Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18311
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉振宇教授(Chen-Wuing Liu)
dc.contributor.authorYeuh-Bin Wangen
dc.contributor.author王嶽斌zh_TW
dc.date.accessioned2021-06-08T00:59:15Z-
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-01-23
dc.identifier.citation英文文獻
Aelion, C. M., Conte, B. C. (2004). Susceptibility of Residential wells to VOC and nitrate contamination. Environmental Science and Technology, 38(6), 1648-1653.
Alvarvez-Guerra, M., Gonzalez-Pinuela C., Andres, A., Galan, B., Viguri, J. R. (2008). Assessment of self-organizing map artificial neural networks for the classification of sediment quality. Environmental International, 34, 782-790.
Astel, A., Tsakovski, S., Barbien, P., Simeonov, V. (2007). Comparison of self-organizing maps classification approach with cluster and principal components analysis for a large environmental data sets. Water Research, 41, 4566-4578.
Carbo, L. I., Flores, M. C., & Herrero, M. A. (2009). Well site conditions associated with nitrate contamination in a multilayer semiconfined aquifer of Buenos Aires, Argentina. Environmental Geology, 57, 1489-1500.
Chau, L. W., Muttil, N. (2007). Data mining and multivariate statistical analysis for ecological waters. Journal of Hydroinformatics, 9(4), 305-317.
Chen, C. Y., Chen, L. K., Yu, F. C., Lin, S. C., Lin, Y. C., Lee, C. L., Wang, Y. T. (2010). Landslides affecting sedimentary characteristics of reservoir basin. Environmental Earth Science, 59, 1693–1702.
Chen, H. Y., Teng, Y. G., Wang, J. S., Song, L. T., Zuo, R. (2013). Source Apportionment of Trace Element Pollution in Surface Sediment Using Positive Matrix Facrtorization Combined Support Vector Machines: Application to the Jinjiang River, China. Biological Trace Element Research, 151,462-470.
Chen, W. B., Liu, W. C., Kimura, N., Hsu, M. H. (2010). Particle release transport in Danshuei River estuarine system and adjacent coastal ocean: a modeling assessment. Environmental Monitoring and Assessment, 168, 407–428.
Chen, Y. C., Chen, C. Y., Hwang, H. J., Chang, W. B., Yeh, W. J., Chen, M. H. (2004). Comparison of the metal concentrations in muscle and liver tissues of fishes from the Erren River, Southwestern Taiwan, after the restoration in 2000. Journal of Food and Drug Analysis, 12, 358-366.
Chen, Y. C., Yeh, H. C., Wei, C. (2012). Estimation of river pollution index in a tidal stream using Kriging analysisInt. Journal of Environmental Research and Public Health, 9:3085-3100
Chen, Y. M., Li, H.C., Tsao, T. M., Wang, L. C., Chang, Y. (2014). Some selected heavy metal concentrations in water, sediment, and oysters in the Er-Ren estuary, Taiwan: chemical fractions and the implications for biomonitoring, Environmental Monitoring and Assessment, DOI. 10.1007/s10661-014-3907-2
Chen T. C., Huang S. L. (1998). Towards a symbiosis: urban development and environmental quality in the Taipei metropolitan region. Journal of Environmental Planning and Management 41(1),77-93.
Cheng, B. Y., Liu, T. C., Shyu, G. S., Chang, T. K., Fang, W. T. (2011). Analysis of trends in water quality: constructed wetlands in metropolitan Taipei. Water Science and Technology, 64(11), 2143–2150.
Clark, W. A., Hosking, P. L. (1986). Statistical Methods for Geographers, John Wiley & Sons, New York
Comero, S., Locoro, G., Free, G., Vaccaro, S.,Capitani, L. D., Gawlik, B. M. (2011). Characterization of Alpine lake sediments using multivariate statistical techniques. Chemometrics and Intelligent Laboratory Systems, 107, 24-30.
Comero, S., Vaccaro, S., Locoro, G., Capitani, L. D., Gawlik, B. M. (2014). Characterization of the Danube River sediments using the PMF multivariate approach. Chemosphere, 95, 329-335.
Comero, S., Servida., D., Capitani, L. D., Gawlik, B. M. (2012). Gepchemical characterization of an abandoned mine site: A combined positive matrix factorization and GIS approach compared with principal component analysis. Journal of Geochemical Exploration, 118, 30-37.
Conan, C., Bouraoui, F., Turpin, N., Marsily, G., Bidoglio, G. (2003). Modeling flow and nitrate fate at catchment scale in Brittany (France), Journal of Environmental Quality, 32(6), 2026-2032.
Coz, A., Rodriguez-Obeso, O., Alonso-Santurde, R., Alvarez-Guerra, M., Andres, A., Viguri, J. R., Mantzavinos, D., Kalogerakis, N. (2008). Toxicity bioassays in core sediment from the bay of Santander, northern Spain. Environmental Research, 106, 304-312.
Davies, D. L., Bouldwin, D. W. (1979). A cluster separation measures. Proceedings of the IEEE Transactions on Pattern Recogation and Machine Intelligence, 1 (2), 224-227.
Eckhardt, D. A. V., Stackelberg, P. E. (1995). Relationship of ground-water quality to land use on Long Island, New York. Ground Water, 33(6), 1019-1033.
Fu, C. T., Wu, S. C. (2006). Seasonal variation of the distribution of PCBs in sediment and biota in a PCB-contaminated estuary. Chemosphere, 62, 1786-1794.
Fu, J., Hu, X., Tao, X., Yu, H., Zhang, X. (2013). Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China. Chemosphere, 93, 1887–1895.
Fu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G. Z., Luo, Y., Zhao, D., An, S., Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 270, 102-109.
Gamble, A., Babbar-Sebens, M. (2012). On the use of multivariate statistical methods for combining in-stream monitoring data and spatial analysis to characterize water quality conditions in the White River basin, Indiana, USA. Environmental Monitoring and Assessment, 184, 845–875.
Gardner, K. K., Vogel, R. M. (2005). Predicting ground water nitrate concentration from land use. Ground Water, 43(3), 343-352.
Giridharan, L., Venugopal, T., & Jayaprakash, M. (2009). Assessment of Water Quality Using Chemometric Tools: A Case Study of River Coum, South India, Archives of Environmental Contamination and Toxicology, 56(4), 654-669.
Gredilla, A., Vallejuelo, S. F., Amigo, J.M., Diego, A., Madariaga, J. M. (2013). Unsupervided pattern-recognition techniques to investigate metal pollution in estraries. Trends in Analytical Chemistry, 46, 59-69.
Greene E. A., LaMotte, A. E., Cullinan, K. A. (2005). Ground-Water Vulnerability to Nitrate Contamination at Multiple Thresholds in the Mid-Atlantic Region Using Spatial Probability Models, U. S. Geological Survey, Scientific Investigations Report 2004-5118.
Guo, X., Chen C.-T. A. (2012). Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Research, 46, 1901-1911.
Hahladakis, J., Smaragdaki, E., Vasilaki, G., Gidarakos, E. (2013). Use of sediment quality guidelines and pollution indicators for the assessment of heavy metal and PAH contamination in Greek surficial sea and lake sediments. Environmental Monitoring and Assessment, 185, 2843-2853.
Hill, J., Hossain, F., Sivakumar, B. (2008). Is correlation dimension a reliable proxy for the number of dominant influencing variables for modeling risk of arsenic contamination in groundwater? Stochastic Environmental Research and Risk Assessment, 22, 47–55.
Houston, R., Chan, Y. C., Chapmam, H., Gardner, T., Shaw, G. (2012). Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water research, 46, 1121-1132.
Hu, K., Huang, Y.F., Li, H., Li, B. G., Chen, D. L., White, R. E. (2005). Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in north China plain. Environmental International, 31, 896-903.
Hu, N. J., Huang, P., Liu, J. H., Shi, X. F., Ma, D. Y., Liu, Y. (2013). Source apportionment of Polycyclic aromatic hydrocarbons in surface sediments of the Bohai Sea, China. Environmental Science Pollution Research, 20, 1031-1040.
Hu, N. J., Shi, X. F., Huang, P., Liu, J. H. (2011). Polycyclic aromatic hydrocarbons in surface sediments of Laizhou Bay, Bohai Sea, China. Environmental Earth Science, 63, 121-133.
Ingersoll, C. G., MacDonald, D. D., Wang, N., Crane, J. L., Field, L. J., Harverland, P. S., Kemble, N. E., Lindskoog, R. A., Severn, C., Smorong, D. E. (2001). Predictions of sediment toxicity using consensus-based freshwater sediment quality guideline. Archives of Environmental Contamination and Toxicology, 41, 8-21.
Iqbal, J., Tirmizi, S. A., Shah, M.H. (2013). Statistical apportionment and risk assessment of selected metal in sediments from Rawal Lake (Pakistan). Environmental Monitoring and Assessment, 185, 729-743.
Jang, C. S., Chen, S. K., & Kuo, Y. M. (2012). Establishing an irrigation management plan of sustainable groundwater based on spatial variability of water quality and quantity. Journal of Hydrology, 414, 201-210.
Jang, C. S., Liu, C. W. (2005). Contamination potential of nitrogen compounds in the heterogeneous aquifers of the Choushui River alluvial fan, Taiwan, Contam Hydrol., 79(3-4), 135-155.
Jiang, M., Zeng, G., Zhang, C., Ma, X., Chen, M., Zhang, J., Lu, L., Yu, Q., Hu, L., Liu, L. (2013). Assessment of Heavy metal concentration in the Surrounding Soils and Surface sediments in Xiawangang River, Qingshuitang District. PLOT one, 8, 1-11.
Johnson, R. A. & Wichern, D. W. (1992). Applied multivariate statistical analysis, 3rd edition. Prentice-Hall International: Englewood Cliffs, New Jersey, USA.
Juahir, H., Zain, S. Z., Yusoff, M. K., Hanida, T. I. T., Armi, A. S. M., Toriman, M. E., Mokhtar, M. (2011). Spatial Water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Monitoring and Assessment, 173, 625-641.
Kao, Y. H., Liu, C. W., Jang, C. S., Zanh, S. W., Lin, K. H. (2011). Assessment of nitrogen contamination of groundwater in paddy and upland fields. Paddy and Water Environment, 9(3), 301-307.
Khairy, M. A., Kolb, M., Mostafa, A. R., EL-Fiky, A., Badir, M. (2009). Risk assessment of polycyclic aromatic hydrocarbons in a Mediterranean semi-enclosed basin affected by human activities (Abu Qir Bay, Egypt). Journal of Hazardous Materials, 170, 389-397.
Kim, J. H., Kim, R. H., Lee, J. H., Cheong, T. J., Yum, B. W., Chang, H. W. (2005). Multivariate statistical analysis to indentify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. Hydrological Processes, 19, 1261-1276.
Knobeloch, L., Salna, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blue babies and nitrate-contaminated well water. Environmental Health Perspectives, 108(7), 675-678.
Kolenmainen M. T. (2004). Data exploration with self-organizing maos in environmental informatics and bioinformatics. Kuopio University Publications C. Natural and Environmental Science,167,1-73.
Koh, D. C., Kim, E. Y., Ryu, J. S., Ko, K. S. (2009). Factors controlling groundwater chemistry in an agricultural area with complex topographic and land use patterns in mid-western South Korea, Hydrological Processes, 23, 2915-2928.
Kowalkowskia, T., Zbytniewskia, R., Szpejnab, J., & Buszewskia, B. (2006). Application of chemometrics in river water classification, Water Research. 40(4), 744–752.
Lee, C. L., Chen, H. Y., Chuang, M. Y. (1996). Use of oyster, Crassostrea Gigas, and ambient water to assess metal pollution status of the charting coastal area, Taiwan, after the 1986 Green Oyster incident. Chemosphere, 33:2505-2532.
Lee, J. J., Liu, C. W., Jang, C. S., Liang, C. P. (2008). Zonal management of multi-purpose use of water from arsenic-affected aquifers by using a multi-variable indicator kriging approach. Journal of Hydrology, 359, 260-273.
Lee, J. J., Jang, C. S., Liu, C. W., Liang, C. P., Wang, S. W. (2009). Determining the probability of Arsenic in groundwater using a parsimonious model. Environmental Science and Technology, 43(17), 6662-6668.
Lemeshow, S., Teres, D., Avrunin, J. S., Pastides, H. (1988). Predicting the outcome of intensive care unit patients. Journal of the American Statistical Association, 83, 348-356.
Li, W. H., Tian, Y.Z., Shi, G. L., Guo, C.S., Li, X., Feng, Y. C. (2012). Concentrations and sources of PAHs in surface sediments of the Fenhe reservoir and watershed, China. Ecotoxicology and Environmental Safety, 75, 198-206.
Lin, T., Qin, T. W., Zheng, B. G., Li, Y. Y., Chen, Y., Guo, Z. G. (2013). Source apportionment of polycyclic aromatioc hydrocarbons in the Dahuofang Reservior, Northeast China, Environmental Minitoring Assessment, 185, 945-953.
Liou, S. M., Lo, S. L., Wang, S. H. (2004). A generalized water quality index for Taiwan. Environmental Monitoring and Assessment, 96, 35–52
Liu, A., Ming, J., Ankumah, R. O. (2005). Nitrate contamination in private wells in rural Alabama, United States. Science of the Total Environment, 346, 112-120.
Liu, C. W., Jang, C. S., Chen, C. P., Lin, C. N., Lou, K. L. (2008). Characterization of groundwater quality in Kinmen Island using multivariate analysis and geochemical modeling. Hydrological Processes, 22, 376-383.
Liu, C. W., Lin, C. N., Jang, C. S., Ling, M. P., Tsai, J. W. (2011). Assessing nitrate contamination and its potential health risk to Kinmen residents. Environmental Geochemistry and Health, 33, 503-514.
Liu, C. W., Lin, K. H., Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment, 313, 77–89.
Liu, Y., Chen, L., Huang, Q. H., Li, W. Y., Tang, Y. J., Zhao, J. F. (2009). Source apportionment of ploycyclic aromatic hydrocarbons ( PAHs) in surface sediments fo Huangpu River, Shanghai, China. Science of the Total Environment, 407:2931-2938.
Love, D., Hallbauer, D., Amos, A., Hranova, R. (2004). Factor analysis as a tool in groundwater quality management: two southern African case studies. Physics and Chemistry of the Earth, 29, 1135–1143.
Lu, J. H., Jiang, P. P., Wu, L. S., Chang A. C. (2008). Assessing soil quality data by positive factorization. Geoderma, 145,259-266.
Lu, K. L., Liu, C. W., Jang, C. S. (2012). Using multivariate statistical methods to assess the groundwater quality in an arsenic-contaminated area of Southwestern Taiwan. Environmental Monitoring and Assessment, 184, 6071–6085.
MacDonald, D. D., Ingersoll, C. G., Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystem. Archives of Environmental Contamination and Toxicology, 39, 20-31.
Malaguerra, F., Albrechtsen, H. J., Thorling, L., Binning, P. J. (2012). Pesticides in water supply wells in Zealand, Denmark : a statistical analysis. Science of the Total Environment, 414, 433-444.
Moller, S., Einax, J. W. (2013). Metals in sediments-spatail investigation of Saal River applying chemometric tools. Microchemical Journal, 110:233-238.
Morgan, C. L., Coggins, J. S., Eidman, V. R. (2000). Tradable permits for controlling nitrates in groundwater at the farm level : a conceptual model. Journal of Agricultural and Applied Economics, 32, 249-258.
Ni, F. Q., Liu, G. D., Ye, J. A., Ren, H. Z., Yang, S. C. (2009). ArcGIS-based rural drinking Water quality health risk assessment. Journal of Water Resource and Protection, 2, 128-135.
Nolan, B. T., Ruddy, B. C., Hitt, K. J., Helsel, D. R. (1997). Risk of nitrate in ground waters of the United Stats – A national perspective. Environmental Science and Technology, 31(8), 2229-2236.
Nolan B. T., Hitt, K. J., Ruddy, B. C. (2002). Probability of nitrate Contamination of Recently Recharged Groundwaters in Conterminous United States, Environ. Sci. and Tech, 36, 2138-2145.
Nosrati, K., Eeckhaut, M. V. D. (2012). Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd Plain, Iran. Environmental Earth Sciences, 65(1), 331-344.
Olsen, R. L., Chappell, R. W., Lofits, J. C. (2012). Water quality sample collection, data treatment and results presentation for principal components analysis – literature review and Illinois River watershed case study. Water Research, 46:3110-3122.
Papatheodoroua, G., Demopouloua, G., Lambrakisb, N. (2006). A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques, Ecological Modelling. 193, 759–776.
Papatheodorous, G., Lambrakis, N., Panagopoulos, G. (2007). Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer : an example from Grete, Greece. Hydrological Processes, 21, 1482-1495.
Peeters, L., Bacao, F., Lobo, V., Dassargues, A. (2006). Exploratory data analysis and clustering of multivariate spatial hydrogeological data by means of GEO3DSOM, a variation of Kohonen’s self-organizing map. Hydrology and Earth System Sciences Discussions, 3, 1487-1516.
Pekey, H., Dogan, G. (2013). Application of positive metrix factorization for the source apportionment of heavy metals in sediment: A comparison with a previous factor analysis study. Microchemical Journal, 106, 233-237.
Pinto, U., Maheshwari, B. L. (2011). River health assessment in peri-urban landscape: an application of multivariate analysis to identify the key variable. Water Research, 45, 3915-3924.
Reghunath, R., Murthy, T. R. S., Raghavan, B.R. (2002). The utility of multivariate statistical techniques in hydrogeochemical studies:an example from Karnataka, India. Water Research, 36, 2437–2442.
Reinikainen, S. P., Laine, P., Minkkinen, P., Paatero, P. (2001). Factor analytical study on water quality in Lake Saimaa, Finland, Fresenius J. Anal. Chem., 369, 727-732.
Reyment, R. A., Joreskog, K. H. (1993). Applied factor analysis in the natural sciences. New York: Cambridge University Press.
Riba, I., Delvalls, T. A., Forja, J. M., Gomez-Parra, A. (2002). Evaluating the heavy metal contamination in sediments from the GUADALQUIVIR estuary after the AZNALCOLLAR mining spill (SW SPAIN): a mulitivariate analysis approach. Environmental Monitoring and Assessment, 77, 191–207.
Rodriguez-Barroso, M. R., Garcia-Morales, J. L., Coello-Oviedo, M. D., Quiroga-Alonso, J. M. (2010). An assessment of heavy metal contamination in surface sediment using statistical analysis. Environmental Monitoring Assessment, 163, 489–501.
Rovira, J., Mari, M., Schuhmavher, M., Nadal, M., Domingo, J. L. (2011). Monitoring environmental Pollutants in the vicinity of a cement plant: a temporal study. Archives of Environmental Contamination and Toxicology, 60, 372-384.
Samsudin, M. S., Juahir, H., Zain, S. M., Adhan, N. H. (2011). Surface river water quality interpretation using environmetric techniques: case study at Perlis river basin, Malaysia. International Journal of Environmental Protection, 1(5), 1-8.
Sanchez-Martos, F., Aguilera, P. A., Garrido-Frenich, A., Torres, J. A., Pulido-Bosch, A. (2002). Assessment of groundwater quality by mean of self-organizing maps: Application in a semiarid area, Environmental Management. 30(5), 716-726.
Sharma, S., 1996. Applied multivariate techniques. New York: Wiley.
Shrestha S., Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of Fuji river basin, Japan. Environmental Modeling and Software, 22, 464-475.
Simeonova, P., Lovchinov, V., Dimitrov, D., Radulov, I. (2010). Environmetric approaches for lake pollution assessment. Environmental Monitoring and Assessment, 164, 233–248.
Simeonova, V., J. A. Stratis, C. Samara, G. Zachariadis, D. Voutsa, A. Anthemidis, M. Sofoniou, T. Kouimtzis, (2003). Assessment of the surface water in Northern Greece. Water Research, 37, 4119-4124.
Singh, K. P., Malik, A., Mohan, D., Sinha, A., (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-a case study. Water Research, 38, 980-3992.
Song, M. Y., Hwang, H. J., Kwak, I. S., Ji, C. W., Oh, Y.N., Youn, B. J., Chon, T. S. (2007). Self-organizing mapping of benthic macroinvertebrate communities implemented to community assessment and water quality evaluation. Ecological Modeling, 203, 18-25.
Soonthornonda, P., Christensen, E. R. (2008). Source apportionment of pollutants and flows of combined sewer wastewater.Water Research, 42, 1989-1998.
Subida, M. D., Berihuete, A., Drake, P., & Blasco, J. (2013). Multivariate method and artificial neural networks in the assessment of the response of infaunal assemblage to sediment metal contamination and organic enrichment. Science of the Total Environment, 450-451, 289-300.
Suk, H. J., Lee, K. K. (1999). Characterization of a Ground Water Hydrochemical system Through Multivariate Analysis: Clustering into Ground Water Zones. Ground Water, 37, 358-366.
Taiwan EPA. (2014). The database of the river water quality. Retrieved from http://wq.epa.gov.tw/ (in Chinese)
Tsai J. H., Peng B. H., Lee D. Z. (1995). PAH characteristics and genotoxicity in the ambient air of a petrochemical industry complex. Environment International, 21:47-56.
Thuong N. T., Yoneda, M., Ikegami, M., Takakura, M. (2013). Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches. Environmental Monitoring and Assessment, 185:8065–8075.
Tian, Y. Z., Li, W. H., Shi, G. L., Feng, Y. C., Wang, Y. Q. (2013). Relationship between PAHs and PCBs, and quantitative source apportionment of PAHs toxicity in sediments from Fenhe reservoir and watershed. Journal of Hazardous Materials, 248-249, 89-96.
Tobiszewski, M., Namiesnik, J. (2012). PAH diagnostic ratios for identification of pollution emission sources, Environmental Pollution, 162:110-119.
Tsakovsji, S., Simeonova, P., Simeonova, V. (2011). Sediment pollution assessment by Chemometric method. Ecological Chemistry and Engineering, 18:141-170.
USEPA (1989). Risk assessment guidance for Superfund, Volume 1, human health evaluation manual (part A). Report EPA/540/1-89/002, US Environmental Protection Agency, Washington, DC.
USEPA (2004). Risk assessment guidance for Superfund, Volume 1, human health evaluation manual (part E). Report EPA/540/R/99/005, US Environmental Protection Agency, Washington, DC.
USEPA (2008). EPA Positive Matris Factorization (PMF) 3.0 Fundamentals and User Guide, Report EPA/600/R-08/108, US Vaccaro, S., Sobiecka, E., Contini, S., Locoro, G., Free, G., Gawlik, B.M. (2007) The application of positive matrix factorization in the analysis, characterization and detection of contaminated soils. Chemosphere, 69, 1055-1063.
Venkastesharaju, K., Somashejar, R. K., & Prakash, K. L. (2010). Study of seasonal and spatial variation in surface water quality of Cauvery river stretch in Karnataka. Journal of Ecology and the Natural Environment, 2(1), 1-9.
Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankagas, J. (2000). SOM toolbox for Matlab 5, Report A57, Available at http://www.cis.hut.fi/projects/somtoolbox/
Veses, O., Mosteo, R., Ormad, M. P., Ovellerio, J. L. (2014). Classification of sediment by mean of self organizing maps and sediment quality guidelines in sites of the southern Spanish coastline. Mediterranean Marine Science, 15, 37-44.
Veses, O., Mosteo, R., Ormad, M. P., Ovellerio, J. L. (2013). Sediment quality assessment of two industrialized area of Spain, International Journal of Environmental Research, 7:1039-1046.
Voyslavov, T., Tsakovski, S., & Simeonov, V. (2012). Soil contamination interpretation using self-organizing maps, Global NEST Journal, 14(1), 3-9.
Wang, X. L., Lu, Y. L., Han, J. Y., He, G. Z., & Wang, T. Y. (2007). Identification of anthropogenic influence on water quality of rivers in Taihu watershed. Journal of Environmental Science, 19, 475-481.
Wang, X., Cai, Q., Ye, L., & Qu, X. (2012). Evaluation of spatial and temporal variation in stream water by multivariate statistical techniques: a case study of the Xiangxi River basin, China. Quaternary International, 1, 1-8.
Wen, L. S., Jiann, K. T., Liu, K. K. (2008). Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river. Estuarine, Coastal and Shelf Science, 78, 694-704.
Weyer P. J., Cerhan, J. R., Kross, B. C., Hallberg, G. R., Kantamneni, J., Breuer, G., Jones, M. P., Zheng, W., Lynch, C. F. (2001). Municipal Drinking Water Nitrate Level and Cancer Risk in Older Women : The Iowa Women’s Health Study. Epidemiology, 12(3), 327-338.
Yang C.Y., Cheng, M. F., Tsai, S. S., and Hsieh, Y. L. (1998). Calcium, Magnesium, and Nitrate in Drinking Water and Gastric Cancer Mortality. Jpn J Cancer Res, 89, 124-130.
Yang, T. M., Hsu, N. S., Chiu, C. C., Wang H. J., (2014). Applying the Taguchi method to river water pollution remediation strategy optimization. International Journal of Environmental Research and Public Health, 11, 4108-4124.
Yang, Y. H., Wang, C. Y., Guo, H. C., Hu, S., & Zhou, F. (2012). An integrated SOM-based multivariate approach for spatio-temporal patterns identification and source apportionment of pollution in complex river network. Environmental Pollution, 168, 71-79.
Yang, Y. H., Zhou, F., Guo, H. C., Sheng, H., Liu, H., & Dao, X. (2010). Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environmental Monitoring and Assessment, 170, 407–416.
Zelazny, M., Astel, A., Wolanin, A., & Malek, S. (2011). Spatiotemoral dynamics of spring and stream water chemistry in a high-mountain area. Environmental Pollution, 159, 1048-1057.
Zhou, F., Y. Liu, H. Guo, (2007). Application of multivariate statistical methods to water quality Assessment of the watercourses in Northwestern New Territories, Hong Kong. Environmental Monitoring and Assessment, 132, 1-13.
 
中文文獻
工業技術研究院。2013。99年至101年底泥品質管理計畫成果報告。行政院環境保護署
巨廷工程顧問股份有限公司。2011。金門地區地下水資源之管理及運用策略研究計畫成果報告。金門縣政府。
台灣大學生物環境系統工程學系。2004。地下水水質污染潛勢與海水入侵之評估計畫成果報告。金門縣政府。
台灣大學生物環境系統工程學系。2007。金門地下水資源調查分析。經濟部水利署。
富利業環保工程股份有限公司。2010。金門縣99年度土壤及地下水污染調查及查證工作計畫成果報告。金門縣環境保護局,
富利業環保工程股份有限公司。2009。金門縣98年度土壤及地下水污染調查及查證工作計畫成果報告。金門縣環境保護局。
富利業環保工程股份有限公司。2008。金門縣96年度土壤及地下水污染調查及查證工作計畫成果報告。金門縣環境保護局。
劉振宇。2008。集水區上游南投地區地下水硝酸鹽氮污染潛勢評估。農業非點源污染研討會。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18311-
dc.description.abstract多變量統計方法為分析環境監測資料重要而有效率的工具,可將監測數據加值深度分析,以發掘環境資料內涵,獲取更多且有價值的環境資訊。本研究以金門地下水品質、淡水河水質及二仁溪底泥品質為研究區域,探討監測數據資料之特徵,並發掘其品質問題,並研提問題對策或建議。
本研究在金門地下水水質分析案例中,係運用因子分析(Factor analysis, FA)、群集分析(Cluster analysis, CA) 及自組織映射圖(Self organizing map, SOM)等多變量分析工具詮釋水質資料,探討空間及時間變異特性,分析結果顯示硝酸鹽及有機污染因子、氧化因子及鹽化因子為支配當地地下水水質變異之控制因子。此外,金門地下水硝酸鹽污染嚴重問題,本研究建立邏輯式迴歸(Logistic regression, LR)統計模式,顯示地下水硝酸鹽氮超過飲用水水質標準之機率與井位土壤種類、地下水之導電度(EC) 及酸鹼值(pH)等參數顯著相關,利用該特性可快速評估民井地下水是否受到硝酸鹽氮污染。
其次,在淡水河水質監測資料分析之研究案例,係運用多變量分析工具FA、CA及SOM可整合詮釋水質監測資料,探討水質時空變化特性,發掘污染分布特性及水質改善變化趨勢,除顯示淡水河水質過去二十年期間已有大幅改善外,並建議升級污水廠及加強大漢溪上游水土保持對策,可進一步改善水質。另基於空間水質相似性,可據以簡化10處水質監測站,而不會遺失重要的水質資訊;另再結合區別分析(Discriminate analysis, DA)可鑑別出在決定污染程度上有顯著差異的水質項目,研究成果可供簡化水質監測計畫參考。另外,本案例研究亦再就綜合考慮近三年水質之時間及空間相似性,發現短期內淡水河水質變化受降雨量影響顯著,在中、下游河段,因降雨使有機污染濃度因稀釋作業而降低,但在中、上游河段水質,因逕流沖刷使懸浮固體物濃度隨降雨而增加,該現象可供現行水質監測採樣時間調整參考。
最後,二仁溪底泥品質監測資料分析之案例研究,係運用SOM及FA探討在雨、乾季時之空間變化特性,結果顯示乾季時支流三爺宮溪受傳統電鍍業重金屬廢水污染嚴重;在雨季時,受有異常多元芳香烴污染明顯。另進一步分析底泥重金屬累積,以Cr及Cu重金屬污染累積情形最為嚴重,評估污染生態風險,在三爺宮溪已達中度或高度生態危害風險,但對人體健康危害HI (Hazardous Index)值小於1。至於多元芳香烴污染程度,除在S6採樣點受異常事件污染外,全流域尚無顯著的生態風險,但人體致癌健康風險達10-4數量級,屬中度健康危害風險。運用正矩陣因子法(Positive Matrix Factorization, PMF)除分析主要污染源之貢獻比例外,可再針對風險評估結果,進一步推估污染物主要來源對危害風險之貢獻比例,結果二仁溪及支流三爺宮溪經攝食途徑造成重金屬危害健康風險之最主要貢獻,分別為地質及非點源污染(46%)、電鍍及表面金屬處理業點源污染(47%)為最高;另二仁溪底泥多元芳香烴毒性當量之貢獻比例,以石化工業區燃燒來源達56%最高,量化主要污染來源對污染物總量及對應所造成之健康風險的貢獻比例,可供改善底泥品質對策研擬參考。
zh_TW
dc.description.abstractMultivariate methods are very efficient to interpret environmental monitoring data in depth. We can explore latent intension and get more worthy insight from monitoring data by using multivariate methods. This study used groundwater quality of Kinmen Island, water quality of Tamsui River, and sediment quality of Erjen River as case studies to comprehend the characteristics of water and sediment quality monitoring data by applying multivariate methods. These studies could find out the core issues to the water and sediment quality from the comprehended characteristics, and then thses studies suggested measures to improve thses issues.
The first case study applied multivariate methods, involving cluster analysis (CA), factor analysis (FA), discriminate analysis (DA) and self organizing map (SOM), to interpret the spatial and temporal characteristics of groundwater quality in Kinmen. The nitrate and organic contamination is the major factor dominating groundwater quality in Kinmen. For further assessing nitrate contamination, this study used logistic regression (LR) to find that the soil type, pH, and EC have close relationship of nitrate contamination. The established LR model can be used for preliminary evaluation of nitrate contamination in groundwater. And the application of the model is to predict the probability of exceeding nitrate threshold and to draw the probability map of nitrate contamination. The model can also be applied to develop a handy tool using EC and pH for preliminary evaluation of nitrate contamination in private wells water.
The secondary case study also integrated these aforementioned multivariate methods to evaluate the spatial and temporal variance of water quality in the Tamsui River. This work indicated that the water quality of Tamsui River has been improving to better status and monitoring station can be simplified. This work plotted a spatial pattern using the four latent factor scores and identified 10 redundant monitoring stations near each upstream station with the same score pattern. Finally, for further improving water quality of the Tamsui River, this study also used positive matrix factorization (PMF) to identify the ratio of contribution from the each major pollution. The result of this work can suggest Taiwan EPA adopt some measures to eliminate major pollution.
The third case study explored and compared spatial characteristics of sediment quality of the Erjen River in rainy and dry season by coupling FA and SOM methods. The result of FA and SOM indicated the wastewater that discharged from metal electroplate plants polluted seriously the sediment of the Sanyegong Creek in dry season, but PAHs also polluted unusually the sediment in rainy season. The work also assessed accumulation of heavy metal by using Igeo index and found out two heavy metals, Cr and Cu, accumulated heavily in sediment. The biological risk of heavy metal was evaluated as moderate and high risk in the Erjen River, but hazardous index value of the health risk caused by heavy metal was less than 1. Furthermore, this work used positive matrix factorization method (PMF) to estimate the contribution ratio of the each major heavy metal pollution source to health risk. The geological and nonpoint source of heavy metal contributed 46% health risk in the main stream of the Erjen River and the wastewater from metal electroplate plant also contributed 46% health risk in the tributary stream of the Erjen River, the Sanyegong Creek. As to the assessment of PAHs pollution in sediment, the biological risk caused by PAHs was very little except the unusual polluted event in S6 site. But the carcinogenic risk was the 10-4 level and could be assessed as moderate health risk. The petrochemical industry complex source contributed 56% toxicity caused by PAHs in sediment of the Erjen River.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:59:15Z (GMT). No. of bitstreams: 1
ntu-104-D00622001-1.pdf: 4724890 bytes, checksum: 750d2488f9d25a89b1e3b8e7f20243ef (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents第一章 前言…………………………………...…………………………..1
1.1 研究緣起…………………….……………………………………….1
1.2 研究目的……………………..……………………………………….2
1.3 研究架構…………………...………………………………………….3
第二章 文獻回顧………………………………….……………5
2.1 傳統多變量方法在水質資料分析之應用……………..……………..5
2.2 自組織映射圖法在水質資料分析之應用………………………….9
2.3 邏輯式迴歸統計在水質污染評估之應用……………..……………10
2.4 正矩陣因子法在水體污染來源分析之應用………………..………11
2.5 小結………………………………………………………………….12
第三章 研究區域及方法………………………...………………………14
3.1 研究區域……….……………………..…….……………….……….14
3.1.1 金門地區…………………….……………….…………………….15
3.1.2 淡水河流域……………………..………………………………….16
3.1.3 二仁溪流域…………………….……………….………………….19
3.2研究方法……………….………………….………………………….20
3.2.1 傳統多變量分析方法……………………..……………….………20
3.2.2 自組織映射圖法…………………………………………………23
3.2.3 邏輯式迴歸統計………………………………..…….……………25
3.2.4 正矩陣因子法……………….…………………….………………26
3.2.5 分析應用軟體……………….………….………….....……………27
3.3 研究資料及分析流程……….………….…………........……………28
3.3.1 研究資料來源及時間……….…………….………….....…………28
3.3.2 研究資料分析流程……….………….…………….....……………29
第四章 金門地下水水質特性評估分析結果……………........………..31
4.1 地下水水質空間特性及污染分析………………………......………32
4.1.1 資料收集及處理……………….….…….…………………..……..32
4.1.2 結果及討論……………….……………..……….…….……….33
4.1.2.1因子分析及控制水質之因子………………………….…………33
4.1.2.2群集分析及水質空間相似性………………………….…………35
4.1.2.3地下水污染防治對策之討論………………………….…………39
4.1.3 小結……………….……………….…………….......…….……….40
4.2 地下水水質空間特性及時間變異趨勢……………………………41
4.2.1 資料收集及處理….……………….……………………………….41
4.2.1.1 研究資料收集….………………………………………………41
4.2.1.2 研究資料處理….……………….………………………..………41
4.2.2 結果及討論….……………….……………………………….……43
4.2.2.1 最適自組織映射圖大小分析….………………………………43
4.2.2.2空間分布特性….……………….……………………………..….44
4.2.2.3時間變異趨勢….……………………………………………...….49
4.2.3 小結….………….…………………………….…………….......….52
4.3 地下水硝酸鹽污染評估及預測….………….……………………53
4.3.1 資料收集及處理….……………….……………………………….53
4.3.1.1 研究資料收集….……………….………………………………..53
4.3.1.2 研究資料處理….……………….…………….…………….……53
4.3.2 結果及討論….……………………………….…………………….55
4.3.2.1硝酸鹽污染之邏輯式迴歸統計模式建立…..………………..….55
4.3.2.2硝酸鹽污染機率及空間分布特性….………….……………..….57
4.3.2.3金門地下水硝酸鹽污染邏輯式統計模式之運用.………………58
4.3.2.3.1民井地下水硝酸鹽污染快篩工具….………….………………58
4.3.2.3.2污染潛勢地圖供地下水分區管理………..……………………61
4.3.3 小結….…….…….…….…….…….……..…….……………….….61
4.4 金門地下水水質特性綜合討論….…………………………………62
第五章 淡水河流域水質特性分析….…….……..…………………..….63
5.1 空間特性評估及監測計畫調整….…….…………….……………64
5.1.1 資料收集及處理….…….…….……..……………..………………64
5.1.1.1 研究資料收集….…….……..…….……………….…………….64
5.1.1.2 研究資料處理….…….…….…….………………………………65
5.1.2 結果及討論….…….……..…….…………………………………65
5.1.2.1監測站水質空間相似性及污染河段分區…………………..…65
5.1.2.2支配水質變化之主要因子及其型式……………………………68
5.1.2.3具空間變異顯著性之水質項目…….…….……………………70
5.1.2.4淡水河流域水質監測計畫調整討論……………………………74
5.1.3 小結…….…….…….…….……..….………………………….76
5.2 時間變異特性及整治對策建議…………………………………77
5.2.1 資料收集及處理…………………….……….…………………….77
5.2.1.1 研究資料收集………………………………………………….77
5.2.1.2 研究資料處理….……….…….…………….………………….78
5.2.2 結果及討論….…….……….…….………………………………79
5.2.2.1運用SOM分析水質時空變化之特性………….....……….……..79
5.2.2.2運用FA分析水質時空變化之特性….…………...….…………..82
5.2.2.3淡水河水質優化措施之建議….…….……………..….…………85
5.2.3 小結….…….…….…….…….…………………………..…………85
5.3時空相似性分析及污染源解析….…….…….……………...……….86
5.3.1 資料收集及處理….…….…….……………….……..…………….86
5.3.1.1 研究資料收集….……….…….……………….…………………86
5.3.1.2 研究資料處理….……….…….…….…………...…………….…86
5.3.2 結果及討論….…….…….…….………………………………..….88
5.3.2.1 空間特性分析….…….…….…………………………….……88
5.3.2.2 時間特性分析….…….…….………………..……..…………….90
5.3.2.3降雨對時空特性之影響….…….…………..…….………………91
5.3.3 小結….…….…….……..………….….………..……..….…….…..93
5.4 淡水河流域水質特性綜合討論….….………………………………94
第六章 二仁溪底泥品質特性分析….……………..……………………96
6.1 乾溼季空間分布特性分析….……….………….....…...……………97
6.1.1 資料收集及處理….…….………..………………..…..…...………97
6.1.1.1 資料收集….…….………..…..…..…….…………...….………97
6.1.1.2 資料處理….…….…………………….………………………….97
6.1.2 結果及討論….…….…………….………...….……………..……99
6.1.2.1以SOM方法分析底泥品質乾溼季空間分布特性………………99
6.1.2.2 以FA方法探索底泥品質乾溼季空間分布特性………………104
6.1.2.3 運用SOM及FA方法之比較討論….……..…….………..……107
6.1.3 小結….…….…….………….………………………..….….…….108
6.2 重金屬污染評估及來源分析….……………………….…….…….110
6.2.1 資料收集及處理….…….…….……….……………...….………110
6.2.1.1 資料收集….…….…….….….………….…………….………110
6.2.1.2 資料處理….…….…….……………….…….…….………….110
6.2.2 結果及討論….…….……….……………..…..…..…….………111
6.2.2.1 底泥重金屬污染程度分析….………………...….…….………111
6.2.2.2 底泥重金屬污染生態風險評估….…………….….….………116
6.2.2.3 底泥重金屬污染健康風險評估…..….…………….…..………120
6.2.2.4 底泥重金屬污染時空分布之特性分析……….............….……125
6.2.2.5 底泥重金屬污染特性因子分析….…………………….……127
6.2.2.6 底泥重金屬污染來源比例分布之統計推估…………..……..130
6.2.3 小結….…….…….……………………....……………….………132
6.3 多元芳香烴污染評估及來源分析….…….……………...…….…134
6.3.1 資料收集及處理….…….…….….…...….……………….………134
6.3.1.1 資料收集….…….…….………...…….…….…………………134
6.3.1.2 資料處理….…….…….….…….…………….……..….………134
6.3.2 結果及討論….…….…….….…………………………….………135
6.3.2.1多元芳香烴濃度及其組成分布分析………………..…….……135
6.3.2.2 底泥多元芳香烴污染風險評估分析….……………….….….140
6.3.2.2.1 多元芳香烴生態風險評估分析….…………………..………140
6.3.2.2.2 多元芳香烴毒性評估分析….…….…………………………142
6.3.2.2.3 多元芳香烴人體健康風險評估分析….………………….…145
6.3.2.3多元芳香烴來源指紋特性分析….…….……………….………148
6.3.2.4多元芳香烴時空分布相似性分析….…….……………………151
6.3.2.5 底泥多元芳香烴污染特性因子分析….……..…………..……154
6.3.2.6多元芳香烴來源統計分析….…….……..……………..………156
6.3.3 小結….…….……….…………………………….……….………161
6.4 二仁溪底泥品質特性綜合討論….………………….……………163
第七章 結論及建議………….….…….…………….………………..165
7.1 結論……….…….….…….………………………………….……165
7.2建議……….……….…….…………………………….………….167
參考文獻….…….….………………………………….……………….168
附錄:作者簡歷….…….……………………….……………….……185
dc.language.isozh-TW
dc.title整合多變量方法評估水體及底泥品質時空特性之研究zh_TW
dc.titleAssessment of Spatial-Temporal Characteristics of Water and Sediment Quality using Integrated Multivariate Methodsen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee譚義績教授,江漢全教授,余化龍副教授,張誠信副教授
dc.subject.keyword水質評估,因子分析,自組織映射圖,底泥品質,風險評估,正矩陣因子法,zh_TW
dc.subject.keywordwater quality assessment,factor analysis,self organizing map,sediment quality,risk assessment,positive matrix factorization,en
dc.relation.page188
dc.rights.note未授權
dc.date.accepted2015-01-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved