Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18320
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorChang-Chen Tsaoen
dc.contributor.author曹昌宸zh_TW
dc.date.accessioned2021-06-08T00:59:38Z-
dc.date.copyright2015-03-13
dc.date.issued2014
dc.date.submitted2015-01-19
dc.identifier.citation[1] R. B. Gordon, American Iron, 1607-1900: Johns Hopkins University Press, 2001.
[2] S.-M. Lu, C. Lu, F. Chen, C.-L. Chen, K.-T. Tseng, and P.-T. Su, 'Low Carbon Strategic Analysis of Taiwan,' Low Carbon Economy, vol. 04, pp. 12-24, 2013.
[3] R. A. Muller, R. Rohde, R. Jacobsen, E. Muller, and C. Wickham, 'A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011,' Geoinformatics & Geostatistics: An Overview, vol. 01, 2013.
[4] N. Espinosa, M. Hosel, D. Angmo, and F. C. Krebs, 'Solar cells with one-day energy payback for the factories of the future,' Energy & Environmental Science, vol. 5, pp. 5117-5132, 2012.
[5] F. C. Krebs, 'Fabrication and processing of polymer solar cells: A review of printing and coating techniques,' Solar Energy Materials and Solar Cells, vol. 93, pp. 394-412, 2009.
[6] F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, 'A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,' Journal of Materials Chemistry, vol. 19, pp. 5442-5451, 2009.
[7] W. Smith, 'Effect of Light on Selenium During the Passage of an Electric Current,' Nature, vol. 7, pp. 303-303, 1873.
[8] W. G. Adams and R. E. Day, 'The Action of Light on Selenium,' Proceedings of the Royal Society of London, vol. 25, pp. 113-117, January 1, 1876 1876.
[9] A. Einstein, 'Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt,' Annalen der Physik, vol. 322, pp. 132-148, 1905.
[10] A. Pochettino and A. Sella, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti vol. 15, pp. 355-363, 1906.
[11] M. Volmer, 'Die verschiedenen lichtelektrischen Erscheinungen am Anthracen, ihre Beziehungen zueinander, zur Fluoreszenz und Dianthracenbildung,' Annalen der Physik, vol. 345, pp. 775-796, 1913.
[12] H. Helmut, Wilhelm, Neugebauer, 'Electrophotographic reproduction material,' United States Patent 3037861, June 5, 1962
[13] C. J. Brabec, Organic photovoltaics : concepts and realization. New York: Springer, 2003.
[14] H. Hoppe and N. S. Sariciftci, 'Organic solar cells: An overview,' Journal of Materials Research, vol. 19, pp. 1924-1945, 2004.
[15] A. K. Ghosh and T. Feng, 'Merocyanine organic solar cells,' Journal of Applied Physics, vol. 49, pp. 5982-5989, 1978.
[16] Tang, W. Ching, Marchetti, P. Alfred, Young, and H. Ralph, 'Organic photovoltaic elements,' United States Patent 4125414, 1978/11/14.
[17] C. W. Tang, 'Two‐layer organic photovoltaic cell,' Applied Physics Letters, vol. 48, pp. 183-185, 1986.
[18] H. Spanggaard and F. C. Krebs, 'A brief history of the development of organic and polymeric photovoltaics,' Solar Energy Materials and Solar Cells, vol. 83, pp. 125-146, 2004.
[19] M. Hiramoto, H. Fujiwara, and M. Yokoyama, 'Three‐layered organic solar cell with a photoactive interlayer of codeposited pigments,' Applied Physics Letters, vol. 58, pp. 1062-1064, 1991.
[20] M. Hiramoto, H. Fujiwara, and M. Yokoyama, 'p‐i‐n like behavior in three‐layered organic solar cells having a co‐deposited interlayer of pigments,' Journal of Applied Physics, vol. 72, pp. 3781-3787, 1992.
[21] S. Karg, W. Riess, V. Dyakonov, and M. Schwoerer, 'Electrical and optical characterization of poly(phenylene-vinylene) light emitting diodes,' Synthetic Metals, vol. 54, pp. 427-433, 1993.
[22] G. Li, R. Zhu, and Y. Yang, 'Polymer solar cells,' Nat Photon, vol. 6, pp. 153-161, 2012.
[23] W. C. Dunlap and R. L. Watters, 'Direct Measurement of the Dielectric Constants of Silicon and Germanium,' Physical Review, vol. 92, pp. 1396-1397, 1953.
[24] K. M. Coakley and M. D. McGehee, 'Conjugated Polymer Photovoltaic Cells,' Chemistry of Materials, vol. 16, pp. 4533-4542, 2004.
[25] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, 'Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene,' Science, vol. 258, pp. 1474-1476, 1992.
[26] L. Smilowitz, N. S. Sariciftci, R. Wu, C. Gettinger, A. J. Heeger, and F. Wudl, 'Photoexcitation spectroscopy of conducting-polymer–C60 composites: Photoinduced electron transfer,' Physical Review B, vol. 47, pp. 13835-13842, 1993.
[27] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, et al., 'Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells,' Applied Physics Letters, vol. 62, pp. 585-587, 1993.
[28] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, 'Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell,' Applied Physics Letters, vol. 68, pp. 3120-3122, 1996.
[29] L. S. Roman, M. R. Andersson, T. Yohannes, and O. Inganás, 'Photodiode performance and nanostructure of polythiophene/C60 blends,' Advanced Materials, vol. 9, pp. 1164-1168, 1997.
[30] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, 'Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,' Science, vol. 270, pp. 1789-1791, 1995.
[31] C. Y. Yang and A. J. Heeger, 'Morphology of composites of semiconducting polymers mixed with C60,' Synthetic Metals, vol. 83, pp. 85-88, 1996.
[32] Y.-W. Su, S.-C. Lan, and K.-H. Wei, 'Organic photovoltaics,' Materials Today, vol. 15, pp. 554-562, 2012.
[33] Y. Zhou, M. Eck, and M. Kruger, 'Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers,' Energy & Environmental Science, vol. 3, pp. 1851-1864, 2010.
[34] P. Peumans, A. Yakimov, and S. R. Forrest, 'Small molecular weight organic thin-film photodetectors and solar cells,' Journal of Applied Physics, vol. 93, pp. 3693-3723, 2003.
[35] P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, 'Exciton Diffusion Measurements in Poly(3-hexylthiophene),' Advanced Materials, vol. 20, pp. 3516-3520, 2008.
[36] H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, et al., 'Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films,' Nanoscale, vol. 3, pp. 2280-2285, 2011.
[37] J. J. M. Halls, J. Cornil, D. A. dos Santos, R. Silbey, D. H. Hwang, A. B. Holmes, et al., 'Charge- and energy-transfer processes at polymer/polymer interfaces: A joint experimental and theoretical study,' Physical Review B, vol. 60, pp. 5721-5727, 1999.
[38] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, et al., 'Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency,' Advanced Materials, vol. 18, pp. 789-794, 2006.
[39] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, and C. L. Wilkins, 'Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,' The Journal of Organic Chemistry, vol. 60, pp. 532-538, 1995.
[40] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, '2.5% efficient organic plastic solar cells,' Applied Physics Letters, vol. 78, pp. 841-843, 2001.
[41] J. K. J. van Duren, X. Yang, J. Loos, C. W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, et al., 'Relating the Morphology of Poly(p-phenylene vinylene)/Methanofullerene Blends to Solar-Cell Performance,' Advanced Functional Materials, vol. 14, pp. 425-434, 2004.
[42] W. Geens, S. E. Shaheen, B. Wessling, C. J. Brabec, J. Poortmans, and N. Serdar Sariciftci, 'Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent,' Organic Electronics, vol. 3, pp. 105-110, 2002.
[43] T.-A. Chen, X. Wu, and R. D. Rieke, 'Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties,' Journal of the American Chemical Society, vol. 117, pp. 233-244, 1995.
[44] Z. Bao, A. Dodabalapur, and A. J. Lovinger, 'Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,' Applied Physics Letters, vol. 69, pp. 4108-4110, 1996.
[45] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, et al., 'Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,' Nature, vol. 401, pp. 685-688, 1999.
