, nano-sized molecularly imprinted polymer and poly methyl methacrylate for the selective and sensitive determination of ethanol vapor. Sensors and Actuators B: Chemical, 2013. 176: p. 28-37.
58. What does VOC mean?'. Eurofins.com. Retrieved 2012-07-03.
59. R. HEINRICH-RAMM, M. JAKUBOWSKI, B. HEINZOW,J. MOLIN CHRISTENSEN, E. OLSEN, and O.HERTEL, BIOLOGICAL MONITORING FOR EXPOSURE TO VOLATILE ORGANIC COMPOUNDS (VOCs),Pure Appl. Chem., Vol. 72, No. 3, pp. 385–436, 2000
60. 經濟部標準檢驗局與財團法人中華民國消費者文教基金會共同公布市售「油漆(家用)」購樣檢測結果 ,2011 /08/31
61. 中華民國 101 年 11 月 23 日行政院環境保護署環署空字第 1010106229 號令訂定發布全文共五條,室內空氣品質標準
62. James, D., et al., Chemical Sensors for Electronic Nose Systems. Microchimica Acta, 2004. 149(1-2): p. 1-17.
63. A.W. Wang et al. 'A silicon-based ultrasonic immunoassay for detection of breast cancer antigens,' Solid State Sensors and Actuators Conference, Chicago, USA (1997)
64. Flueckiger, J., F.K. Ko, and K.C. Cheung, Microfabricated formaldehyde gas sensors. Sensors (Basel), 2009. 9(11): p. 9196-215.
65. Corrado Di Natale et al. 'Porphyrins-based opto-electronic nose for volatile compounds detection, ' Sensors and Actuators B 65, 220-226 (2000)
66. Todd A. Dickinson et al. 'A chemical-detecting system based on a cross-reactive optical sensor array, ' Nature 382, 697-700 (1996)
67. Chengxiang Wang et al. 'Metal oxide gas sensors: Sensitivity and influencing factors, ' Sensors 10, 2088–2106 (2010).
68. N. Barsan et al. 'Metal oxide-based gas sensor research: How to?' Sensors and Actuators B 121, 18-35 (2007)
69. M. De Wit et al. 'Chemiresistive sensors of electrically conducting poly(2,5-thienylene vinylene) and copolymers: their responses to nine organic vapours, ' Sensors and Actuators B 50, 164-172 (1998)
70. Adhikari, B. and S. Majumdar, Polymers in sensor applications. Progress in Polymer Science, 2004. 29(7): p. 699-766.
71. ua Bai and Gaoquan Shi, Gas Sensors Based on Conducting Polymers, Sensors 2007, 7, 267-307
72. Wang, Y. and J.T.W. Yeow, A Review of Carbon Nanotubes-Based Gas Sensors. Journal of Sensors, 2009. 2009: p. 1-24.
73. Nicolas-Debarnot, D.; Poncin-Epaillard, F. Polyaniline as a new sensitive layer for gas sensors. Analytica Chimica Acta, Volume 475, Issues 1-2, 3 January 2003, Pages 1-15
74. Ameer, Q.; Adeloju, S.B. Polypyrrole-based electronic noses for environmental and industrial analysis. Sensors and Actuators B: Chemical, Volume 106, Issue 2, 13 May 2005, Pages 541-552
75. MacDiarmid, A.G. 'Synthetic metals': A novel role for organic polymers. Angew. Current Applied Physics, Volume 1, Issues 4-5, November 2001, Pages 269-279
76. Li, B., et al., Inkjet printed chemical sensor array based on polythiophene conductive polymers. Sensors and Actuators B: Chemical, 2007. 123(2): p. 651-660.
77. Mabrook, M.F., C. Pearson, and M.C. Petty, Inkjet-printed polypyrrole thin films for vapour sensing. Sensors and Actuators B: Chemical, 2006. 115(1): p. 547-551.
78. Wang, S., et al., Organic/inorganic hybrid sensors: A review. Sensors and Actuators B: Chemical, 2013. 182: p. 467-481.
79. Crowley, K., et al., Printing polyaniline for sensor applications. Chemical Papers, 2012. 67(8): p. 771-780.
80. Parmar, M., C. Balamurugan, and D.W. Lee, PANI and graphene/PANI nanocomposite films--comparative toluene gas sensing behavior. Sensors (Basel), 2013. 13(12): p. 16611-24.
81. Li, S., <Overview of Odor Detection Instrumentation and the potential for oder detection in air matrices.pdf>. 2009, USA: MITRE Nanosystems Group.
82. Correction Factors, Ionization Energies, And Calibration Characteristics,Technical Note TN-106,RAE Systems Inc
83. 工業污染防治第97期(Jan. 2006)
84. 謝瑞豪,Reconstruct Temporal-Spatial Distribution of Air Toxics in Industrial Areas by Using Open-Path FTIR ,國立台灣大學 職業醫學與工業衛生研究所,中華民國八十九年六月二十七日
85. 謝瑞豪,Reconstruct Temporal-Spatial Distribution of Air Toxics in Industrial Areas by Using Open-Path FTIR ,國立台灣大學 職業醫學與工業衛生研究所,中華民國八十九年六月二十七日
86. Antwi-Boampong, S. and J.J. BelBruno, Detection of formaldehyde vapor using conductive polymer films. Sensors and Actuators B: Chemical, 2013. 182: p. 300-306.
87. Shi, D., et al., Solid organic acid tetrafluorohydroquinone functionalized single-walled carbon nanotube chemiresistive sensors for highly sensitive and selective formaldehyde detection. Sensors and Actuators B: Chemical, 2013. 177: p. 370-375.
88. Xie, H., et al., Multi-wall carbon nanotube gas sensors modified with amino-group to detect low concentration of formaldehyde. Sensors and Actuators B: Chemical, 2012. 168: p. 34-38.
89. Wang, J., et al., An enrichment method to detect low concentration formaldehyde. Sensors and Actuators B: Chemical, 2008. 134(2): p. 1010-1015.
90. Stewart, K.M.E., et al., Doped Polyaniline for the Detection of Formaldehyde. Journal of Macromolecular Science, Part A, 2012. 49(1): p. 1-6.
91. Srinives, S., T. Sarkar, and A. Mulchandani, Primary amine-functionalized polyaniline nanothin film sensor for detecting formaldehyde. Sensors and Actuators B: Chemical, 2014. 194: p. 255-259.
92. Dennison, M.J.; Hall, J.M.; Turner, A.P.F. Direct monitoring of formaldehyde vapour and detection of ethanol vapour using dehydrogenase-based biosensors. Analyst 1996, 121,1769-1773.
93. Achmann, S.; Hammerle, M.; Moos, R. Amperometric enzyme-based gas sensor for formaldehyde: impact of possible interferences. Sensors 2008, 8, 1351-1365.
94. Kataky, R.; Bryce, M.R.; Goldenberg, L.; Hayes, S.; Nowak, A. A biosensor for monitoring formaldehyde using a new lipophilic tetrathiafulvalene-tetracyanoquinodimethane salt and a polyurethane membrane. Talanta 2002, 56, 451-458.
95. Achmann, S.; Hammerle, M.; Moos, R. Amperometric enzyme-based gas sensor for formaldehyde: impact of possible interferences. Sensors 2008, 8, 1351-1365.
96. Korpan, Y.I.; Gonchar, M.V.; Sibirny, A.A.; Martelet, C.; El'skaya, A.V.; Gibson, T.D.;Soldatkin, A.P. Development of highly selective and stable potentiometric sensors for formaldehyde determination. Biosens. Bioelectron. 2000, 15, 77-83.
97. Knake, R.; Jacquinot, P.; Hauser, P.C. Amperometric detection of gaseous formaldehydein the ppb range. Electroanalysis 2001, 13, 631-634.
98. Lv, P.; Tang, Z.A.; Yu, J.; Zhang, F.T.; Wei, G.F.; Huang, Z.X.; Hu, Y. Study on a micro-gas sensor with SnO2-NiO sensitive film for indoor formaldehyde detection. Sens. Actuat. B 2008,132, 74-80.
99. Bai, Z.; Xie, C.; Hu, M.; Zhang, S. Formaldehyde sensor based on Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field. Physica E. 2008, 41, 235-239.
100. Helwig, A.; Muller, G.; Sberveglieri, G.; Eickhoff, M. On the low-temperature response of semiconductor gas sensors. J. Sens. 2009, doi:10.1155/2009/620720.
101. P. Weibring, D. Richter, J.G. Walega, A. Fried, First demonstration of a high performance difference frequency spectrometer on airborne platforms, Opt.Express 15 (2007) 13476–13495.
102. S. Friedfeld, M. Fraser, D. Lancaster, D. Leleux, D. Rehle, F. Tittel, Field intercomparison of a novel optical sensor for formaldehyde quantification, Geophys. Res. Lett. 27 (2000) 2093–2096.
103. Castro-Hurtado, I., G.G. Mandayo, and E. Castano, Conductometric formaldehyde gas sensors. A review: From conventional films to nanostructured materials. Thin Solid Films, 2013. 548: p. 665-676.
104. Stephen P Walch, C.W.B.J., Alessandra Ricca, E.L.O Bakes, On the reaction CH2O+NH3→CH2NH+H2O. Chemical Physics Letters, January 2001. 333(1-2): p. 6-11.
105. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9.
106. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.Electric field effect in atomically thin carbon films. Science 2004, 306(5696), 666-669.
107. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321(5887), 385-388.
108. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.;Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008,8(3), 902-907.
109. Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett. 2008, 8(10),3498-3502.
110. Gupta, P.M.R.K., Graphite, graphene ,and their polymer nanocomposites. 2013: CRC Press Taylor & Francis Group.
111. Kuilla, T., et al., Recent advances in graphene based polymer composites. Progress in Polymer Science, 2010. 35(11): p. 1350-1375.
112. Walt A. de Heer, C.B., Xiaosong Wu, Phillip N. First, Edward H. Conrad, Xuebin Li, Tianbo Li, Michael Sprinkle, Joanna Hass, Marcin L. Sadowski, Marek Potemski,, Epitaxial graphene. Solid State Communications, 2007. 143 (1-2): p. 92-100
113. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc 1958;80:1339.
114. Shin, H.-J., et al., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials, 2009. 19(12): p. 1987-1992.
115. M. J. McAllister, J.L., D. H. Adamson et al., Single Sheet Functionalized Graphene by Oxidation and Thermal expansion of graphite. Chemistry of Materials, 2007. 19(18): p. 4396-4404.
116. Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007. 6(9): p. 652-5.
117. Lu, G., L.E. Ocola, and J. Chen, Reduced graphene oxide for room-temperature gas sensors. Nanotechnology, 2009. 20(44): p. 445502.
118. Li, Z.M.A.Q.J.S., Al-DOPED GRAPHENE FOR ULTRASENSITIVE GAS DETECTION, in CHEMICAL SENSORS –MODELING AND SIMULATION.
119. Stankovich, S., et al., Graphene-based composite materials. Nature, 2006. 442(7100): p. 282-6.
120. Ramanathan, T., et al., Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol, 2008. 3(6): p. 327-31.
121. Anna Kelley, B.S., Ceresa Stewart, David Malorin, Transfer StandardsFor Calibration of Air Monitoring Analyzers for Ozone(Technical AssistanceDocument), U.S.E.P.A.O.o.A.Q.P.a.S.A.Q.A. Division, Editor October 2013, EPA Office of Air Quality Planning and Standards, the Office of Research and Development, the EPA Regional Offices, and the State, Tribal and
Local monitoring organizations.: USA.
122. Breysse, P.N., Gases and Vapors, S.O.P. HEALTH, Editor 2006, The Johns Hopkins University.
123. 駱榮富 , 傅立葉轉換紅外線光譜儀 (FT -IR) 與電性量測分析實驗 .June 02 ,2012
124. 陳力俊 , 掃描式電子顯微鏡 , 科儀產品新知 , 5(2)93(19083
125. R.E. Lee, Scanning Electron Microscopy and X-Ray Microanalysis, PTR Prentice Hall, New Jersey(1993).
126. Li, X., et al., A bottom-up approach to fabricate patterned surfaces with asymmetrical TiO2 microparticles trapped in the holes of honeycomblike polymer film. J Am Chem Soc, 2011. 133(11): p. 3736-9.
127. 林麗娟 , X光繞射原理及其應用 .工業材料 86 期.83年2月,1994.
128. Dresselhaus, M.S., et al., Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett, 2010. 10(3): p. 751-8.
129. Malard, L.M., et al., Raman spectroscopy in graphene. Physics Reports, 2009. 473(5-6): p. 51-87.
130. Roy J. Plunkett Chemical Heritage Foundation. Retrieved 10 September 2006.
131. Fluoropolymer Comparison - Typical Properties www2.dupont.com. Retrieved 10 September 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18347-
dc.description.abstract在物聯網的架構下,藉由底層感知層許多的感測器來感知世界,不同感測器所得到之資訊傳遞到應用層,並在不同應用情境中使人們生活更智慧化。其中在智慧居家、環境監控中,氣體感測器都扮演監控人們空氣汙染及品質的重要工具,空氣污染的來源中有機揮發發性氣體尤其甲醛、苯、甲苯、二甲苯、乙苯等,是生活中常見對於人體有害的氣體,甚至一定含量會導致癌症加速死亡,因此要如何開發出更低成本、低能量功耗但又十分可靠的氣體感測器是十分重要的研究。
本研究利用旋轉塗佈法(Spin Coating)將石墨烯(Graphene)材料混合高分子聚甲基丙烯酸甲酯(PMMA,分子量15,000)的溶液沉積在金電極之間通道。在分散劑四氫呋喃(THF)裡,石墨烯與PMMA透過正負電吸引自組裝成導電複合材料,我們也將此複合材料與單純石墨烯相比較兩者對於甲醛氣體感測性質,調配出來的複合材料與甲醛氣體濃度約10ppm~600ppm時,有著電阻變化率 0.5%~30%。所開發的電阻式感測元件都是在室溫環境下操作,而且由不同比例之石墨烯複合材料所組成,感測材料被拿來與其他有機揮發性氣體甲醇、乙醇、丙酮、 苯、甲苯、鄰二甲苯氣體和常見有害氣體一氧化碳、二氧化碳、一氧化氮、及水反應檢測專一特性,實驗結果顯示感測元件對於甲醛氣體有最大的電阻變化率。
除了專一性外,本研究也測試了感測元件之靈敏性、重複性、穩定性、持久性,最後我們也利用貴重儀器掃描式電子顯微鏡、X光繞射儀、紅外線光譜儀、拉曼光譜儀來分析材料性質,並藉由比較材料感測甲醛氣體前後之間差異來推論感測材料與甲醛氣體可能的感測機制。
zh_TW
dc.description.abstractIn bottom layer of Internet of Things(M2M) , there would be a lot of sensors to detect our environment in several applications such as smart home and air monitoring . Air pollution influences human health and can cause a number of diseases.The one of major air pollutiants is volatile organic compounds (VOCs) especially in BTEX and formaldehyde can cause cancer to human beings .Therefore, developing a low cost,low power consumption and reliable gas sensor is very important for sensing technology.
In this work ,we demonstrated graphene material blended with Poly(methyl methacrylate,PMMA,M=15,000) composite inks deposited between gold electrode by spin coating method .The deposited graphene composite films with different mixture concentration are sensing materials for VOCs chemiresister gas sensors in room temperature.The sensor response to several VOCs gas including methanol ,ethanol ,
acetone , benzene ,toluene , o-xylene, formaldehyde and water vapor are investigated. The sensors selectivity ,repeatability and stability,duration are also examined .The graphene material are prepared and selectively blended with PMMA both in dispersant Tetrahydrofuran(THF) to become conductive self-assembly composite materials . We also tested the difference of sensing VOCs characteristics between spin coated pure graphene films and graphene /PMMA composite films. The optional concentration of graphene composite spin coated films show good sensor response to formaldehyde vapor with resistance change about 0.5%~30% after exposing to each vapor concentration(about 10ppm~600ppm) in room temperature .We finally use instruments such as FTIR,SEM,XRD and Raman to analysis materials .We also infer the possible sensing mechanism between the graphene-PMMA composites and the formaldehyde.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T01:00:49Z (GMT). No. of bitstreams: 1
ntu-103-R01525041-1.pdf: 9642706 bytes, checksum: 3fe8d40175231df6eff659e61de8aaf2 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝………………………………………………………………………………………i
中文摘要 ii
ABSTRACT iiii
目錄 ……………………………………………………………………………………vi
LIST OF FIGURES………………………………………………………...…………xiii
LIST OF TABLES xivv
第一章 緒論…………………………………………………………………… 1
1-1 前言 ………………………………………………………………... 1
1-2研究背景……………………………………………………………… 3
1-3研究動機及目的……………………………………………………… 7
1-4論文架構……………………………………………………………… 12
第二章 文獻回顧………………………………………………………………13
2.1 有機揮發性氣體感測器………………………………………………….13
2.1.1 有機揮發性氣體介紹………………………………………………13
2.1.2 有機揮發性氣體感測器種類及感測原理………………………… 15
2.1.3 導電高分子在有機揮發性氣體感測器發展現況………………….18
2.1.4 有機揮發性氣體濃度現有量測方式介紹………………………….28
2.2 甲醛氣體感測器…………………………………………………………..32
2.2.1 利用高分子材料製作甲醛氣體感測器發展現況………………….32
2.2.2 甲醛氣體感測器原理及量測方式介紹…………………………….47
2.2.3 甲醛現有清除方式介紹…………………………………………….51
2.3 石墨烯材料應用於氣體感測器 53
2.3.1 石墨烯材料特性之介紹…………………………………………..53
2.3.2 石墨烯材料氣體感測器原理與發展現況………………………..56
2.4 石墨烯高分子複合材料 63
2.4.1 石墨烯高分子複合材料製備方式及原理………………………………...63
2.4.2 石墨烯表面改質及官能基化石方法……………………………………...66
2.4.3 石墨烯高分子複合材料應用於甲醛氣體感測器發展現況……………...68
第三章 甲醛氣體感測元件製作及量測 73
3.1 電阻式甲醛氣體感測元件製備 73
3.1.1 矽晶圓基板製作 73
3.1.2 石墨烯高分子複合材料溶液製備 76
3.1.3 氣體感測材料塗佈 77
3.2 氣體量測儀器及量測流程 78
3.2.1 量測系統介紹 78
3.2.2 有機揮發性氣體製備及氣體濃度控制…………………………...81
3.2.3 氣體感測元件量測流程設計……………………………………….89
第四章 甲醛氣體感測元件特性實驗結果與討論 90
4.1 聚甲基丙烯酸甲酯加入石墨烯分散溶液形成複合材料提升感測特性 90
4.2 石墨烯高分子複合材料配比對於甲醛氣體感測特性之影響 94
4.3 材料分析 96
4.3.1傅立葉轉紅外線光譜儀(FTIR)……………………………………….96
4.3.2 掃描式電子顯微鏡(SEM)…………………………………………..100
4.3.3 X-光粉末繞射儀(X-Ray Diffraction ,XRD)…………………..…….106
4.3.4 顯微拉曼光譜儀(Raman Spectroscopy, Micro-Raman)……………108
4.4 氣體感測元件特性實驗 115
4.4.1 靈敏度測試 115
4.4.2 重複測試 117
4.4.3 專一性測試 119
4.4.4 穩定性及持久性測試 122
4.4.5 感測機制推測……………………………………………………...123
第五章 結論與未來展望 126
5.1 結論 126
5.2 未來展望 127
參考文獻 129
附錄…………………………………………………………………………………...136
dc.language.isozh-TW
dc.title利用石墨烯-聚甲基丙烯酸甲酯複合材料以溶液製程開發電阻式甲醛氣體感測元件zh_TW
dc.titleA solution-fabrication formaldehyde sensor based on graphene/PMMA composite materialsen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.coadvisor林致廷(Lin Chih-Ting)
dc.contributor.oralexamcommittee李世光,呂家榮
dc.subject.keyword有機電子元件,電阻式甲醛氣體感測器,有機揮發性氣體,石墨烯-聚甲基丙烯酸甲酯複合材料,溶液製程,zh_TW
dc.subject.keywordOrganic Electronic Devices,Formaldehyde chemiresister gas sensors,volatile organic compounds(VOCs),Graphene-PMMA composites,Solution process,en
dc.relation.page136
dc.rights.note未授權
dc.date.accepted2014-12-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
9.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved