Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18271
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林立虹(Li-Hung Lin)
dc.contributor.authorYi-Ping Chiuen
dc.contributor.author邱怡萍zh_TW
dc.date.accessioned2021-06-08T00:57:26Z-
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-09
dc.identifier.citationReferences
Alperin M., Hoehler T. (2010). The ongoing mystery of sea-floor methane. Science 329: 288-289.
Amann R.I., Binder B.J., Olson R.J., Chisholm S.W., Devereux R., Stahl D.A. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology 56: 1919-1925.
Bagheri M., Amoozegar M.A., Didari M., Makhdoumi-Kakhki A., Schumann P., Sproer C., Sanchez-Porro C., Ventosa A. (2013). Marinobacter persicus sp. nov., a moderately halophilic bacterium from a saline lake in Iran. Antonie Van Leeuwenhoek 104: 47-54.
Baker G., Smith J., Cowan D.A. (2003). Review and re-analysis of domain-specific 16S primers. Journal of Microbiological Methods 55: 541-555.
Baricz A., Coman C., Andrei A.Ş., Muntean V., Keresztes Z.G., Păuşan M., Alexe M., Banciu H.L. (2014). Spatial and temporal distribution of archaeal diversity in meromictic, hypersaline Ocnei Lake (Transylvanian Basin, Romania). Extremophiles 18: 399-413.
Beal E.J., House C.H., Orphan V.J. (2009). Manganese-and iron-dependent marine methane oxidation. Science 325: 184-187.
Boetius A., Ravenschlag K., Schubert C.J., Rickert D., Widdel F., Gieseke A., Amann R., Jorgensen B.B., Witte U., Pfannkuche O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623-626.
Bonanno G. (2013). Nitrogen multitemporal monitoring through mosses in urban areas affected by mud volcanoes around Mt. Etna, Italy. Environmental Monitoring and Assessment 185: 8115-8123.
Brandt K., Vester F., Jensen A., Ingvorsen K. (2001). Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake (Utah, USA). Microbial ecology 41: 1-11.
Caracausi A., Favara R., Giammanco S., Italiano F., Paonita A., Pecoraino G., Rizzo A., Nuccio P. (2003). Mount Etna: Geochemical signals of magma ascent and unusually extensive plumbing system. Geophysical Research Letters 30.
Cha I.-T., Yim K.J., Song H.S., Lee H.-W., Hyun D.-W., Kim K.-N., Seo M.-J., Kim D., Choi J.-S., Lee S.-J. (2014). Halobellus rufus sp. nov., an extremely halophilic archaeon isolated from non-purified solar salt. Antonie Van Leeuwenhoek 105: 925-932.
Chao A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11: 265-270.
Cheng T.W., Chang, Y.H., Tang, S.L., Tseng, C.H., Chiang, P.W., Chang, K.T., Sun, C.H., Chen, Y.G., Kuo, H.C., Wang, C.H., Chu, P.H., Song, S.R., Wang, P.L., Lin, L.H. (2012). Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano. ISME J 6: 2280-2290.
Chiodini G., D'Alessandro W., Parello F. (1996). Geochemistry of gases and waters discharged by the mud volcanoes at Paterno, Mt. Etna (Italy). Bulletin of volcanology 58: 51-58.
Conrad R. (2005). Quantification of methanogenic pathways using stable carbon isotope signartures: a review and proposal. Organic Geochemistry 36: 739-752.
Conrad R. (2009). The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports 1: 285-292.
Curry C.L. (2007). Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochemical Cycles 21: GB4012.
D'Alessandro W., De Gregorio S., Dongarra G., Gurrieri S., Parello F., Parisi B. (1997). Chemical and isotopic characterization of the gases of Mount Etna (Italy). Journal of Volcanology and Geothermal Research 78: 65-76.
de Bok F.A., van Leerdam R.C., Lomans B.P., Smidt H., Lens P.N., Janssen A.J., Stams A.J. (2006). Degradation of methanethiol by methylotrophic methanogenic archaea in a lab-scale upflow anaerobic sludge blanket reactor. Applied and Environmental Microbiology 72: 7540-7547.
Dimitrov L.I. (2002). Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Science Reviews 59: 49-76.
Dorador C., Busekow A., Vila I., Imhoff J.F., Witzel K.-P. (2008). Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile. Extremophiles 12: 405-414.
Dunfield P.F. (2009). Methanotrophy in extreme environments. Encyclopedia of Life. eLS.
Eder W., Schmidt M., Koch M., Garbe‐Schonberg D., Huber R. (2002). Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine–seawater interface of the Shaban Deep, Red Sea. Environmental Microbiology 4: 758-763.
Etiope G. (2002). Methane emission from the mud volcanoes of Sicily (Italy). Geophysical Research Letters 29: 56-51–56-54.
Etiope G., Caracausi A., Favara R., Italiano F., Baciu C. (2002). Methane emission from the mud volcanoes of Sicily (Italy). Geophysical Research Letters 29: 56-51-56-54.
Etiope G., Klusman R.W. (2002). Geologic emissions of methane to the atmosphere. Chemosphere 49: 777-789.
Etiope G., Lassey K.R., Klusman R.W., Boschi E. (2008). Reappraisal of the fossil methane budget and related emission from geologic sources. Geophysical Research Letters 35: L09307.
Etiope G., Feyzullayev, A., and Baciu, C.L. (2009). Terrestrial methane seeps and mud volcanoes: A global perspective of gas origin. Marine and Petroleum Geology 26: 333-344.
Fitz-Gibbon S., Tomida S., Chiu B.-H., Nguyen L., Du C., Liu M., Elashoff D., Erfe M.C., Loncaric A., Kim J. (2013). Propionibacterium acnes strain populations in the human skin microbiome associated with acne. Journal of Investigative Dermatology 133: 2152-2160.
Forget N., Murdock S., Juniper S. (2010). Bacterial diversity in Fe‐rich hydrothermal sediments at two South Tonga Arc submarine volcanoes. Geobiology 8: 417-432.
Frank K.L., Rogers D.R., Olins H.C., Vidoudez C., Girguis P.R. (2013). Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents. ISME J 7: 1391-1401.
Grassa F., Capasso G., Favara R., Inguaggiato S., Faber E., Valenza M. (2004). Molecular and isotopic composition of free hydrocarbon gases from Sicily, Italy. Geophysical Research Letters 31: L06607.
Gruber C., Legat A., Pfaffenhuemer M., Radax C., Weidler G., Busse H.-J., Stan-Lotter H. (2004). Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8: 431-439.
Haroon M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G.W. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500: 567-570.
Harris J.K., Caporaso J.G., Walker J.J., Spear J.R., Gold N.J., Robertson C.E., Hugenholtz P., Goodrich J., McDonald D., Knights D. (2012). Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 7: 50-60.
Heyer J., Berger U., Hardt M., Dunfield P.F. (2005). Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. International Journal of Systematic and Evolutionary Microbiology 55: 1817-1826.
Hinrichs K.-U., Hayes J.M., Sylva S.P., Brewer P.G., DeLong E.F. (1999). Methane-consuming archaebacteria in marine sediments. Nature 398: 802-805.
Hirschler-Rea A., Cravo-Laureau C., Casalot L., Matheron R. (2012). Methanogenic octadecene degradation by syntrophic enrichment culture from brackish sediments. Curr Microbiol 65: 561-567.
Hoehler T., Gunsalus R., McInerney M. (2010). Environmental constraints that limit methanogenesis. Handbook of Hydrocarbon and Lipid Microbiology. Springer. pp 635-654.
Hou S., Makarova K.S., Saw J., Senin P., Ly B.V., Zhou Z., Ren Y., Wang J., Galperin M.Y., Omelchenko M.V. (2008). Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3: 11.
Hu S., Zeng R.J., Burow L.C., Lant P., Keller J., Yuan Z. (2009). Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environmental Microbiology Reports 1: 377-384.
Huber H., Hohn M.J., Rachel R., Fuchs T., Wimmer V.C., Stetter K.O. (2002). A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417: 63-67.
Jorgensen B.B., Boetius A. (2007). Feast and famine—microbial life in the deep-sea bed. Nature Reviews Microbiology 5: 770-781.
Jaakkola S.T., Zerulla K., Guo Q., Liu Y., Ma H., Yang C., Bamford D.H., Chen X., Soppa J., Oksanen H.M. (2014). Halophilic Archaea Cultivated from Surface Sterilized Middle-Late Eocene Rock Salt Are Polyploid. PLoS One 9: e110533.
Jannasch H.W., Wirsen C.O., Nelson D.C., Robertson L.A. (1985). Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. International Journal of Systematic Bacteriology 35: 422-424.
Jimenez N., Vinas M., Guiu-Aragones C., Bayona J.M., Albaiges J., Solanas A.M. (2011). Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential. Applied Microbiology and Biotechnology 91: 823-834.
Kaluzhnaya M., Khmelenina V., Eshinimaev B., Suzina N., Nikitin D., Solonin A., Lin J.-L., McDonald I., Murrell C., Trotsenko Y. (2001). Taxonomic Characterization of New Alkaliphilic and Alkalitolerant Methanotrophs from Soda Lakes of the Southeastern Transbaikal Region and description of Methylomicrobium buryatense sp. nov. Syst Appl Microbiol 24: 166-176.
Kalyuzhnaya M.G., Khmelenina V., Eshinimaev B., Sorokin D., Fuse H., Lidstrom M., Trotsenko Y. (2008). Classification of halo (alkali) philic and halo (alkali) tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. International Journal of Systematic and Evolutionary Microbiology 58: 591-596.
Kersters K., Devos, P., Gillis, M., Swings, J., Vandamme, P., Stackebrandt, E. (2006). Introduction to the Proteobacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria, pp. 3–37. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
Kindaichi T., Awata T., Suzuki Y., Tanabe K., Hatamoto M., Ozaki N., Ohashi A. (2011). Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment. Microbes and Environments 26: 67-73.
Kirschke S., Bousquet P., Ciais P., Saunois M., Canadell J.G., Dlugokencky E.J., Bergamaschi P., Bergmann D., Blake D.R., Bruhwiler L. (2013). Three decades of global methane sources and sinks. Nature Geoscience 6: 813-823.
Kjeldsen K.U., Jakobsen T.F., Glastrup J., Ingvorsen K. (2010). Desulfosalsimonas propionicica gen. nov., sp. nov., a halophilic, sulfate-reducing member of the family Desulfobacteraceae isolated from a salt-lake sediment. International Journal of Systematic and Evolutionary Microbiology 60: 1060-1065.
Kletzin A. (2007). Metabolism of inorganic sulfur compounds in Archaea. Archaea Evolution, Physiology, and Molecular Biology: 261-274.
Knittel K., Boetius A. (2009). Anaerobic oxidation of methane: progress with an unknown process. Annual review of microbiology 63: 311-334.
Kopf A.J. (2002). Significance of mud volcanism. Reviews of Geophysics 40: 2-1-2-52.
Lucker S., Wagner M., Maixner F., Pelletier E., Koch H., Vacherie B., Rattei T., Damste J.S.S., Spieck E., Le Paslier D. (2010). A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of Sciences 107: 13479-13484.
Lane D. (1991). 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics: 125-175.
Lazar C.S., L'Haridon, S., Pignet, P., Toffin, L. (2011). Archaeal populations in hypersaline sediments underlying orange microbial mats in the Napoli mud volcano. Applied and Environmental Microbiology 77: 3120-3131.
Lide D., Frederikes H.P.R. (1995). CRC handbook of chemistry and physics, 76th Edition, CRC Press, Inc., Boca Raton, FL.
Liesack W., Finster K. (1994). Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. International Journal of Systematic Bacteriology 44: 753-758.
Lin L.-H., Wu L.-W., Cheng T.-W., Tu W.-X., Lin J.-R., Yang T.F., Chen P.-C., Wang Y., Wang P.-L. (2014). Distributions and assemblages of microbial communities along a sediment core retrieved from a potential hydrate-bearing region offshore southwestern Taiwan. Journal of Asian Earth Sciences 92: 276-292.
Liotta M., Grassa F., D’Alessandro W., Favara R., Gagliano Candela E., Pisciotta A., Scaletta C. (2013). Isotopic composition of precipitation and groundwater in Sicily, Italy. Applied Geochemistry 34: 199-206.
Liu Y., Whitman W.B. (2008). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences 1125: 171-189.
Liu Y., Beer L.L., Whitman W.B. (2012). Sulfur metabolism in archaea reveals novel processes. Environmental Microbiology 14: 2632-2644.
Liu Z., Lozupone C., Hamady M., Bushman F.D., Knight R. (2007). Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Research 35: e120.
Lloyd K.G., Alperin M.J., Teske A. (2011). Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea. Environmental Microbiology 13: 2548-2564.
Lloyd K.G., Lapham, L., Teske, A. (2006). An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Applied and Environmental Microbiology 72: 7218-7230.
Mardis E.R. (2008). Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9: 387-402.
McGenity T.J. (2010). Methanogens and methanogenesis in hypersaline environments. Handbook of Hydrocarbon and Lipid Microbiology. Springer. pp 665-680.
Miyashita A., Mochimaru H., Kazama H., Ohashi A., Yamaguchi T., Nunoura T., Horikoshi K., Takai K., Imachi H. (2009). Development of 16S rRNA gene‐targeted primers for detection of archaeal anaerobic methanotrophs (ANMEs). FEMS microbiology letters 297: 31-37.
Mur R., Skulberg O.M., Utkilen H. (1999). Cyanobacteria in the Environment. Chapter 2, pp. 15-40. In: Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. eds. Chorus, I. and Bartram, J. London and New York. E&FN Spon,
416 pp. .
Nusslein B., Chin K.J., Eckert W., Conrad R. (2001). Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel). Environmental Microbiology 3: 460-470.
Nazaries L., Murrell J.C., Millard P., Baggs L., Singh B.K. (2013). Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environmental Microbiology 15: 2395-2417.
Niemann H., Elvert M., Hovland M., Orcutt B., Judd A., Suck I., Gutt J., Joye S., Damm E., Finster K. (2005). Methane emission and consumption at a North Sea gas seep (Tommeliten area). Biogeosciences Discussions 2: 1197-1241.
Niemann H., Losekann T., De Beer D., Elvert M., Nadalig T., Knittel K., Amann R., Sauter E.J., Schluter M., Klages M. (2006). Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443: 854-858.
Offre P., Spang A., Schleper C. (2013). Archaea in biogeochemical cycles. Annual review of microbiology 67: 437-457.
Ollivier B., Caumette P., Garcia J.-L., Mah R. (1994). Anaerobic bacteria from hypersaline environments. Microbiological reviews 58: 27-38.
Op den Camp H.J., Islam T., Stott M.B., Harhangi H.R., Hynes A., Schouten S., Jetten M.S., Birkeland N.K., Pol A., Dunfield P.F. (2009). Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environmental Microbiology Reports 1: 293-306.
Oren A. (2011). Thermodynamic limits to microbial life at high salt concentrations. Environmental Microbiology 13: 1908-1923.
Parkes R.J., Cragg B.A., Banning N., Brock F., Webster G., Fry J.C., Hornibrook E., Pancost R.D., Kelly S., Knab N. (2007). Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environmental Microbiology 9: 1146-1161.
Peet R.K. (1974). The measurement of species diversity. Annual Review of Ecology and Systematics 5: 285-307.
Pester M., Schleper C., Wagner M. (2011). The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Current opinion in microbiology 14: 300-306.
Phelps T., Zeikus J. (1984). Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Applied and Environmental Microbiology 48: 1088-1095.
Pielou E. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131-144.
Porter D., Roychoudhury A.N., Cowan D. (2007). Dissimilatory sulfate reduction in hypersaline coastal pans: activity across a salinity gradient. Geochimica et Cosmochimica Acta 71: 5102-5116.
Reeburgh W.S. (2007). Oceanic methane biogeochemistry. Chemical Reviews 107: 486-513.
Rotthauwe J.-H., Witzel K.-P., Liesack W. (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology 63: 4704-4712.
Ruff S.E., Arnds J., Knittel K., Amann R., Wegener G., Ramette A., Boetius A. (2013). Microbial communities of deep-sea methane seeps at Hikurangi Continental Margin (New Zealand). PLoS One 8: e72627.
Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537-7541.
Schloss P.D., Westcott S.L. (2011). Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Applied and Environmental Microbiology 77: 3219-3226.
Schneider D., Arp G., Reimer A., Reitner J., Daniel R. (2013). Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the kiritimati atoll, central pacific. PLoS One 8: e66662.
Shannon C.E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review 5: 3-55.
Sikorski J., Stackebrandt E., Wackernagel W. (2001). Pseudomonas kilonensis sp. nov., a bacterium isolated from agricultural soil. International Journal of Systematic and Evolutionary Microbiology 51: 1549-1555.
Simpson E.H. (1949). Measurement of diversity. Nature 163: 688.
Singer E., Emerson D., Webb E.A., Barco R.A., Kuenen J.G., Nelson W.C., Chan C.S., Comolli L.R., Ferriera S., Johnson J. (2011). Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe (II) oxidizing Zetaproteobacterium. PLoS One 6: e25386.
Slobodkina G.B., Reysenbach A.-L., Panteleeva A., Kostrikina N., Wagner I., Bonch-Osmolovskaya E., Slobodkin A.I. (2012). Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron (III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. International Journal of Systematic and Evolutionary Microbiology 62: 2463-2468.
Sogin M.L., Morrison H.G., Huber J.A., Welch D.M., Huse S.M., Neal P.R., Arrieta J.M., Herndl G.J. (2006). Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences 103: 12115-12120.
Sorokin D.Y., Tourova T.P., Bezsoudnova E.Y., Pol A., Muyzer G. (2007). Denitrification in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanoxidans gen. nov. sp. nov.–a moderately halophilic chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium from hypersaline lakes. Archives of microbiology 187: 441-450.
Sorokin D.Y., Tourova T., Musmann M., Muyzer G. (2008a). Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 12: 431-439.
Sorokin D.Y., Tourova T.P., Galinski E.A., Muyzer G., Kuenen J.G. (2008b). Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats. International Journal of Systematic and Evolutionary Microbiology 58: 2890-2897.
Takai K., Horikoshi K. (2000). Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Applied and Environmental Microbiology 66: 5066-5072.
Takeuchi M., Yoshioka H., Seo Y., Tanabe S., Tamaki H., Kamagata Y., Takahashi H.A., Igari S., Mayumi D., Sakata S. (2011). A distinct freshwater‐adapted subgroup of ANME‐1 dominates active archaeal communities in terrestrial subsurfaces in Japan. Environmental Microbiology 13: 3206-3218.
Tassi F., Bonini M., Montegrossi G., Capecchiacci F., Capaccioni B., Vaselli O. (2012). Origin of light hydrocarbons in gases from mud volcanoes and CH4-rich emissions. Chemical Geology 294: 113-126.
Teske A., Sorensen K.B. (2007). Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2: 3-18.
Trotsenko Y.A., Khmelenina V.N. (2002). Biology of extremophilic and extremotolerant methanotrophs. Archives of microbiology 177: 123-131.
Trotsenko Y.A., Murrell J.C. (2008). 5 Metabolic Aspects of Aerobic Obligate Methanotrophy. Advances in Applied Microbiology 63: 183-230.
Ussler III W., Paull C.K. (2008). Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles. Earth and Planetary Science Letters 266: 271-287.
Valentine D., L., Chidthaisong, A., Rice, A., Reeburgh, W.S., Tyler, S.C. (2004). Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens. Geochimica et Cosmochimica Acta 68: 1571-1590.
Waldron P.J., Petsch S.T., Martini A.M., Nusslein K. (2007). Salinity constraints on subsurface archaeal diversity and methanogenesis in sedimentary rock rich in organic matter. Applied and Environmental Microbiology 73: 4171-4179.
Wang P.L., Chiu, Y.P., Cheng, T.W., Chang, Y.H., Tu, W.X., and Lin, L.H. (2014). Spatial variations of community structures and methane cycling across a transect of Lei-Gong-Hou mud volcanoes in eastern Taiwan. Frontiers in microbiology 5: 121.
Wartiainen I., Hestnes A.G., McDonald I.R., Svenning M.M. (2006). Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78 N). International Journal of Systematic and Evolutionary Microbiology 56: 109-113.
Webster N.S., Wilson K.J., Blackall L.L., Hill R.T. (2001). Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Applied and Environmental Microbiology 67: 434-444.
Wu, M., Ettwig, K., Jetten, M. M., Strous, M., Keltjens, J., Niftrik, L. (2011). A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus Methylomirabilis oxyfera. Biochemical Society Transactions 39: 243-248.
Wuebbles D.J., Hayhoe K. (2002). Atmospheric methane and global change. Earth-Science Reviews 57: 177-210.
Yakimov M.M., Giuliano L., Crisafi E., Chernikova T.N., Timmis K.N., Golyshin P.N. (2002). Microbial community of a saline mud volcano at San Biagio‐Belpasso, Mt. Etna (Italy). Environmental Microbiology 4: 249-256.
Yamamoto S., Alcauskas J.B., Crozier T.E. (1976). Solubility of methane in distilled water and seawater. Journal of Chemical and Engineering Data 21: 78-80.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18271-
dc.description.abstract義大利西西里島西側區域,因 Apennine-Maghrebian 褶皺逆衝斷層帶向北隱沒形成前陸盆地,為西西里島泥火山的主要分布區域。在此區域的 Aragona 泥火山,逸散的氣體以熱裂解及微生物作用產生的甲烷為主。西西里島東側的 Paterno 泥火山,因位於 Mt. Etna 火山南緣,逸散的氣體則主要由來自地函生成的二氧化碳所構成。本研究針對兩處位於不同地質環境的泥火山,藉由地球化學與分子生物分析技術,分析噴泥與沉積物岩芯樣本,以探討在不同甲烷豐度與地質材料特性的泥火山,微生物族群的組成與參與甲烷代謝的微生物地球化學作用。
綜合各項的分析結果顯示,Aragona 泥火山於岩芯 ≥ 8 cm 與 32.5-53.5 cm 區間為甲烷-硫酸鹽過渡帶,其中 ANME-2 與 Desulfarculus/Desulfurivibrio 菌群,其於不同深度的相對含量分布呈現正相關,顯示此兩個區間應以伴隨硫酸還原的厭氧型甲烷氧化作用為主。而 8-32.5 cm 區間則為甲烷生成帶,主要藉由還原二氧化碳與醋酸分解的甲烷菌產生甲烷,並供給淺層與深層的厭氧型甲烷氧化作用所需。西西里島東側 Paterno 泥火山,由於還原態的泥漿補注有限,表層受到較長時間蒸發作用影響,岩芯 0.8-22.8 cm 區間的微生物族群組成以嗜鹽的異營菌、硫氧化菌、好氧甲烷氧化菌為主,其優勢菌種分別為 Halobacteriaceae、Thiohalorhabdus denitrificans 與 Methylohalobius crimeensis。至深部區間,微生物族群的多樣性高,主要由厭氧的發酵菌與硫酸還原菌群構成。
本研究結果顯示兩種不同地質成因泥火山中,不同的流體來源、遷移途徑與環境因子,造成兩個區域微生物族群結構與代謝作用顯著的差異。然而,呈現帶狀分布的複雜微生物組成與微生物作用,並未能有效的完全移除甲烷,反而創造甲烷的淨輸出至大氣並貢獻溫室效應。
zh_TW
dc.description.abstractThe subduction of the African plate underneath the Eurasian plate along the Apennine-Maghrebian fold-and-thrust belt has created fracture network that allows for the upward migration of deeply sourced fluids and sediments to surface environments, producing dense distribution of mud volcanoes (MVs) in western part of Sicily. The MVs in the Aragona area are characterized by high abundances of hydrocarbons generated from thermal decomposition of organic matters and microbial processes. By contrast, the MVs in the Paterno area are located at the southern margin of Mount Etna in eastern Sicily, emitting gases primarily composed of magmatic CO2 and discharging brines. In this study, we employed a combination of geochemical and molecular analyses on samples collected from core sediments and bubbling fluids from MVs associated with these two different geological settings of Sicily to investigate the community assemblages and the role of microbial process in controlling methane emissions and biogeochemical cycling.
Our results showed that two sulfate-to-methane transitions at depths of ≥ 8 cm and 32.5-53.5 cm were observed in the Aragona MV. The majority of microbial members at these depth intervals were taxonomically assigned to the ANME-2 group and Desulfarculus/Desulfurivibrio. For comparison, hydrogenotrophic and aceticlastic methanogenesis likely predominated over the other pathways at 8-32.5 cm, supplying methane for the overlying and underlying anaerobic methanotrophy. In the Paterno MVs, fluids and sediments were confined with the bubbling pool with limited discharge to the adjacent mud platform. Surface sediments in the mud platform would have experienced prolonged evaporation and desiccation. Microbial populations at 0.8-22.8 cm were dominated by halotolerant or halophilic aerobic methanotrophs, sulfur oxidizers and heterotrophs affiliated with Methylohalobius crimeensis, Thiohalorhabdus denitrificans and Halobacteriaceae, respectively. At depth, diverse community assemblages were recovered with fermentative and sulfate-reducing bacteria predominating over the others.
Overall, the results obtained from this study demonstrated that fluid sources, pathways, and physic-chemical conditions inherited from different geological settings could shape geochemical characteristics, and microbial processes and communities in different MVs of Sicily. The stratified, complexly structured microbial communities and processes did not enable the complete removal of methane in porespace and fracture channel. Instead, net methane emission from these MVs would contribute to the greenhouse warming.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:57:26Z (GMT). No. of bitstreams: 1
ntu-104-R01224106-1.pdf: 6166785 bytes, checksum: fe13e31a8fce37a11d308be773f5db2c (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
口試委員會審定書 #
誌謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xiii
第一章、緒論 1
1.1. 全球甲烷循環 1
1.2. 微生物的甲烷調控 2
1.2.1. 微生物甲烷生成作用 2
1.2.2. 好氧型甲烷氧化作用 5
1.2.3. 厭氧型甲烷氧化作用 7
1.3. 高鹽環境中的微生物 10
1.4. 泥火山 12
1.5. 西西里島的泥火山 12
1.6. 研究目的 14
第二章、實驗材料與方法 17
2.1. 採樣地點 17
2.2. 採樣方法 17
2.3. 地球化學分析 20
2.3.1. 孔隙水溶解氣體分析 20
2.3.2. 孔隙水溶解離子分析 21
2.3.3. 沉積物化學分析 22
2.4. 微生物族群結構分析 23
2.4.1. 環境基因體 DNA 萃取 24
2.4.2. 次世代定序分析 24
2.4.3. 微生物多樣性分析 31
2.5. 微生物族群豐度測量:即時定量聚合酶連鎖反應 (quantitative PCR,qPCR) 33
2.5.1. 分析樣本 33
2.5.2. 標準曲線的建立 34
2.5.3. 即時定量聚合酶連鎖反應 34
2.5.4. 沉積物中的微生物量計算 35
第三章、實驗結果 37
3.1. 化學分析結果 37
3.1.1. Comitini 泥火山 37
3.1.2. Aragona 泥火山 39
3.1.3. Paterno 泥火山 42
3.1.4. Vallone 泥火山 44
3.2. 微生物族群結構 47
3.2.1. 古菌族群 47
3.2.2. 細菌族群 60
3.3. 微生物的生物多樣性 72
3.3.1. 生物多樣性指標 72
3.3.2. 群集分析 75
3.4. 微生物菌群豐度 78
第四章、討論 83
4.1. 泥火山的環境特徵 83
4.1.1. 西西里島西側區域 83
4.1.2. 西西里島東側區域 92
4.2. 泥火山的生地化循環 101
4.2.1. Aragona 泥火山 101
4.2.2. Paterno 泥火山 102
4.3. 對比至其他陸域型泥火山 103
第五章、結論 105
References 107
附件 121
dc.language.isozh-TW
dc.title義大利西西里島泥火山之微生物族群組成與甲烷循環zh_TW
dc.titleMicrobial community structure and methane cycling in mud volcanoes of Sicily, Italyen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王珮玲,梁碧清,許邦弘
dc.subject.keyword泥火山,微生物甲烷循環,zh_TW
dc.subject.keywordmud volcano,microbial methane cycling,en
dc.relation.page137
dc.rights.note未授權
dc.date.accepted2015-02-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
6.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved