請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18244完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 康照洲(Jaw-Jou Kang) | |
| dc.contributor.author | Pei-Jun Kao | en |
| dc.contributor.author | 高培鈞 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:56:18Z | - |
| dc.date.copyright | 2015-03-12 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-02-12 | |
| dc.identifier.citation | Abramov, E., Dolev, I., Fogel, H., Ciccotosto, G.D., Ruff, E., and Slutsky, I. (2009). Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nature neuroscience 12, 1567-1576. Allen, N.J., and Barres, B.A. (2009). Neuroscience: Glia - more than just brain glue. Nature 457, 675-677. Anders, A., Gilbert, S., Garten, W., Postina, R., and Fahrenholz, F. (2001). Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 15, 1837-1839. Arribas, J., Coodly, L., Vollmer, P., Kishimoto, T.K., Rose-John, S., and Massague, J. (1996). Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. The Journal of biological chemistry 271, 11376-11382. Bjedov, I., Toivonen, J.M., Kerr, F., Slack, C., Jacobson, J., Foley, A., and Partridge, L. (2010). Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell metabolism 11, 35-46. Bjorkoy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H., and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. The Journal of cell biology 171, 603-614. Boya, P., Reggiori, F., and Codogno, P. (2013). Emerging regulation and functions of autophagy. Nature cell biology 15, 713-720. Carew, J.S., Medina, E.C., Esquivel, J.A., 2nd, Mahalingam, D., Swords, R., Kelly, K., Zhang, H., Huang, P., Mita, A.C., Mita, M.M., et al. (2010). Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. Journal of cellular and molecular medicine 14, 2448-2459. Cataldo, A.M., Barnett, J.L., Berman, S.A., Li, J., Quarless, S., Bursztajn, S., Lippa, C., and Nixon, R.A. (1995). Gene expression and cellular content of cathepsin D in Alzheimer's disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron 14, 671-680. Chan, E.Y., Longatti, A., McKnight, N.C., and Tooze, S.A. (2009). Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Molecular and cellular biology 29, 157-171. Chen, W.J., Goldstein, J.L., and Brown, M.S. (1990). NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. The Journal of biological chemistry 265, 3116-3123. Chen, Y.S., Chen, S.D., Wu, C.L., Huang, S.S., and Yang, D.I. (2014). Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture. Experimental neurology 253, 63-71. Chen, Z.H., Kim, H.P., Sciurba, F.C., Lee, S.J., Feghali-Bostwick, C., Stolz, D.B., Dhir, R., Landreneau, R.J., Schuchert, M.J., Yousem, S.A., et al. (2008). Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PloS one 3, e3316. Cheng, G., Yu, Z., Zhou, D., and Mattson, M.P. (2002). Phosphatidylinositol-3-kinase-Akt kinase and p42/p44 mitogen-activated protein kinases mediate neurotrophic and excitoprotective actions of a secreted form of amyloid precursor protein. Experimental neurology 175, 407-414. Copanaki, E., Chang, S., Vlachos, A., Tschape, J.A., Muller, U.C., Kogel, D., and Deller, T. (2010). sAPPalpha antagonizes dendritic degeneration and neuron death triggered by proteasomal stress. Molecular and cellular neurosciences 44, 386-393. Corrigan, F., Pham, C.L., Vink, R., Blumbergs, P.C., Masters, C.L., van den Heuvel, C., and Cappai, R. (2011). The neuroprotective domains of the amyloid precursor protein, in traumatic brain injury, are located in the two growth factor domains. Brain research 1378, 137-143. Coulson, E.J., Paliga, K., Beyreuther, K., and Masters, C.L. (2000). What the evolution of the amyloid protein precursor supergene family tells us about its function. Neurochemistry international 36, 175-184. Dhawan, V.K., and Thadepalli, H. (1982). Clindamycin: a review of fifteen years of experience. Reviews of infectious diseases 4, 1133-1153. Dukhande, V.V., Kawikova, I., Bothwell, A.L., and Lai, J.C. (2013). Neuroprotection against neuroblastoma cell death induced by depletion of mitochondrial glutathione. Apoptosis : an international journal on programmed cell death 18, 702-712. Eckert, G.P., Chang, S., Eckmann, J., Copanaki, E., Hagl, S., Hener, U., Muller, W.E., and Kogel, D. (2011). Liposome-incorporated DHA increases neuronal survival by enhancing non-amyloidogenic APP processing. Biochimica et biophysica acta 1808, 236-243. Ermolenko, D.N., Cornish, P.V., Ha, T., and Noller, H.F. (2013). Antibiotics that bind to the A site of the large ribosomal subunit can induce mRNA translocation. Rna 19, 158-166. Furukawa, K., Barger, S.W., Blalock, E.M., and Mattson, M.P. (1996). Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature 379, 74-78. Furukawa, K., and Mattson, M.P. (1998). Secreted amyloid precursor protein alpha selectively suppresses N-methyl-D-aspartate currents in hippocampal neurons: involvement of cyclic GMP. Neuroscience 83, 429-438. Glaumann, H., and Ahlberg, J. (1987). Comparison of different autophagic vacuoles with regard to ultrastructure, enzymatic composition, and degradation capacity--formation of crinosomes. Experimental and molecular pathology 47, 346-362. Gralle, M., Botelho, M.G., and Wouters, F.S. (2009). Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers. The Journal of biological chemistry 284, 15016-15025. Greenberg, S.M., Qiu, W.Q., Selkoe, D.J., Ben-Itzhak, A., and Kosik, K.S. (1995). Amino-terminal region of the beta-amyloid precursor protein activates mitogen-activated protein kinase. Neuroscience letters 198, 52-56. Guo, Q., Robinson, N., and Mattson, M.P. (1998). Secreted -Amyloid Precursor Protein Counteracts the Proapoptotic Action of Mutant Presenilin-1 by Activation of NF- B and Stabilization of Calcium Homeostasis. Journal of Biological Chemistry 273, 12341-12351. Gustafsson, A.B., and Gottlieb, R.A. (2009). Autophagy in ischemic heart disease. Circulation research 104, 150-158. Han, P., Dou, F., Li, F., Zhang, X., Zhang, Y.W., Zheng, H., Lipton, S.A., Xu, H., and Liao, F.F. (2005). Suppression of cyclin-dependent kinase 5 activation by amyloid precursor protein: a novel excitoprotective mechanism involving modulation of tau phosphorylation. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 11542-11552. He, C., and Klionsky, D.J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annual review of genetics 43, 67-93. Herculano-Houzel, S. (2014). The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62, 1377-1391. Hilbich, C., Monning, U., Grund, C., Masters, C.L., and Beyreuther, K. (1993). Amyloid-like properties of peptides flanking the epitope of amyloid precursor protein-specific monoclonal antibody 22C11. The Journal of biological chemistry 268, 26571-26577. Ho, A., and Sudhof, T.C. (2004). Binding of F-spondin to amyloid- precursor protein: A candidate amyloid- precursor protein ligand that modulates amyloid- precursor protein cleavage. Proceedings of the National Academy of Sciences 101, 2548-2553. Hooper, N.M., and Turner, A.J. (2002). The search for alpha-secretase and its potential as a therapeutic approach to Alzheimer s disease. Current medicinal chemistry 9, 1107-1119. Ikin, A.F., Sabo, S.L., Lanier, L.M., and Buxbaum, J.D. (2007). A macromolecular complex involving the amyloid precursor protein (APP) and the cytosolic adapter FE65 is a negative regulator of axon branching. Molecular and cellular neurosciences 35, 57-63. Imarisio, S., Carmichael, J., Korolchuk, V., Chen, C.W., Saiki, S., Rose, C., Krishna, G., Davies, J.E., Ttofi, E., Underwood, B.R., et al. (2008). Huntington's disease: from pathology and genetics to potential therapies. The Biochemical journal 412, 191-209. Jacobsen, K.T., Adlerz, L., Multhaup, G., and Iverfeldt, K. (2010). Insulin-like growth factor-1 (IGF-1)-induced processing of amyloid-beta precursor protein (APP) and APP-like protein 2 is mediated by different metalloproteinases. The Journal of biological chemistry 285, 10223-10231. Jaeger, P.A., Pickford, F., Sun, C.H., Lucin, K.M., Masliah, E., and Wyss-Coray, T. (2010). Regulation of amyloid precursor protein processing by the Beclin 1 complex. PloS one 5, e11102. Jager, S., Bucci, C., Tanida, I., Ueno, T., Kominami, E., Saftig, P., and Eskelinen, E.L. (2004). Role for Rab7 in maturation of late autophagic vacuoles. Journal of cell science 117, 4837-4848. Jellinger, K.A. (2010). Basic mechanisms of neurodegeneration: a critical update. Journal of cellular and molecular medicine 14, 457-487. Jimenez, S., Torres, M., Vizuete, M., Sanchez-Varo, R., Sanchez-Mejias, E., Trujillo-Estrada, L., Carmona-Cuenca, I., Caballero, C., Ruano, D., Gutierrez, A., et al. (2011). Age-dependent accumulation of soluble amyloid beta (Abeta) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-alpha (sAPP(alpha)) by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3beta pathway in Alzheimer mouse model. The Journal of biological chemistry 286, 18414-18425. Jung, C.H., Jun, C.B., Ro, S.H., Kim, Y.M., Otto, N.M., Cao, J., Kundu, M., and Kim, D.H. (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular biology of the cell 20, 1992-2003. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO journal 19, 5720-5728. Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S., and Malinow, R. (2003). APP processing and synaptic function. Neuron 37, 925-937. Kane, M.D., Schwarz, R.D., St Pierre, L., Watson, M.D., Emmerling, M.R., Boxer, P.A., and Walker, G.K. (1999). Inhibitors of V-type ATPases, bafilomycin A1 and concanamycin A, protect against beta-amyloid-mediated effects on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Journal of neurochemistry 72, 1939-1947. Kanzawa, T., Kondo, Y., Ito, H., Kondo, S., and Germano, I. (2003). Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer research 63, 2103-2108. Kawamata, T., Kamada, Y., Kabeya, Y., Sekito, T., and Ohsumi, Y. (2008). Organization of the pre-autophagosomal structure responsible for autophagosome formation. Molecular biology of the cell 19, 2039-2050. Kim, J.J., Lee, H.M., Shin, D.M., Kim, W., Yuk, J.M., Jin, H.S., Lee, S.H., Cha, G.H., Kim, J.M., Lee, Z.W., et al. (2012). Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell host microbe 11, 457-468. Kirisako, T., Ichimura, Y., Okada, H., Kabeya, Y., Mizushima, N., Yoshimori, T., Ohsumi, M., Takao, T., Noda, T., and Ohsumi, Y. (2000). The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. The Journal of cell biology 151, 263-276. Kirshenbaum, L.A. (2012). Regulation of autophagy in the heart in health and disease. Journal of cardiovascular pharmacology 60, 109. Klionsky, D.J. (2005). The molecular machinery of autophagy: unanswered questions. Journal of cell science 118, 7-18. Klionsky, D.J. (2010). The autophagy connection. Developmental cell 19, 11-12. Kogel, D., Schomburg, R., Copanaki, E., and Prehn, J.H. (2005). Regulation of gene expression by the amyloid precursor protein: inhibition of the JNK/c-Jun pathway. Cell death and differentiation 12, 1-9. Kroemer, G., and Levine, B. (2008). Autophagic cell death: the story of a misnomer. Nature reviews Molecular cell biology 9, 1004-1010. LaFerla, F.M. (2002). Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nature reviews Neuroscience 3, 862-872. LaFerla, F.M., Green, K.N., and Oddo, S. (2007). Intracellular amyloid-beta in Alzheimer's disease. Nature reviews Neuroscience 8, 499-509. Laurin, N., Brown, J.P., Morissette, J., and Raymond, V. (2002). Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. American journal of human genetics 70, 1582-1588. Lee, J., Retamal, C., Cuitino, L., Caruano-Yzermans, A., Shin, J.E., van Kerkhof, P., Marzolo, M.P., and Bu, G. (2008). Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. The Journal of biological chemistry 283, 11501-11508. Lell, B., and Kremsner, P.G. (2002). Clindamycin as an Antimalarial Drug: Review of Clinical Trials. Antimicrobial Agents and Chemotherapy 46, 2315-2320. Lewis, K. (2013). Platforms for antibiotic discovery. Nature reviews Drug discovery 12, 371-387. Li, C.H., Cheng, Y.W., Liao, P.L., Yang, Y.T., and Kang, J.J. (2010). Chloramphenicol causes mitochondrial stress, decreases ATP biosynthesis, induces matrix metalloproteinase-13 expression, and solid-tumor cell invasion. Toxicological sciences : an official journal of the Society of Toxicology 116, 140-150. Li, C.H., Tzeng, S.L., Cheng, Y.W., and Kang, J.J. (2005). Chloramphenicol-induced mitochondrial stress increases p21 expression and prevents cell apoptosis through a p21-dependent pathway. The Journal of biological chemistry 280, 26193-26199. Lipinski, M.M., Zheng, B., Lu, T., Yan, Z., Py, B.F., Ng, A., Xavier, R.J., Li, C., Yankner, B.A., Scherzer, C.R., et al. (2010). Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America 107, 14164-14169. Liu, W.-T., Lin, C.-H., Hsiao, M., and Gean, P.-W. (2014). Minocycline inhibits the growth of glioma by inducing autophagy. Autophagy 7, 166-175. Ma, J.F., Huang, Y., Chen, S.D., and Halliday, G. (2010). Immunohistochemical evidence for macroautophagy in neurones and endothelial cells in Alzheimer's disease. Neuropathology and applied neurobiology 36, 312-319. Marquez-Sterling, N.R., Lo, A.C., Sisodia, S.S., and Koo, E.H. (1997). Trafficking of cell-surface beta-amyloid precursor protein: evidence that a sorting intermediate participates in synaptic vesicle recycling. The Journal of neuroscience : the official journal of the Society for Neuroscience 17, 140-151. Martinez-Vicente, M., Talloczy, Z., Wong, E., Tang, G., Koga, H., Kaushik, S., de Vries, R., Arias, E., Harris, S., Sulzer, D., et al. (2010). Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nature neuroscience 13, 567-576. Massey, A.C., Zhang, C., and Cuervo, A.M. (2006). Chaperone-mediated autophagy in aging and disease. Current topics in developmental biology 73, 205-235. Masters, C.L., and Beyreuther, K. (2006). Pathways to the discovery of the Abeta amyloid of Alzheimer's disease. Journal of Alzheimer's disease : JAD 9, 155-161. Mattson, M.P. (1997). Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiological reviews 77, 1081-1132. Mattson, M.P., Mark, R.J., Furukawa, K., and Bruce, A.J. (1997). Disruption of brain cell ion homeostasis in Alzheimer's disease by oxy radicals, and signaling pathways that protect therefrom. Chemical research in toxicology 10, 507-517. Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E.L., Hall, D.H., and Levine, B. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387-1391. Meziane, H., Dodart, J.C., Mathis, C., Little, S., Clemens, J., Paul, S.M., and Ungerer, A. (1998). Memory-enhancing effects of secreted forms of the beta-amyloid precursor protein in normal and amnestic mice. Proceedings of the National Academy of Sciences of the United States of America 95, 12683-12688. Mizushima, N., Kuma, A., Kobayashi, Y., Yamamoto, A., Matsubae, M., Takao, T., Natsume, T., Ohsumi, Y., and Yoshimori, T. (2003). Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. Journal of cell science 116, 1679-1688. Mok, S.S., Sberna, G., Heffernan, D., Cappai, R., Galatis, D., Clarris, H.J., Sawyer, W.H., Beyreuther, K., Masters, C.L., and Small, D.H. (1997). Expression and analysis of heparin-binding regions of the amyloid precursor protein of Alzheimer's disease. FEBS letters 415, 303-307. Moya, K.L., Benowitz, L.I., Schneider, G.E., and Allinquant, B. (1994). The amyloid precursor protein is developmentally regulated and correlated with synaptogenesis. Developmental biology 161, 597-603. Nalivaeva, N.N., and Turner, A.J. (2013). The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS letters 587, 2046-2054. Nikolaev, A., McLaughlin, T., O'Leary, D.D., and Tessier-Lavigne, M. (2009). APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981-989. Nishino, I., Fu, J., Tanji, K., Yamada, T., Shimojo, S., Koori, T., Mora, M., Riggs, J.E., Oh, S.J., Koga, Y., et al. (2000). Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906-910. Nixon, R.A. (2006). Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends in neurosciences 29, 528-535. Nixon, R.A., Wegiel, J., Kumar, A., Yu, W.H., Peterhoff, C., Cataldo, A., and Cuervo, A.M. (2005). Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. Journal of neuropathology and experimental neurology 64, 113-122. Nizzari, M., Venezia, V., Repetto, E., Caorsi, V., Magrassi, R., Gagliani, M.C., Carlo, P., Florio, T., Schettini, G., Tacchetti, C., et al. (2007). Amyloid precursor protein and Presenilin1 interact with the adaptor GRB2 and modulate ERK 1,2 signaling. The Journal of biological chemistry 282, 13833-13844. O'Brien, R.J., and Wong, P.C. (2011). Amyloid precursor protein processing and Alzheimer's disease. Annual review of neuroscience 34, 185-204. Oh, E.S., Savonenko, A.V., King, J.F., Fangmark Tucker, S.M., Rudow, G.L., Xu, G., Borchelt, D.R., and Troncoso, J.C. (2009). Amyloid precursor protein increases cortical neuron size in transgenic mice. Neurobiology of aging 30, 1238-1244. Palmert, M.R., Usiak, M., Mayeux, R., Raskind, M., Tourtellotte, W.W., and Younkin, S.G. (1990). Soluble derivatives of the beta amyloid protein precursor in cerebrospinal fluid: alterations in normal aging and in Alzheimer's disease. Neurology 40, 1028-1034. Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. The Journal of biological chemistry 282, 24131-24145. Perez, R.G., Soriano, S., Hayes, J.D., Ostaszewski, B., Xia, W., Selkoe, D.J., Chen, X., Stokin, G.B., and Koo, E.H. (1999). Mutagenesis Identifies New Signals for -Amyloid Precursor Protein Endocytosis, Turnover, and the Generation of Secreted Fragments, Including A 42. Journal of Biological Chemistry 274, 18851-18856. Philipson, A., Sabath, L.D., and Charles, D. (1973). Transplacental passage of erythromycin and clindamycin. The New England journal of medicine 288, 1219-1221. Picardi, J.L., Lewis, H.P., Tan, J.S., and Phair, J.P. (1975). Clindamycin concentrations in the central nervous system of primates before and after head trauma. Journal of neurosurgery 43, 717-720. Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jaeger, P.A., Small, S., Spencer, B., Rockenstein, E., Levine, B., et al. (2008). The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. The Journal of clinical investigation 118, 2190-2199. Pimplikar, S.W., and Ghosal, K. (2011). Amyloid precursor protein: more than just neurodegeneration. Stem cell research therapy 2, 39. Putcha, G.V., Le, S., Frank, S., Besirli, C.G., Clark, K., Chu, B., Alix, S., Youle, R.J., LaMarche, A., and Maroney, A.C. (2003). JNK-Mediated BIM Phosphorylation Potentiates BAX-Dependent Apoptosis. Neuron 38, 899-914. Ragazzoni, Y., Desideri, M., Gabellini, C., De Luca, T., Carradori, S., Secci, D., Nescatelli, R., Candiloro, A., Condello, M., Meschini, S., et al. (2013). The thiazole derivative CPTH6 impairs autophagy. Cell death disease 4, e524. Ravikumar, B., Duden, R., and Rubinsztein, D.C. (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Human molecular genetics 11, 1107-1117. Ring, S., Weyer, S.W., Kilian, S.B., Waldron, E., Pietrzik, C.U., Filippov, M.A., Herms, J., Buchholz, C., Eckman, C.B., Korte, M., et al. (2007). The secreted beta-amyloid precursor protein ectodomain APPs alpha is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 7817-7826. Robakis, N.K., Ramakrishna, N., Wolfe, G., and Wisniewski, H.M. (1987). Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proceedings of the National Academy of Sciences of the United States of America 84, 4190-4194. Roberts, S.B., Ripellino, J.A., Ingalls, K.M., Robakis, N.K., and Felsenstein, K.M. (1994). Non-amyloidogenic cleavage of the beta-amyloid precursor protein by an integral membrane metalloendopeptidase. The Journal of biological chemistry 269, 3111-3116. Rubinsztein, D.C., Codogno, P., and Levine, B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nature reviews Drug discovery 11, 709-730. Rubinsztein, D.C., Marino, G., and Kroemer, G. (2011). Autophagy and aging. Cell 146, 682-695. Schaeffer, V., Lavenir, I., Ozcelik, S., Tolnay, M., Winkler, D.T., and Goedert, M. (2012). Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain : a journal of neurology 135, 2169-2177. Sheen, J.H., Zoncu, R., Kim, D., and Sabatini, D.M. (2011). Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer cell 19, 613-628. Shibata, M., Lu, T., Furuya, T., Degterev, A., Mizushima, N., Yoshimori, T., MacDonald, M., Yankner, B., and Yuan, J. (2006). Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. The Journal of biological chemistry 281, 14474-14485. Shingu, T., Fujiwara, K., Bogler, O., Akiyama, Y., Moritake, K., Shinojima, N., Tamada, Y., Yokoyama, T., and Kondo, S. (2009). Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells. International journal of cancer Journal international du cancer 124, 1060-1071. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131-1135. Spilman, P., Podlutskaya, N., Hart, M.J., Debnath, J., Gorostiza, O., Bredesen, D., Richardson, A., Strong, R., and Galvan, V. (2010). Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PloS one 5, e9979. Steen, B., and Rane, A. (1982). Clindamycin passage into human milk. British journal of clinical pharmacology 13, 661-664. Stein, T.D., Anders, N.J., DeCarli, C., Chan, S.L., Mattson, M.P., and Johnson, J.A. (2004). Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. The Journal of neuroscience : the official journal of the Society for Neuroscience 24, 7707-7717. Suzuki, K., Kubota, Y., Sekito, T., and Ohsumi, Y. (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes to cells : devoted to molecular cellular mechanisms 12, 209-218. Suzuki, K., and Terry, R.D. (1967). Fine structural localization of acid phosphatase in senile plaques in Alzheimer's presenile dementia. Acta neuropathologica 8, 276-284. Tachida, Y., Nakagawa, K., Saito, T., Saido, T.C., Honda, T., Saito, Y., Murayama, S., Endo, T., Sakaguchi, G., Kato, A., et al. (2008). Interleukin-1 beta up-regulates TACE to enhance alpha-cleavage of APP in neurons: resulting decrease in Abeta production. Journal of neurochemistry 104, 1387-1393. Tanida, I., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. (2005). Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1, 84-91. Tannous, P., Zhu, H., Johnstone, J.L., Shelton, J.M., Rajasekaran, N.S., Benjamin, I.J., Nguyen, L., Gerard, R.D., Levine, B., Rothermel, B.A., et al. (2008). Autophagy is an adaptive response in desmin-related cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America 105, 9745-9750. Thinakaran, G., and Koo, E.H. (2008). Amyloid precursor protein trafficking, processing, and function. The Journal of biological chemistry 283, 29615-29619. Thornton, E., Vink, R., Blumbergs, P.C., and Van Den Heuvel, C. (2006). Soluble amyloid precursor protein alpha reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats. Brain research 1094, 38-46. Tooze, S.A., and Yoshimori, T. (2010). The origin of the autophagosomal membrane. Nature cell biology 12, 831-835. Turner, P.R., O’Connor, K., Tate, W.P., and Abraham, W.C. (2003). Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Progress in Neurobiology 70, 1-32. Venezia, V., Nizzari, M., Repetto, E., Violani, E., Corsaro, A., Thellung, S., Villa, V., Carlo, P., Schettini, G., Florio, T., et al. (2006). Amyloid precursor protein modulates ERK-1 and -2 signaling. Annals of the New York Academy of Sciences 1090, 455-465. Wang, W., Mutka, A.L., Zmrzljak, U.P., Rozman, D., Tanila, H., Gylling, H., Remes, A.M., Huttunen, H.J., and Ikonen, E. (2014). Amyloid precursor protein alpha- and beta-cleaved ectodomains exert opposing control of cholesterol homeostasis via SREBP2. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 28, 849-860. Wang, Z., Yang, L., and Zheng, H. (2012). Role of APP and Abeta in synaptic physiology. Current Alzheimer research 9, 217-226. Wehner, S., Siemes, C., Kirfel, G., and Herzog, V. (2004). Cytoprotective function of sAppalpha in human keratinocytes. European journal of cell biology 83, 701-708. White, E. (2012). Deconvoluting the context-dependent role for autophagy in cancer. Nature reviews Cancer 12, 401-410. Wong, E., and Cuervo, A.M. (2010). Autophagy gone awry in neurodegenerative diseases. Nature neuroscience 13, 805-811. Woods, N.K., and Padmanabhan, J. (2013). Inhibition of amyloid precursor protein processing enhances gemcitabine-mediated cytotoxicity in pancreatic cancer cells. The Journal of biological chemistry 288, 30114-30124. Wu, D.C., Jackson-Lewis, V., Vila, M., Tieu, K., Teismann, P., Vadseth, C., Choi, D.K., Ischiropoulos, H., and Przedborski, S. (2002). Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, 1763-1771. Wu, Y.T., Tan, H.L., Shui, G., Bauvy, C., Huang, Q., Wenk, M.R., Ong, C.N., Codogno, P., and Shen, H.M. (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. The Journal of biological chemistry 285, 10850-10861. Xie, Z., Nair, U., and Klionsky, D.J. (2008). Atg8 controls phagophore expansion during autophagosome formation. Molecular biology of the cell 19, 3290-3298. Yang, S., Wang, X., Contino, G., Liesa, M., Sahin, E., Ying, H., Bause, A., Li, Y., Stommel, J.M., Dell'antonio, G., et al. (2011). Pancreatic cancers require autophagy for tumor growth. Genes development 25, 717-729. Young-Pearse, T.L., Bai, J., Chang, R., Zheng, J.B., LoTurco, J.J., and Selkoe, D.J. (2007). A critical function for beta-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 14459-14469. Yu, W.H., Cuervo, A.M., Kumar, A., Peterhoff, C.M., Schmidt, S.D., Lee, J.H., Mohan, P.S., Mercken, M., Farmery, M.R., Tjernberg, L.O., et al. (2005). Macroautophagy--a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. The Journal of cell biology 171, 87-98. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18244 | - |
| dc.description.abstract | 克林達黴素為目前廣泛使用於感染症、瘧疾以及青春痘的抗生素,在實驗室前人的研究中發現,克林達黴素會造成細胞中ATP含量下降以及細線體的損傷;這兩個現象均為誘發細胞自噬作用的重要因子。細胞自噬作用為細胞藉由溶酶小體將細胞中非必要物質降解的機制。由於細胞自噬作用為細胞代謝物質的重要機轉,細胞自噬作用在生理上以及病理上扮演重要的角色。另一方面,對於細胞自噬作用的調控可能可以做為新的疾病治療標的或是藥物開發方向。近年的研究發現,阿茲罕默症的重要成因澱粉樣蛋白會經由富含澱粉樣蛋白前驅蛋白(amyloid precursor protein, APP)的器官中,不正常作用的自噬小體及胞吞小體產生。在本篇研究中,我們希望可以探討克林達黴素是否會影響神經膠細胞中的細胞自噬作用,並且進一步探討克林達黴素對於APP生合成或轉移修飾過程造成的影響。結果顯示,在神經膠細胞中投與克林達黴素會造成細胞自噬作用標的蛋白LC3-II/LC3-I的上升,以及造成自噬小體的堆積。比較克林達黴素與細胞自噬作用調控藥物的效果可以發現,克林達黴素會藉由抑制溶小體的活性造成細胞自噬作用的失調。進一步的研究發現,克林達黴素會造成APP朝向non-amyloidogenesis修飾,藉由活化裁切蛋白ADAM10,使得sAPPα上升。透過顯微鏡發現LC3與sAPPα位於相同的位置,且sAPPα將會被細胞自噬作用調控藥物所影響。綜合以上,我們發現在神經膠細胞中,克林達黴素的處理會藉由干擾細胞自噬作用導致sAPPα上升。 | zh_TW |
| dc.description.abstract | Clindamycin is an antibiotic, which is widely used to treat infection, malaria, and acne. In our lab, pervious study has shown that clindamycin treatment would decrease intracellular ATP amount and cause mitochondrial damage, both are important factor in the induction of cell autophagy. Autophagy is the basic catabolic mechanism that involves cell degradation of unnecessary or dysfunctional cellular components through the actions of lysosomes. Due to the basic and important role of autophagy in protein and organelle degradation, autophagy connects with an astonishing number of human disease and physiology. On the other hand, regulation the autophagy flux in disease may be new treatment target or drug discovery. Recent evidence has shown that the amyloid beta peptide is generated from amyloid beta precursor protein (APP) during autophagy turnover of APP-rich organelles supplied by both autophagy and endocytosis. In this study, we are interested in whether clindamycin would affect glioma cell autophagy, and determent the drug effect on APP expression and trafficking. The result showed clindamycin treatment would induce LC3-II/LC3-I ratio and the autophagosome accumulation. Compare the effect of clindamycin and autophagy regulater show that clindamycin would lead the late stage of autophagy dysfunction through impair lysosome activity. In addition, we found clindamycin would lead Alzheimer’s disease maker protein amyloid precursor protein trafficking to non-amyloidogenesis pathway and up-regulation soluble amyloid precursor protein α(sAPPα) protein level by activated α-secretase, ADAM10 enzyme activity. Use microscopy, we determined LC3 and sAPPα are co-localized, and sAPPα level would regulated by autophagy regulater. Our data suggest that in glioma, clindamycin would up-regulate sAPPα level through autophagy flux impairment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:56:18Z (GMT). No. of bitstreams: 1 ntu-104-R01447011-1.pdf: 3608885 bytes, checksum: 8135618c81020d1d7f93c4d7e52122ed (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 致謝 II 摘要 III Abstract IV 縮寫表 VI 目錄 VII 第一章 1 第一章 緒論 2 1.1. 克林達黴素(clindamycin) 2 1.1.1. 克林達黴素之簡介 2 1.1.2. 克林達黴素於本實驗室之研究 3 1.1.3. 探討克林達黴素新穎功效之可能性 3 1.2. 細胞自噬作用(autophagy) 4 1.2.1. 細胞自噬作用之功能 4 1.2.2. 細胞自噬之機轉 5 1.2.2.1. 起始 5 1.2.2.2. 目標蛋白的辨認 6 1.2.2.3. 自噬小體的形成 6 1.2.2.4. 自噬小體與溶酶小體結合、目標蛋白的降解與釋出 7 1.2.3. 細胞自噬與疾病 8 1.2.3.1 癌症 8 1.2.3.2. 傳染病 9 1.2.3.3. 心血管疾病 9 1.2.3.4. 代謝疾病 9 1.2.3.5. 肺部疾病 10 1.2.3.6. 老化 10 1.2.3.7. 神經退化性疾病 10 1.2.4. 探討細胞自噬作用與澱粉樣蛋白之關聯性 11 1.3. 阿茲罕默症(Alzheimer’s disease) 12 1.3.1. 阿茲罕默症之簡介 12 1.3.2. 澱粉樣蛋白前驅蛋白(amyloid precursor protein,APP) 12 1.3.2.1. APP在體內的分布及異構物 12 1.3.2.2. APP的轉移過程 13 1.3.2.3. APP修飾裁切 13 1.3.2.4. APP的功能 14 1.3.3. 阿茲罕默症與細胞自噬作用 15 1.3.4. 探討藥物影響細胞自噬作用後對於APP蛋白修飾的改變 15 1.4研究動機 16 第二章 23 第二章 材料與方法 24 2.1材料 24 2.1.1細胞株與培養 24 2.1.2藥品與試劑 24 2.1.3抗體與酵素 26 2.1.4質體 27 2.2方法 28 2.2.1細胞存活率試驗 (Cell viability assay) 28 2.2.2西方墨點法 (Western blotting analysis) 28 2.2.3質體轉染 (Plasmid transfect) 29 2.2.4反轉錄聚合酶鏈鎖反應 (reverse transcription-PCR) 29 2.2.5細胞免疫螢光染色法 (Immunofluorescence assay) 31 2.2.6統計分析 31 第三章 32 第三章 結果 33 3.1克林達黴素在神經膠細胞瘤細胞株中促進細胞自噬作用 33 3.1.1 克林達黴素對於神經膠質瘤癌細胞株之細胞存活率影響 33 3.1.2 克林達黴素在細胞中促進細胞自噬標誌蛋白有劑量-效應關係 34 3.1.3 克林達黴素在細胞中促進細胞自噬標誌蛋白有時間-效應關係 34 3.1.4 克林達黴素在細胞中促進酸性小泡的表現 34 3.1.5 克林達黴素在細胞中促進酸性小胞以及自噬小體的表現 35 3.2在神經膠質瘤癌細胞株中克林達黴素投藥促進sAPPα之表現 35 3.2.1 克林達黴素增加細胞內以及細胞外的sAPPα含量 35 3.2.1 克林達黴素在細胞中促進sAPPα具有劑量-效應關係 36 3.2.3 克林達黴素在細胞中促進sAPPα具有時間-效應關係 36 3.2.4 APP mRNA並不會隨著克林達黴素之投藥而上升 37 3.2.5 克林達黴素並不會改變sAPPα的蛋白質穩定性 37 3.3 克林達黴素透過活化α-secretase造成的sAPPα上升 37 3.3.1 克林達黴素活化α-secretase,ADAM10 38 3.3.2 抑制ADAM10後,細胞內及細胞外之sAPPα量受到抑制 38 3.3.3 ADAM10的酵素活性在投與克林達黴素後活化 39 3.4 克林達黴素在細胞中促進sAPPα上升的現象與細胞自噬作用有關 39 3.4.1 克林達黴素在細胞中促進sAPPα與LC3位於相同之位置 39 3.4.2 克林達黴素在細胞中促進sAPPα可以受到細胞自噬抑制劑調控 39 3.4.3 促進細胞中的細胞自噬作用可以反轉克林達黴素所促進的sAPPα上升之現象 41 3.5 克林達黴素在細胞中藉由干擾溶酶小體活性導致細胞自嗜作用失調 42 第四章 44 第四章 討論 45 4.1. 克林達黴素對於阿茲罕默症之應用性 45 4.1.1. 投藥促進的sAPPα對於細胞可能的功能與意義 45 4.1.2. sAPPα量上升與整體APP裁切修飾的關係 47 4.1.3. 神經膠細胞於大腦所扮演之角色與治療潛力 48 4.2 細胞自噬作用在投藥後受到之影響 49 4.2.1. 標誌蛋白的上升與細胞自噬作用後端受到干擾 49 4.2.2. 細胞自噬作用前端抑制劑3-MA 50 4.2.3. 不同的調控藥物與溶酶小體之功能 50 4.2.4. 細胞自噬作用與阿茲罕默症之探討 51 4.3. 克林達黴素之新穎功能 52 4.3.1. 克林達黴素應用於治療的可能性 52 4.3.2. 克林達黴素的效用與前人研究之探討 52 4.3.3. 克林達黴素以及其他具有潛力的阿茲罕默症新藥 53 第五章 54 第五章 結論 55 參考文獻 56 圖表 74 Figure 1.1 The structure of clindamycin. 17 Figure 1.2 The mechanism of clindamycin. 17 Figure 1.3 The catabolic products of the intracellular structures that are targeted by autophagosomes. 18 Figure 1.4 Autophagy and diseases. 18 Figure 1.5 Different types of autophagy. 19 Figure 1.6 Molecular machinery of autophagy. 19 Figure 1.7 Overview of the autophagy pathway. 20 Figure 1.8 APP family and their main domains. 20 Figure 1.9 APP trafficking in neurons. 21 Figure 1.10 Sequential cleavage of the amyloid precursor protein (APP) occurs by two pathways. 21 Figure 1.11 Proposed models of AV accumulation leading to elevated Aβ levels. 22 Figure 2.1. Two different antibodies were used including anti-APP(670-700) polyclonal antibody (the right panel) and mouse anti-APP N-terminal polyclonal antibody (the left panel) on the same sample lysate and showed different molecular weight. 75 Figure 2.2. Western blot by rabbit anti-APP (670-700) polyclonal antibody showed the same molecular weight either sample from medium or lysate. However, western blot by mouse anti-APP N-terminal polyclonal antibody detected different patterns in medium and lysate from the same sample.. 75 Figure 3.1. Clindamycin induced autophagy in treated GBM8401 cell. 79 Figure 3.2. sAPPα expression and secretion level were increased after clindamycin treatment both in cell lysate and culture medium. 84 Figure 3.3. Clindamycin-enhanced sAPPα correlated with the enhanced enzyme activity of α-secretase, ADAM10. 87 Figure 3.4. Clindamycin-enhanced sAPPα was involve in autophagy flux. 91 Figure 3.5. Clindamycin impaired autophagy flux as well as Baf A1. 92 Figure 5.1. Clindamycin treatment enhanced sAPPα expression through autophagy-dependent pathway 93 Figure 5.2. Proposed mechanism: The involvement of autophagy during APP trafficking.......................................................................................................94 | |
| dc.language.iso | zh-TW | |
| dc.title | 克林達黴素透過干擾細胞自噬作用誘發可溶性澱粉樣蛋白前驅蛋白-α表現 | zh_TW |
| dc.title | Clindamycin Upregulated Soluble Amyloid Precursor Protein α Through Autophagy Flux Impairment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孔繁璐(Fan-Lu Kung),鄭幼文(Yu-Wen Cheng) | |
| dc.subject.keyword | 克林達黴素,細胞自噬作用,阿茲罕默症,澱粉樣蛋白前驅蛋白,可溶性澱粉樣蛋白前驅蛋白-alpha, | zh_TW |
| dc.subject.keyword | clindamycin,autophagy,alzheimer’s disease,amyloid precursor protein,sAPPα, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-02-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