[46] Y. Zhao, G. Yuan, P. Roche, and M. Leclerc, 'A calorimetric study of the phase transitions in poly(3-hexylthiophene),' Polymer, vol. 36, pp. 2211-2214, 1995.
[47] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, 'Effects of Postproduction Treatment on Plastic Solar Cells,' Advanced Functional Materials, vol. 13, pp. 85-88, 2003.
[48] D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, 'Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites,' Nanotechnology, vol. 15, p. 1317, 2004.
[49] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, 'Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),' Journal of Applied Physics, vol. 98, pp. 043704, 2005.
[50] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, et al., 'High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,' Nat Mater, vol. 4, pp. 864-868, 2005.
[51] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, '“Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes,' Advanced Functional Materials, vol. 17, pp. 1636-1644, 2007.
[52] C.-W. Chu, H. Yang, W.-J. Hou, J. Huang, G. Li, and Y. Yang, 'Control of the nanoscale crystallinity and phase separation in polymer solar cells,' Applied Physics Letters, vol. 92, pp. 103306, 2008.
[53] Y. He and Y. Li, 'Fullerene derivative acceptors for high performance polymer solar cells,' Physical Chemistry Chemical Physics, vol. 13, pp. 1970-1983, 2011.
[54] Y. He, H.-Y. Chen, J. Hou, and Y. Li, 'Indene−C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells,' Journal of the American Chemical Society, vol. 132, pp. 1377-1382, 2010.
[55] J. Roncali, 'Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems,' Chemical Reviews, vol. 97, pp. 173-206, 1997.
[56] I. McCulloch, R. S. Ashraf, L. Biniek, H. Bronstein, C. Combe, J. E. Donaghey, et al., 'Design of Semiconducting Indacenodithiophene Polymers for High Performance Transistors and Solar Cells,' Accounts of Chemical Research, vol. 45, pp. 714-722, 2012.
[57] L. Lu and L. Yu, 'Understanding Low Bandgap Polymer PTB7 and Optimizing Polymer Solar Cells Based on It,' Advanced Materials, vol. 26, pp. 4413-4430, 2014.
[58] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, et al., 'Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,' Nat Mater, vol. 6, pp. 497-500, 2007.
[59] Z. M. Beiley, E. T. Hoke, R. Noriega, J. Dacuña, G. F. Burkhard, J. A. Bartelt, et al., 'Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells,' Advanced Energy Materials, vol. 1, pp. 954-962, 2011.
[60] J. A. Bartelt, Z. M. Beiley, E. T. Hoke, W. R. Mateker, J. D. Douglas, B. A. Collins, et al., 'The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells,' Advanced Energy Materials, vol. 3, pp. 364-374, 2013.
[61] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, et al., 'A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,' Nat Mater, vol. 5, pp. 197-203, 2006.
[62] H.-C. Liao, C.-C. Ho, C.-Y. Chang, M.-H. Jao, S. B. Darling, and W.-F. Su, 'Additives for morphology control in high-efficiency organic solar cells,' Materials Today, vol. 16, pp. 326-336, 2013.
[63] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, et al., 'For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,' Advanced Materials, vol. 22, pp. E135-E138, 2010.
[64] M. Gross, D. C. Muller, H.-G. Nothofer, U. Scherf, D. Neher, C. Brauchle, et al., 'Improving the performance of doped [pi]-conjugated polymers for use in organic light-emitting diodes,' Nature, vol. 405, pp. 661-665, 2000.
[65] H.-L. Yip and A. K. Y. Jen, 'Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells,' Energy & Environmental Science, vol. 5, pp. 5994-6011, 2012.
[66] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, 'Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,' Applied Physics Letters, vol. 89, pp. 143517, 2006.
[67] C. Melzer, E. J. Koop, V. D. Mihailetchi, and P. W. M. Blom, 'Hole Transport in Poly(phenylene vinylene)/Methanofullerene Bulk-Heterojunction Solar Cells,' Advanced Functional Materials, vol. 14, pp. 865-870, 2004.
[68] G. Dennler, A. J. Mozer, G. Juška, A. Pivrikas, R. Österbacka, A. Fuchsbauer, et al., 'Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulk-heterojunction solar cells,' Organic Electronics, vol. 7, pp. 229-234, 2006.
[69] S. Sista, Z. Hong, L.-M. Chen, and Y. Yang, 'Tandem polymer photovoltaic cells-current status, challenges and future outlook,' Energy & Environmental Science, vol. 4, pp. 1606-1620, 2011.
[70] J. Gilot, M. M. Wienk, and R. A. J. Janssen, 'Optimizing Polymer Tandem Solar Cells,' Advanced Materials, vol. 22, pp. E67-E71, 2010.
[71] (2014-09-23). Best Research-Cell Efficiencies. Available: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
[72] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, et al., 'Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,' Science, vol. 317, pp. 222-225, 2007.
[73] S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, et al., 'Highly Efficient Tandem Polymer Photovoltaic Cells,' Advanced Materials, vol. 22, pp. 380-383, 2010.
[74] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, et al., 'A polymer tandem solar cell with 10.6% power conversion efficiency,' Nature Communications, vol. 4, p. 1446, 2013.
[75] I. Etxebarria, A. Furlan, J. Ajuria, F. W. Fecher, M. Voigt, C. J. Brabec, et al., 'Series vs parallel connected organic tandem solar cells: Cell performance and impact on the design and operation of functional modules,' Solar Energy Materials and Solar Cells, vol. 130, pp. 495-504, 2014.
[76] A. Hadipour, B. d. Boer, and P. W. M. Blom, 'Solution-processed organic tandem solar cells with embedded optical spacers,' Journal of Applied Physics, vol. 102, p. 074506, 2007.
[77] V. Shrotriya, E. H.-E. Wu, G. Li, Y. Yao, and Y. Yang, 'Efficient light harvesting in multiple-device stacked structure for polymer solar cells,' Applied Physics Letters, vol. 88, p. 064104, 2006.
[78] X. Guo, F. Liu, W. Yue, Z. Xie, Y. Geng, and L. Wang, 'Efficient tandem polymer photovoltaic cells with two subcells in parallel connection,' Organic Electronics, vol. 10, pp. 1174-1177, 2009.
[79] X. Xia, S. Wang, Y. Jia, Z. Bian, D. Wu, L. Zhang, et al., 'Infrared-transparent polymer solar cells,' Journal of Materials Chemistry, vol. 20, pp. 8478-8482, 2010.
[80] Z. Tang, Z. George, Z. Ma, J. Bergqvist, K. Tvingstedt, K. Vandewal, et al., 'Semi-Transparent Tandem Organic Solar Cells with 90% Internal Quantum Efficiency,' Advanced Energy Materials, vol. 2, pp. 1467-1476, 2012.
[81] T. W. Phillips and J. C. de Mello, 'New Materials for Transparent Electrodes,' in Organic Electronics, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 139-174.
[82] M. Dressel and G. Grüner, Electrodynamics of solids : optical properties of electrons in matter. New York: Cambridge University Press, 2002.
[83] R. E. Glover and M. Tinkham, 'Conductivity of Superconducting Films for Photon Energies between 0.3 and 40k TC' Physical Review, vol. 108, pp. 243-256, 1957.
[84] S. De and J. N. Coleman, 'Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films?,' ACS Nano, vol. 4, pp. 2713-2720, 2010.
[85] B. Dan, G. C. Irvin, and M. Pasquali, 'Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films,' ACS Nano, vol. 3, pp. 835-843, 2009.
[86] C. H. Seager and G. E. Pike, 'Percolation and conductivity: A computer study. II,' Physical Review B, vol. 10, pp. 1435-1446, 1974.
[87] K. Ellmer, 'Past achievements and future challenges in the development of optically transparent electrodes,' Nat Photon, vol. 6, pp. 809-817, print 2012.
[88] G. Haacke, 'New figure of merit for transparent conductors,' Journal of Applied Physics, vol. 47, pp. 4086-4089, 1976.
[89] G. A. Burdick, 'Energy Band Structure of Copper,' Physical Review, vol. 129, pp. 138-150, 1963.
[90] D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, 'Widely transparent electrodes based on ultrathin metals,' Optics Letters, vol. 34, pp. 325-327, 2009.
[91] B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, 'Transparent and conductive electrodes based on unpatterned, thin metal films,' Applied Physics Letters, vol. 93, pp. 223304, 2008.
[92] C. G. Granqvist and A. Hultåker, 'Transparent and conducting ITO films: new developments and applications,' Thin Solid Films, vol. 411, pp. 1-5, 002.
[93] N. Espinosa, R. García-Valverde, A. Urbina, and F. C. Krebs, 'A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions,' Solar Energy Materials and Solar Cells, vol. 95, pp. 1293-1302, 2011.
[94] C. J. M. Emmott, A. Urbina, and J. Nelson, 'Environmental and economic assessment of ITO-free electrodes for organic solar cells,' Solar Energy Materials and Solar Cells, vol. 97, pp. 14-21, 2012.
[95] D. R. Cairns and G. P. Crawford, 'Electromechanical Properties of Transparent Conducting Substrates for Flexible Electronic Displays,' Proceedings of the IEEE, vol. 93, pp. 1451-1458, 2005.
[96] S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, 'Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors,' ACS Nano, vol. 4, pp. 7064-7072, 2010/12/28 2010.
[97] S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, et al., 'Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,' ACS Nano, vol. 3, pp. 1767-1774, 2009.
[98] A. Elschner and W. Lövenich, 'Solution-deposited PEDOT for transparent conductive applications,' MRS Bulletin, vol. 36, pp. 794-798, 2011.
[99] D.-S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. C. Bradley, and J. C. de Mello, 'Efficient Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes,' Advanced Materials, vol. 23, pp. 4371-4375, 2011.
[100] 'Effects of iron or manganese doping of ZnO nanoparticles on their dissolution, ROS generation and cytotoxicity,' RSC Advances, vol. 4, p. 26149, 2014.
[101] W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, 'Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer,' Advanced Materials, vol. 16, pp. 1009-1013, 2004.
[102] T. Stubhan, I. Litzov, N. Li, M. Salinas, M. Steidl, G. Sauer, et al., 'Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers,' Journal of Materials Chemistry A, vol. 1, pp. 6004-6009, 2013.
[103] T. Stubhan, J. Krantz, N. Li, F. Guo, I. Litzov, M. Steidl, et al., 'High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode,' Solar Energy Materials and Solar Cells, vol. 107, pp. 248-251, 2012.
[104] X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, et al., 'High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive,' Energy & Environmental Science, vol. 5, pp. 7943-7949, 2012.
[105] S. Sohn and H.-M. Kim, Transparent Conductive Oxide (TCO) Films for Organic Light Emissive Devices (OLEDs), 2011.
[106] F. M. Smits, 'Measurement of Sheet Resistivities with the Four-Point Probe,' Bell System Technical Journal, vol. 37, pp. 711-718, 1958.
[107] Y. Sun, B. Gates, B. Mayers, and Y. Xia, 'Crystalline Silver Nanowires by Soft Solution Processing,' Nano Letters, vol. 2, pp. 165-168, 2002.
[108] Y. Sun and Y. Xia, 'Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process,' Advanced Materials, vol. 14, pp. 833-837, 2002.
[109] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, et al., 'One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,' Advanced Materials, vol. 15, pp. 353-389, 2003.
[110] Y. Sun, B. Mayers, T. Herricks, and Y. Xia, 'Polyol Synthesis of Uniform Silver Nanowires:  A Plausible Growth Mechanism and the Supporting Evidence,' Nano Letters, vol. 3, pp. 955-960, 2003.
[111] Y. Sun, Y. Ren, Y. Liu, J. Wen, J. S. Okasinski, and D. J. Miller, 'Ambient-stable tetragonal phase in silver nanostructures,' Nat Commun, vol. 3, p. 971, 2012.
[112] C.-H. Chung, T.-B. Song, B. Bob, R. Zhu, H.-S. Duan, and Y. Yang, 'Silver Nanowire Composite Window Layers for Fully Solution-Deposited Thin-Film Photovoltaic Devices,' Advanced Materials, vol. 24, pp. 5499-5504, 2012.
[113] Z. M. Beiley, M. G. Christoforo, P. Gratia, A. R. Bowring, P. Eberspacher, G. Y. Margulis, et al., 'Semi-Transparent Polymer Solar Cells with Excellent Sub-Bandgap Transmission for Third Generation Photovoltaics,' Advanced Materials, vol. 25, pp. 7020-7026, 2013.
[114] G. Y. Margulis, M. G. Christoforo, D. Lam, Z. M. Beiley, A. R. Bowring, C. D. Bailie, et al., 'Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid-State Dye-Sensitized Solar Cells,' Advanced Energy Materials, vol. 3, pp. 1657-1663, 2013.
[115] M.-H. Jao, ' Inverted tandem polymer solar cells,' Master thesis, Dept. Mater.
Sci. Eng., Nat'l Taiwan Univ., Taipei, Taiwan (ROC), 2013.
[116] T. Nyberg, 'An alternative method to build organic photodiodes,' Synthetic Metals, vol. 140, pp. 281-286, 2004.
[117] Silquest* A-187. Available: http://www.momentive.com/Products/ShowTechnicalDataSheet.aspx?id=10052
[118] M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, et al., 'Organic solar cells using inverted layer sequence,' Thin Solid Films, vol. 491, pp. 298-300, 2005.
[119] S. K. M. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A. W. Denier van der Gon, et al., 'The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films,' Synthetic Metals, vol. 139, pp. 1-10, 2003.
[120] M.-S. Kim, M.-G. Kang, L. J. Guo, and J. Kim, 'Choice of electrode geometry for accurate measurement of organic photovoltaic cell performance,' Applied Physics Letters, vol. 92, p. 133301, 2008.
[121] J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzov, G. J. Matt, et al., 'Spray-Coated Silver Nanowires as Top Electrode Layer in Semitransparent P3HT:PCBM-Based Organic Solar Cell Devices,' Advanced Functional Materials, vol. 23, pp. 1711-1717, 2013.
[122] S. Sophie, E. L. Philip, D. Sukanta, C. D. Janet, and N. C. Jonathan, 'The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter,' Nanotechnology, vol. 23, p. 185201, 2012.
[123] F. C. Krebs, T. Tromholt, and M. Jorgensen, 'Upscaling of polymer solar cell fabrication using full roll-to-roll processing,' Nanoscale, vol. 2, pp. 873-886, 2010.
[124] W.-H. Baek, M. Choi, T.-S. Yoon, H. H. Lee, and Y.-S. Kim, 'Use of fluorine-doped tin oxide instead of indium tin oxide in highly efficient air-fabricated inverted polymer solar cells,' Applied Physics Letters, vol. 96, pp. 133506, 2010.
[125] M. Vosgueritchian, D. J. Lipomi, and Z. Bao, 'Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes,' Advanced Functional Materials, vol. 22, pp. 421-428, 2012.
[126] T. Kirchartz, F. Deledalle, P. S. Tuladhar, J. R. Durrant, and J. Nelson, 'On the Differences between Dark and Light Ideality Factor in Polymer:Fullerene Solar Cells,' The Journal of Physical Chemistry Letters, vol. 4, pp. 2371-2376, 2013.
[127] C.-C. Chen, W.-H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, et al., 'An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%,' Advanced Materials, vol. 26, pp. 5670-5677, 2014.
[128] F. Guo, X. Zhu, K. Forberich, J. Krantz, T. Stubhan, M. Salinas, et al., 'ITO-Free and Fully Solution-Processed Semitransparent Organic Solar Cells with High Fill Factors,' Advanced Energy Materials, vol. 3, pp. 1062-1067, 2013.
[129] A. Kim, Y. Won, K. Woo, S. Jeong, and J. Moon, 'All-Solution-Processed Indium-Free Transparent Composite Electrodes based on Ag Nanowire and Metal Oxide for Thin-Film Solar Cells,' Advanced Functional Materials, vol. 24, pp. 2462-2471, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18320-
dc.description.abstract並聯式串疊型太陽能電池,因只需以最優化之膜厚,將前後電池之光電流疊加,進而充分利用太陽光,而被認為能有效提升光能量轉換效率。另外並聯式串疊型太陽能電池之前後子電池的高分子材料,其材料能隙選取之範圍較串聯式串疊型太陽能電池寬廣。不過並聯式串疊型太陽能電池最重要的要求,是要有一層高穿透度及低片電阻的中間傳導層,而銀奈米線除了能滿足此要求,更有可溶液製程、可撓曲、無銦材料之優點,為此我們選擇以銀奈米線為並聯式串疊型太陽能電池之中間傳導層。
於此研究中,我們的反式前子電池以氧化鋅(ZnO)奈米粒子為電子傳導層,鋪於氧化銦錫薄膜電極上,主動層之材料以高能隙高分子聚三己基噻吩(P3HT)及新型富勒烯衍生物-茚-碳六十之雙加成物(ICBA)組成。我們於主動層之上,採用特殊的聚二氧乙基噻吩:聚苯乙烯磺酸複合物(PEDOT:PSS CPP; Clevios F CPP-105D)為電洞傳導層,此PEDOT:PSS CPP可直接附著並旋塗於主動層,並可輔助電荷載子,在銀奈米線空隙之間的橫向傳遞。但是因PEDOT:PSS CPP為親水性之關係,若旋塗分散在異丙醇(IPA)中的銀奈米線於PEDOT:PSS CPP薄膜之上,會摧毀PEDOT:PSS CPP薄膜,所以我們採用氣溶膠噴塗法噴塗銀奈米線,使銀奈米線溶液於PEDOT:PSS CPP薄膜上迅速揮發。再加上封裝後,可避免因銀奈米線之空隙,滲漏氧氣及水氣,所造成元件表現降低之情形。藉由以上的改善方法,我們成功實現以銀奈米線作為前子電池的半透明上電極。
然而我們的三電極架構,並聯式串疊型太陽能電池,其後子電池以銀奈米線為下電極,必然需處理銀奈米線粗糙度高的問題。為此我們噴塗稀釋後的PEDOT:PSS PH1000 (Clevios PH1000)以降低銀奈米線的粗糙度,之後再旋塗添加界面活性劑Triton X-100的PEDOT:PSS 4083 (Clevios P VP AI 4083),以保護前子電池避免後子電池溶劑的侵蝕。以這些塗佈PEDOT:PSS之方法,應用於我們的三電極架構並聯式串疊型太陽能電池,我們可以得到高填充因子、高旁路電阻的後子電池。
藉由以上的技術,我們可以在三電極架構並聯式串疊型太陽能電池中,不論前後子電池都是P3HT或前子電池是P3HT、後子電池是PTB7,都可以達到高填充因子。但是因為後子電池之開路電壓較低,使得整體元件表現低於預期。為此,必須要開發更進一步的技術,以達成高效率三電極架構並聯式串疊型高分子太陽能電池。
zh_TW
dc.description.abstractParallel tandem polymer solar cells have been proposed as a novel structure to improve power conversion efficiency of polymer solar cells owing to the advantage of simply adding two sub-cell’s current without the problem of current matching in series tandem cell. Furthermore, the band gap range choice of polymer materials for parallel tandem cells is wider than the one of series tandem cells. However, the primary requirement of parallel tandem cells is a high transparency and low sheet resistance intermediate layer. For this requirement, we choose silver nanowires as the intermediate layer parallel tandem cells because silver nanowires have several merits: solution process, flexibility, and indium-free material.
In this research, our inverted front sub-cell consisted of ZnO as electron transportation layer at the top of ITO (Indium tin oxide) electrodes, and the bulk-heterojunction blend of poly(3-hexylthiophene) (P3HT) as wide band gap polymer with indene-C60 bisadduct (ICBA) as fullerene derivative to increase Voc. On top of active layer, we used a conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS CPP; Clevios CPP-105D) as the hole transportation layer for the reason that PEDOT:PSS CPP can directly be deposited by spin coating on top of active layer and facilitate lateral charge transport in the void spaces of silver nanowires. Nevertheless, spin coating silver nanowire solution can spoil the PEDOT:PSS CPP layer because of the hydrophilic property of both materials. Therefore, we chose aerosol spray coating for the deposition of silver nanowires to minimize the drying times of silver nanowire on top of the PEDOT:PSS CPP layer. Furthermore, encapsulation for silver nanowire as top electrode can prevent the device degradation by water and oxygen. With this improvement, we successfully implement the silver nanowires as semi-transparent top electrodes for front sub-cell.
However, our three-terminal structure parallel tandem cells, which the back cell’s bottom electrodes are silver nanowires, have to tackle the problem of high surface roughness of silver nanowires. To suppress the roughness, we sprayed a layer of diluted highly conductive PEDOT:PSS PH1000 (Clevios PH1000) to modify the surface of the silver nanowire film and deposited a layer of PEDOT:PSS 4083 (Clevios P VP AI 4083) with an additive Triton X-100 by spin coating. Using these several deposition steps of PEDOT:PSS, we got a high fill factor back cell with low shunt resistance in our three terminal structure parallel tandem cell.
From above techniques, we could fabricate two sub-cells with high FF values in our three-terminal structure parallel tandem cells, which both front and back cell are P3HT or front cells are P3HT but back cells are PTB7, but the overall performance was not as good as we had expected due to low open circuit voltage of back cells. For this reason, further improvements have to be developed for achieving high efficiency three terminal parallel tandem cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:59:38Z (GMT). No. of bitstreams: 1
ntu-103-R01222020-1.pdf: 7394126 bytes, checksum: 2982f3db35f056b342505edf38add12d (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
Contents VI
Tables VIII
Figures IX
Chapter 1 Introduction 1
1. 1 Solution of Global Warming: Solar Cells 1
1. 2 Working Principle of Polymer Solar Cells 4
1. 3 High Efficiency and Stable Polymer Solar Cells 12
1. 4 Tandem Polymer Solar Cells 18
1. 5 Solution-Processed Transparent Conductors 22
Chapter 2 Experimental 29
2. 1 Chemicals 29
2. 2 Instruments 31
2. 3 Experimental Process 32
Chapter 3 Results and Discussion 38
3. 1 Measurement of Sheet Resistance 38
3. 2 The Roles of Filling Materials for Silver Nanowires 41
3. 3 Fabrication of PEDOT CPP for Inverted Polymer Solar Cells 45
3. 4 Spray Coating of Silver Nanowires and PEDOT:PSS 50
3. 5 Fabrication of Silver Nanowire as Top Electrodes 57
3. 6 An Intermediate Buffer Layer Protecting the Active Layer Underneath 62
3. 7 Silver Nanowires as Bottom Electrodes 63
3. 8 Parallel Tandem Polymer Solar Cells 68
Chapter 4 Conclusion 75
4. 1 Ag NWs as Top Electrodes of PSCs 75
4. 2 Ag NWs as Bottom Electrodes of PSCs 75
4. 3 Parallel Tandem Polymer Solar Cells 76
Chapter 5 Future Works 77
5. 1 Lowering the Ideality Factor 77
5. 2 Adjusting the Thickness of the Front Cell and the Back Cell 77
5. 3 Fabrication of Ag NWs and PEDOT:PSS on Top of PTB7 78
5. 4 Fabrication of Al:ZnO as a Filling Material for Ag NWs 79
Reference 81
dc.language.isoen
dc.title以銀奈米線作為並聯式串疊型高分子太陽能電池之中間層zh_TW
dc.titleSilver Nanowires as an Intermediate Layer for Parallel Tandem
Polymer Solar Cells
en
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.coadvisor林唯芳(Wei-Fang Su)
dc.contributor.oralexamcommittee曹正熙(Cheng-Si Tsao)
dc.subject.keyword銀奈米線,高分子,並聯式串疊型太陽能電池,三電極架構,zh_TW
dc.subject.keywordsilver nanowire,polymer,parallel tandem solar cell,three-terminal structure,en
dc.relation.page91
dc.rights.note未授權
dc.date.accepted2015-01-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
7.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved