請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18236
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李君男(Chun-Nan Lee) | |
dc.contributor.author | Pei-Yun Hung | en |
dc.contributor.author | 洪珮芸 | zh_TW |
dc.date.accessioned | 2021-06-08T00:56:00Z | - |
dc.date.copyright | 2015-03-12 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-02-12 | |
dc.identifier.citation | References
1. Saad, A., Zhou, Z. H., Jakana, J., Chiu, W., and Rixon, F. J. (1999) Roles of triplex and scaffolding proteins in herpes simplex virus type 1 capsid formation suggested by structures of recombinant particles, J Virol 73, 6821-6830. 2. Baringer, J. R. (1974) Recovery of herpes simplex virus from human sacral ganglions, The New England journal of medicine 291, 828-830. 3. Farooq, A. V., and Shukla, D. (2012) Herpes simplex epithelial and stromal keratitis: an epidemiologic update, Surv Ophthalmol 57, 448-462. 4. Kupila, L., Vuorinen, T., Vainionpaa, R., Hukkanen, V., Marttila, R. J., and Kotilainen, P. (2006) Etiology of aseptic meningitis and encephalitis in an adult population, Neurology 66, 75-80. 5. Xu, F., Sternberg, M. R., Kottiri, B. J., McQuillan, G. M., Lee, F. K., Nahmias, A. J., Berman, S. M., and Markowitz, L. E. (2006) Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States, JAMA 296, 964-973. 6. Spear, P. G. (2004) Herpes simplex virus: receptors and ligands for cell entry, Cell Microbiol 6, 401-410. 7. Herold, B. C., WuDunn, D., Soltys, N., and Spear, P. G. (1991) Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity, J Virol 65, 1090-1098. 8. Moerdyk-Schauwecker, M., Stein, D. A., Eide, K., Blouch, R. E., Bildfell, R., Iversen, P., and Jin, L. (2009) Inhibition of HSV-1 ocular infection with morpholino oligomers targeting ICP0 and ICP27, Antiviral research 84, 131-141. 9. Knopf, C. W. (2000) Molecular mechanisms of replication of herpes simplex virus 1, Acta virologica 44, 289-307. 10. Sanfilippo, C. M., Chirimuuta, F. N., and Blaho, J. A. (2004) Herpes simplex virus type 1 immediate-early gene expression is required for the induction of apoptosis in human epithelial HEp-2 cells, J Virol 78, 224-239. 11. Boehmer, P. E., and Lehman, I. R. (1997) Herpes simplex virus DNA replication, Annu Rev Biochem 66, 347-384. 12. Aubert, M., Rice, S. A., and Blaho, J. A. (2001) Accumulation of herpes simplex virus type 1 early and leaky-late proteins correlates with apoptosis prevention in infected human HEp-2 cells, J Virol 75, 1013-1030. 13. Amici, C., Rossi, A., Costanzo, A., Ciafre, S., Marinari, B., Balsamo, M., Levrero, M., and Santoro, M. G. (2006) Herpes simplex virus disrupts NF-kappaB regulation by blocking its recruitment on the IkappaBalpha promoter and directing the factor on viral genes, J Biol Chem 281, 7110-7117. 14. Chen, S. H., Yao, H. W., Chen, I. T., Shieh, B., and Li, C. (2008) Suppression of transcription factor early growth response 1 reduces herpes simplex virus lethality in mice, J Clin Invest 118, 3470-3477. 15. Jones, K. A., and Tjian, R. (1985) Sp1 binds to promoter sequences and activates herpes simplex virus 'immediate-early' gene transcription in vitro, Nature 317, 179-182. 16. Wang, J. P., Bowen, G. N., Zhou, S., Cerny, A., Zacharia, A., Knipe, D. M., Finberg, R. W., and Kurt-Jones, E. A. (2011) Role of specific innate immune responses in herpes simplex virus infection of the central nervous system, J Virol. 17. Halford, W. P., Balliet, J. W., and Gebhardt, B. M. (2004) Re-evaluating natural resistance to herpes simplex virus type 1, J Virol 78, 10086-10095. 18. Chew, T., Taylor, K. E., and Mossman, K. L. (2009) Innate and adaptive immune responses to herpes simplex virus, Viruses 1, 979-1002. 19. Tomazin, R., Hill, A. B., Jugovic, P., York, I., van Endert, P., Ploegh, H. L., Andrews, D. W., and Johnson, D. C. (1996) Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP, EMBO J 15, 3256-3266. 20. Yeager, A. S., Arvin, A. M., Urbani, L. J., and Kemp, J. A., 3rd. (1980) Relationship of antibody to outcome in neonatal herpes simplex virus infections, Infect Immun 29, 532-538. 21. Spivack, J. G., and Fraser, N. W. (1987) Detection of herpes simplex virus type 1 transcripts during latent infection in mice, J Virol 61, 3841-3847. 22. Stroop, W. G., Rock, D. L., and Fraser, N. W. (1984) Localization of herpes simplex virus in the trigeminal and olfactory systems of the mouse central nervous system during acute and latent infections by in situ hybridization, Lab Invest 51, 27-38. 23. Farrell, M. J., Dobson, A. T., and Feldman, L. T. (1991) Herpes simplex virus latency-associated transcript is a stable intron, Proc Natl Acad Sci U S A 88, 790-794. 24. Margolis, T. P., Dawson, C. R., and LaVail, J. H. (1992) Herpes simplex viral infection of the mouse trigeminal ganglion. Immunohistochemical analysis of cell populations, Invest Ophthalmol Vis Sci 33, 259-267. 25. Stevens, J. G., Wagner, E. K., Devi-Rao, G. B., Cook, M. L., and Feldman, L. T. (1987) RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons, Science 235, 1056-1059. 26. Leib, D. A., Bogard, C. L., Kosz-Vnenchak, M., Hicks, K. A., Coen, D. M., Knipe, D. M., and Schaffer, P. A. (1989) A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency, J Virol 63, 2893-2900. 27. Epstein, J. B., and Scully, C. (1991) Herpes simplex virus in immunocompromised patients: growing evidence of drug resistance, Oral Surg Oral Med Oral Pathol 72, 47-50. 28. Mommeja-Marin, H., Lafaurie, M., Scieux, C., Galicier, L., Oksenhendler, E., and Molina, J. M. (2003) Herpes simplex virus type 2 as a cause of severe meningitis in immunocompromised adults, Clin Infect Dis 37, 1527-1533. 29. Balfour, H. H., Jr. (1983) Resistance of herpes simplex to acyclovir, Ann Intern Med 98, 404-406. 30. Bevilacqua, F., Marcello, A., Toni, M., Zavattoni, M., Cusini, M., Zerboni, R., Gerna, G., and Palu, G. (1991) Acyclovir resistance/susceptibility in herpes simplex virus type 2 sequential isolates from an AIDS patient, J Acquir Immune Defic Syndr 4, 967-969. 31. McLaren, C., Chen, M. S., Ghazzouli, I., Saral, R., and Burns, W. H. (1985) Drug resistance patterns of herpes simplex virus isolates from patients treated with acyclovir, Antimicrobial agents and chemotherapy 28, 740-744. 32. Wutzler, P. (1997) Antiviral therapy of herpes simplex and varicella-zoster virus infections, Intervirology 40, 343-356. 33. Piret, J., and Boivin, G. (2011) Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management, Antimicrobial agents and chemotherapy 55, 459-472. 34. Remeijer, L., Osterhaus, A., and Verjans, G. (2004) Human herpes simplex virus keratitis: the pathogenesis revisited, Ocul Immunol Inflamm 12, 255-285. 35. Erlich, K. S., Mills, J., Chatis, P., Mertz, G. J., Busch, D. F., Follansbee, S. E., Grant, R. M., and Crumpacker, C. S. (1989) Acyclovir-resistant herpes simplex virus infections in patients with the acquired immunodeficiency syndrome, The New England journal of medicine 320, 293-296. 36. Stranska, R., Schuurman, R., Nienhuis, E., Goedegebuure, I. W., Polman, M., Weel, J. F., Wertheim-Van Dillen, P. M., Berkhout, R. J., and van Loon, A. M. (2005) Survey of acyclovir-resistant herpes simplex virus in the Netherlands: prevalence and characterization, J Clin Virol 32, 7-18. 37. Balasubramaniam, N. K., Veerisetty, V., and Gentry, G. A. (1990) Herpesviral deoxythymidine kinases contain a site analogous to the phosphoryl-binding arginine-rich region of porcine adenylate kinase; comparison of secondary structure predictions and conservation, J Gen Virol 71 ( Pt 12), 2979-2987. 38. Graham, D., Larder, B. A., and Inglis, M. M. (1986) Evidence that the 'active centre' of the herpes simplex virus thymidine kinase involves an interaction between three distinct regions of the polypeptide, J Gen Virol 67 ( Pt 4), 753-758. 39. Frobert, E., Cortay, J. C., Ooka, T., Najioullah, F., Thouvenot, D., Lina, B., and Morfin, F. (2008) Genotypic detection of acyclovir-resistant HSV-1: characterization of 67 ACV-sensitive and 14 ACV-resistant viruses, Antiviral Res 79, 28-36. 40. Earnshaw, D. L., Bacon, T. H., Darlison, S. J., Edmonds, K., Perkins, R. M., and Vere Hodge, R. A. (1992) Mode of antiviral action of penciclovir in MRC-5 cells infected with herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus, Antimicrob Agents Chemother 36, 2747-2757. 41. Kleymann, G., Fischer, R., Betz, U. A., Hendrix, M., Bender, W., Schneider, U., Handke, G., Eckenberg, P., Hewlett, G., Pevzner, V., Baumeister, J., Weber, O., Henninger, K., Keldenich, J., Jensen, A., Kolb, J., Bach, U., Popp, A., Maben, J., Frappa, I., Haebich, D., Lockhoff, O., and Rubsamen-Waigmann, H. (2002) New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease, Nat Med 8, 392-398. 42. Biswas, S., and Field, H. J. (2008) Herpes simplex virus helicase-primase inhibitors: recent findings from the study of drug resistance mutations, Antivir Chem Chemother 19, 1-6. 43. Newman, D. J., Cragg, G. M., and Snader, K. M. (2003) Natural products as sources of new drugs over the period 1981-2002, J Nat Prod 66, 1022-1037. 44. Marcelletti, J. F. (2002) Synergistic inhibition of herpesvirus replication by docosanol and antiviral nucleoside analogs, Antiviral research 56, 153-166. 45. Tatti, S., Stockfleth, E., Beutner, K. R., Tawfik, H., Elsasser, U., Weyrauch, P., and Mescheder, A. (2009) Polyphenon E(R): a new treatment for external anogenital warts, Br J Dermatol. 46. Ng, L. T., Yen, F. L., Liao, C. W., and Lin, C. C. (2007) Protective effect of Houttuynia cordata extract on bleomycin-induced pulmonary fibrosis in rats, The American journal of Chinese medicine 35, 465-475. 47. Tutupalli, L. V., and Chaubal, M. G. (1975) Saururaceae. V. Composition of essential oil from foliage of Houttuynia cordata and chemo systematics of Saururaceae, Lloydia 38, 92-96. 48. Choi, H. J., Song, J. H., Park, K. S., and Kwon, D. H. (2009) Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication, Eur J Pharm Sci 37, 329-333. 49. Lau, K. M., Lee, K. M., Koon, C. M., Cheung, C. S., Lau, C. P., Ho, H. M., Lee, M. Y., Au, S. W., Cheng, C. H., Lau, C. B., Tsui, S. K., Wan, D. C., Waye, M. M., Wong, K. B., Wong, C. K., Lam, C. W., Leung, P. C., and Fung, K. P. (2008) Immunomodulatory and anti-SARS activities of Houttuynia cordata, J Ethnopharmacol 118, 79-85. 50. Chen, X., Wang, Z., Yang, Z., Wang, J., Xu, Y., Tan, R. X., and Li, E. (2011) Houttuynia cordata blocks HSV infection through inhibition of NF-kappaB activation, Antiviral research 92, 341-345. 51. Chiang, L. C., Chang, J. S., Chen, C. C., Ng, L. T., and Lin, C. C. (2003) Anti-Herpes simplex virus activity of Bidens pilosa and Houttuynia cordata, The American journal of Chinese medicine 31, 355-362. 52. Hayashi, K., Kamiya, M., and Hayashi, T. (1995) Virucidal effects of the steam distillate from Houttuynia cordata and its components on HSV-1, influenza virus, and HIV, Planta medica 61, 237-241. 53. Chen, Y. Y., Liu, J. F., Chen, C. M., Chao, P. Y., and Chang, T. J. (2003) A study of the antioxidative and antimutagenic effects of Houttuynia cordata Thunb. using an oxidized frying oil-fed model, J Nutr Sci Vitaminol (Tokyo) 49, 327-333. 54. Lu, H. M., Liang, Y. Z., Yi, L. Z., and Wu, X. J. (2006) Anti-inflammatory effect of Houttuynia cordata injection, J Ethnopharmacol 104, 245-249. 55. Farah, A., Monteiro, M., Donangelo, C. M., and Lafay, S. (2008) Chlorogenic acids from green coffee extract are highly bioavailable in humans, J Nutr 138, 2309-2315. 56. Meng, J., Dong, X. P., Jiang, Z. H., Leung, S. Y., and Zhao, Z. Z. (2006) Study on chemical constituents of flavonoids in fresh herb of Houttuynia cordata, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica 31, 1335-1337. 57. Hammond, S. M. (2006) MicroRNAs as oncogenes, Curr Opin Genet Dev 16, 4-9. 58. Ying, S. Y., Chang, C. P., and Lin, S. L. (2010) Intron-mediated RNA interference, intronic microRNAs, and applications, Methods Mol Biol 629, 205-237. 59. Liu, Z., Sall, A., and Yang, D. (2008) MicroRNA: An emerging therapeutic target and intervention tool, Int J Mol Sci 9, 978-999. 60. Xie, X., Lu, J., Kulbokas, E. J., Golub, T. R., Mootha, V., Lindblad-Toh, K., Lander, E. S., and Kellis, M. (2005) Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals, Nature 434, 338-345. 61. Croce, C. M. (2009) Causes and consequences of microRNA dysregulation in cancer, Nat Rev Genet 10, 704-714. 62. Umbach, J. L., and Cullen, B. R. (2009) The role of RNAi and microRNAs in animal virus replication and antiviral immunity, Genes Dev 23, 1151-1164. 63. Winter, J., Jung, S., Keller, S., Gregory, R. I., and Diederichs, S. (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation, Nat Cell Biol 11, 228-234. 64. Umbach, J. L., Kramer, M. F., Jurak, I., Karnowski, H. W., Coen, D. M., and Cullen, B. R. (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs, Nature 454, 780-783. 65. Pfeffer, S., Zavolan, M., Grasser, F. A., Chien, M., Russo, J. J., Ju, J., John, B., Enright, A. J., Marks, D., Sander, C., and Tuschl, T. (2004) Identification of virus-encoded microRNAs, Science 304, 734-736. 66. Gottwein, E., Mukherjee, N., Sachse, C., Frenzel, C., Majoros, W. H., Chi, J. T., Braich, R., Manoharan, M., Soutschek, J., Ohler, U., and Cullen, B. R. (2007) A viral microRNA functions as an orthologue of cellular miR-155, Nature 450, 1096-1099. 67. Ho, B. C., Yu, I. S., Lu, L. F., Rudensky, A., Chen, H. Y., Tsai, C. W., Chang, Y. L., Wu, C. T., Chang, L. Y., Shih, S. R., Lin, S. W., Lee, C. N., Yang, P. C., and Yu, S. L. (2014) Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon, Nat Commun 5, 3344. 68. Triboulet, R., Mari, B., Lin, Y. L., Chable-Bessia, C., Bennasser, Y., Lebrigand, K., Cardinaud, B., Maurin, T., Barbry, P., Baillat, V., Reynes, J., Corbeau, P., Jeang, K. T., and Benkirane, M. (2007) Suppression of microRNA-silencing pathway by HIV-1 during virus replication, Science 315, 1579-1582. 69. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M., and Sarnow, P. (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA, Science 309, 1577-1581. 70. Pan, D., Flores, O., Umbach, J. L., Pesola, J. M., Bentley, P., Rosato, P. C., Leib, D. A., Cullen, B. R., and Coen, D. M. (2014) A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency, Cell Host Microbe 15, 446-456. 71. Ru, J., Sun, H., Fan, H., Wang, C., Li, Y., Liu, M., and Tang, H. (2014) MiR-23a Facilitates the Replication of HSV-1 through the Suppression of Interferon Regulatory Factor 1, PLoS One 9, e114021. 72. Bhela, S., Mulik, S., Reddy, P. B., Richardson, R. L., Gimenez, F., Rajasagi, N. K., Veiga-Parga, T., Osmand, A. P., and Rouse, B. T. (2014) Critical role of microRNA-155 in herpes simplex encephalitis, J Immunol 192, 2734-2743. 73. Lagos, D., Pollara, G., Henderson, S., Gratrix, F., Fabani, M., Milne, R. S., Gotch, F., and Boshoff, C. (2010) miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator, Nat Cell Biol 12, 513-519. 74. Zhu, J. Y., Pfuhl, T., Motsch, N., Barth, S., Nicholls, J., Grasser, F., and Meister, G. (2009) Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas, J Virol 83, 3333-3341. 75. Jung, Y. J., Choi, H., Kim, H., and Lee, S. K. (2014) MicroRNA miR-BART20-5p stabilizes Epstein-Barr virus latency by directly targeting BZLF1 and BRLF1, J Virol 88, 9027-9037. 76. Barth, S., Pfuhl, T., Mamiani, A., Ehses, C., Roemer, K., Kremmer, E., Jaker, C., Hock, J., Meister, G., and Grasser, F. A. (2008) Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5, Nucleic Acids Res 36, 666-675. 77. Qiu, J., and Thorley-Lawson, D. A. (2014) EBV microRNA BART 18-5p targets MAP3K2 to facilitate persistence in vivo by inhibiting viral replication in B cells, Proc Natl Acad Sci U S A 111, 11157-11162. 78. Xia, T., O'Hara, A., Araujo, I., Barreto, J., Carvalho, E., Sapucaia, J. B., Ramos, J. C., Luz, E., Pedroso, C., Manrique, M., Toomey, N. L., Brites, C., Dittmer, D. P., and Harrington, W. J., Jr. (2008) EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3, Cancer Res 68, 1436-1442. 79. Ray, A., Marshall, V., Uldrick, T., Leighty, R., Labo, N., Wyvill, K., Aleman, K., Polizzotto, M. N., Little, R. F., Yarchoan, R., and Whitby, D. (2012) Sequence analysis of Kaposi sarcoma-associated herpesvirus (KSHV) microRNAs in patients with multicentric Castleman disease and KSHV-associated inflammatory cytokine syndrome, J Infect Dis 205, 1665-1676. 80. Han, S. J., Marshall, V., Barsov, E., Quinones, O., Ray, A., Labo, N., Trivett, M., Ott, D., Renne, R., and Whitby, D. (2013) Kaposi's sarcoma-associated herpesvirus microRNA single-nucleotide polymorphisms identified in clinical samples can affect microRNA processing, level of expression, and silencing activity, J Virol 87, 12237-12248. 81. Liang, D., Gao, Y., Lin, X., He, Z., Zhao, Q., Deng, Q., and Lan, K. (2011) A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKepsilon, Cell Res 21, 793-806. 82. Liu, Y., Sun, R., Lin, X., Liang, D., Deng, Q., and Lan, K. (2012) Kaposi's sarcoma-associated herpesvirus-encoded microRNA miR-K12-11 attenuates transforming growth factor beta signaling through suppression of SMAD5, J Virol 86, 1372-1381. 83. Qin, Z., Kearney, P., Plaisance, K., and Parsons, C. H. (2010) Pivotal advance: Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes, J Leukoc Biol 87, 25-34. 84. Gottwein, E., and Cullen, B. R. (2010) A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest, J Virol 84, 5229-5237. 85. Su, C. T., Hsu, J. T., Hsieh, H. P., Lin, P. H., Chen, T. C., Kao, C. L., Lee, C. N., and Chang, S. Y. (2008) Anti-HSV activity of digitoxin and its possible mechanisms, Antiviral research 79, 62-70. 86. Melancon, J. M., Fulmer, P. A., and Kousoulas, K. G. (2007) The herpes simplex virus UL20 protein functions in glycoprotein K (gK) intracellular transport and virus-induced cell fusion are independent of UL20 functions in cytoplasmic virion envelopment, Virology journal 4, 120. 87. Yu, S. L., Chen, H. Y., Chang, G. C., Chen, C. Y., Chen, H. W., Singh, S., Cheng, C. L., Yu, C. J., Lee, Y. C., Chen, H. S., Su, T. J., Chiang, C. C., Li, H. N., Hong, Q. S., Su, H. Y., Chen, C. C., Chen, W. J., Liu, C. C., Chan, W. K., Li, K. C., Chen, J. J., and Yang, P. C. (2008) MicroRNA signature predicts survival and relapse in lung cancer, Cancer Cell 13, 48-57. 88. Yasin, B., Wang, W., Pang, M., Cheshenko, N., Hong, T., Waring, A. J., Herold, B. C., Wagar, E. A., and Lehrer, R. I. (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry, Journal of virology 78, 5147-5156. 89. Montgomery, R. I., Warner, M. S., Lum, B. J., and Spear, P. G. (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family, Cell 87, 427-436. 90. Shukla, D., Liu, J., Blaiklock, P., Shworak, N. W., Bai, X., Esko, J. D., Cohen, G. H., Eisenberg, R. J., Rosenberg, R. D., and Spear, P. G. (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry, Cell 99, 13-22. 91. Warner, M. S., Geraghty, R. J., Martinez, W. M., Montgomery, R. I., Whitbeck, J. C., Xu, R., Eisenberg, R. J., Cohen, G. H., and Spear, P. G. (1998) A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus, Virology 246, 179-189. 92. Meng, J., Leung, K. S., Jiang, Z., Dong, X., Zhao, Z., and Xu, L. J. (2005) Establishment of HPLC-DAD-MS fingerprint of fresh Houttuynia cordata, Chemical & pharmaceutical bulletin 53, 1604-1609. 93. Fournier, N., Chalus, L., Durand, I., Garcia, E., Pin, J. J., Churakova, T., Patel, S., Zlot, C., Gorman, D., Zurawski, S., Abrams, J., Bates, E. E., and Garrone, P. (2000) FDF03, a novel inhibitory receptor of the immunoglobulin superfamily, is expressed by human dendritic and myeloid cells, J Immunol 165, 1197-1209. 94. Satoh, T., Arii, J., Suenaga, T., Wang, J., Kogure, A., Uehori, J., Arase, N., Shiratori, I., Tanaka, S., Kawaguchi, Y., Spear, P. G., Lanier, L. L., and Arase, H. (2008) PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B, Cell 132, 935-944. 95. Fuller, A. O., and Lee, W. C. (1992) Herpes simplex virus type 1 entry through a cascade of virus-cell interactions requires different roles of gD and gH in penetration, Journal of virology 66, 5002-5012. 96. Johnson, D. C., Burke, R. L., and Gregory, T. (1990) Soluble forms of herpes simplex virus glycoprotein D bind to a limited number of cell surface receptors and inhibit virus entry into cells, Journal of virology 64, 2569-2576. 97. Johnson, D. C., and Ligas, M. W. (1988) Herpes simplex viruses lacking glycoprotein D are unable to inhibit virus penetration: quantitative evidence for virus-specific cell surface receptors, Journal of virology 62, 4605-4612. 98. Lee, W. C., and Fuller, A. O. (1993) Herpes simplex virus type 1 and pseudorabies virus bind to a common saturable receptor on Vero cells that is not heparan sulfate, Journal of virology 67, 5088-5097. 99. Everett, R. D. (1984) Trans activation of transcription by herpes virus products: requirement for two HSV-1 immediate-early polypeptides for maximum activity, EMBO J 3, 3135-3141. 100. Gelman, I. H., and Silverstein, S. (1985) Identification of immediate early genes from herpes simplex virus that transactivate the virus thymidine kinase gene, Proc Natl Acad Sci U S A 82, 5265-5269. 101. Sacks, W. R., and Schaffer, P. A. (1987) Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture, Journal of virology 61, 829-839. 102. Brasier, A. R. (2006) The NF-kappaB regulatory network, Cardiovasc Toxicol 6, 111-130. 103. Taddeo, B., Luo, T. R., Zhang, W., and Roizman, B. (2003) Activation of NF-kappaB in cells productively infected with HSV-1 depends on activated protein kinase R and plays no apparent role in blocking apoptosis, Proc Natl Acad Sci U S A 100, 12408-12413. 104. Faith, S. A., Sweet, T. J., Bailey, E., Booth, T., and Docherty, J. J. (2006) Resveratrol suppresses nuclear factor-kappaB in herpes simplex virus infected cells, Antiviral Res 72, 242-251. 105. Abou-Karam, M., and Shier, W. T. (1992) Isolation and characterization of an antiviral flavonoid from Waldsteinia fragarioides, J Nat Prod 55, 1525-1527. 106. Lyu, S. Y., Rhim, J. Y., and Park, W. B. (2005) Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro, Arch Pharm Res 28, 1293-1301. 107. Tao, J., Hu, Q., Yang, J., Li, R., Li, X., Lu, C., Chen, C., Wang, L., Shattock, R., and Ben, K. (2007) In vitro anti-HIV and -HSV activity and safety of sodium rutin sulfate as a microbicide candidate, Antiviral research 75, 227-233. 108. Thilakarathna, S. H., and Rupasinghe, H. P. (2013) Flavonoid bioavailability and attempts for bioavailability enhancement, Nutrients 5, 3367-3387. 109. Hollman, P. C., de Vries, J. H., van Leeuwen, S. D., Mengelers, M. J., and Katan, M. B. (1995) Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers, Am J Clin Nutr 62, 1276-1282. 110. Hollman, P. C., van Trijp, J. M., Mengelers, M. J., de Vries, J. H., and Katan, M. B. (1997) Bioavailability of the dietary antioxidant flavonol quercetin in man, Cancer Lett 114, 139-140. 111. Paulke, A., Eckert, G. P., Schubert-Zsilavecz, M., and Wurglics, M. (2012) Isoquercitrin provides better bioavailability than quercetin: comparison of quercetin metabolites in body tissue and brain sections after six days administration of isoquercitrin and quercetin, Pharmazie 67, 991-996. 112. Jo, H. Y., Kim, Y., Nam, S. Y., Lee, B. J., Kim, Y. B., Yun, Y. W., and Ahn, B. (2008) The inhibitory effect of quercitrin gallate on iNOS expression induced by lipopolysaccharide in Balb/c mice, J Vet Sci 9, 267-272. 113. Sato, M., Miyazaki, T., Kambe, F., Maeda, K., and Seo, H. (1997) Quercetin, a bioflavonoid, inhibits the induction of interleukin 8 and monocyte chemoattractant protein-1 expression by tumor necrosis factor-alpha in cultured human synovial cells, J Rheumatol 24, 1680-1684. 114. Shih, C. M., Lin, H., Liang, Y. C., Lee, W. S., Bi, W. F., and Juan, S. H. (2004) Concentration-dependent differential effects of quercetin on rat aortic smooth muscle cells, Eur J Pharmacol 496, 41-48. 115. Xu, G. H., Ryoo, I. J., Kim, Y. H., Choo, S. J., and Yoo, I. D. (2009) Free radical scavenging and antielastase activities of flavonoids from the fruits of Thuja orientalis, Arch Pharm Res 32, 275-282. 116. Liu, Z. M., Yang, Y. S., Wang, X. L., and Wen, R. X. (2006) Recent progress on anti-HIV research of traditional Chinese medicine and components, Zhongguo Zhong yao za zhi = China journal of Chinese materia medica 31, 1753-1758. 117. Nguyen, T. T., Woo, H. J., Kang, H. K., Nguyen, V. D., Kim, Y. M., Kim, D. W., Ahn, S. A., Xia, Y., and Kim, D. (2012) Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris, Biotechnology letters 34, 831-838. 118. Savov, V. M., Galabov, A. S., Tantcheva, L. P., Mileva, M. M., Pavlova, E. L., Stoeva, E. S., and Braykova, A. A. (2006) Effects of rutin and quercetin on monooxygenase activities in experimental influenza virus infection, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie 58, 59-64. 119. Kavouras, J. H., Prandovszky, E., Valyi-Nagy, K., Kovacs, S. K., Tiwari, V., Kovacs, M., Shukla, D., and Valyi-Nagy, T. (2007) Herpes simplex virus type 1 infection induces oxidative stress and the release of bioactive lipid peroxidation by-products in mouse P19N neural cell cultures, J Neurovirol 13, 416-425. 120. Kim, J. C., Choi, S. H., Kim, J. K., Kim, Y., Kim, H. J., Im, J. S., Lee, S. Y., Choi, J. M., Lee, H. M., and Ahn, J. K. (2008) Herpes simplex virus type 1 ICP27 induces apoptotic cell death by increasing intracellular reactive oxygen species, Mol Biol (Mosk) 42, 470-477. 121. Halford, W. P., Weisend, C., Grace, J., Soboleski, M., Carr, D. J., Balliet, J. W., Imai, Y., Margolis, T. P., and Gebhardt, B. M. (2006) ICP0 antagonizes Stat 1-dependent repression of herpes simplex virus: implications for the regulation of viral latency, Virol J 3, 44. 122. Orzalli, M. H., DeLuca, N. A., and Knipe, D. M. (2012) Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein, Proc Natl Acad Sci U S A 109, E3008-3017. 123. Taylor, K. E., Chew, M. V., Ashkar, A. A., and Mossman, K. L. (2014) Novel roles of cytoplasmic ICP0: proteasome-independent functions of the RING finger are required to block interferon-stimulated gene production but not to promote viral replication, J Virol 88, 8091-8101. 124. Johnson, K. E., Song, B., and Knipe, D. M. (2008) Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling, Virology 374, 487-494. 125. Paladino, P., and Mossman, K. L. (2009) Mechanisms employed by herpes simplex virus 1 to inhibit the interferon response, J Interferon Cytokine Res 29, 599-607. 126. Corcoran, J. A., Hsu, W. L., and Smiley, J. R. (2006) Herpes simplex virus ICP27 is required for virus-induced stabilization of the ARE-containing IEX-1 mRNA encoded by the human IER3 gene, J Virol 80, 9720-9729. 127. Tian, X., Devi-Rao, G., Golovanov, A. P., and Sandri-Goldin, R. M. (2013) The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export, J Virol 87, 7210-7217. 128. Leib, D. A., Alexander, D. E., Cox, D., Yin, J., and Ferguson, T. A. (2009) Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses, J Virol 83, 12164-12171. 129. Wang, K., Ni, L., Wang, S., and Zheng, C. (2014) Herpes simplex virus 1 protein kinase US3 hyperphosphorylates p65/RelA and dampens NF-kappaB activation, J Virol 88, 7941-7951. 130. Lu, Q., Lu, G., Qi, J., Wang, H., Xuan, Y., Wang, Q., Li, Y., Zhang, Y., Zheng, C., Fan, Z., Yan, J., and Gao, G. F. (2014) PILRalpha and PILRbeta have a siglec fold and provide the basis of binding to sialic acid, Proc Natl Acad Sci U S A 111, 8221-8226. 131. Mousseau, D. D., Banville, D., L'Abbe, D., Bouchard, P., and Shen, S. H. (2000) PILRalpha, a novel immunoreceptor tyrosine-based inhibitory motif-bearing protein, recruits SHP-1 upon tyrosine phosphorylation and is paired with the truncated counterpart PILRbeta, J Biol Chem 275, 4467-4474. 132. Banerjee, A., Stevenaert, F., Pande, K., Haghjoo, E., Antonenko, S., Gorman, D. M., Sathe, M., McClanahan, T. K., Pierce, R., Turner, S. P., Bigler, M. E., Phillips, J. H., and Heyworth, P. G. (2010) Modulation of paired immunoglobulin-like type 2 receptor signaling alters the host response to Staphylococcus aureus-induced pneumonia, Infect Immun 78, 1353-1363. 133. Sun, Y., Caplazi, P., Zhang, J., Mazloom, A., Kummerfeld, S., Quinones, G., Senger, K., Lesch, J., Peng, I., Sebrell, A., Luk, W., Lu, Y., Lin, Z., Barck, K., Young, J., Del Rio, M., Lehar, S., Asghari, V., Lin, W., Mariathasan, S., DeVoss, J., Misaghi, S., Balazs, M., Sai, T., Haley, B., Hass, P. E., Xu, M., Ouyang, W., Martin, F., Lee, W. P., and Zarrin, A. A. (2014) PILRalpha negatively regulates mouse inflammatory arthritis, J Immunol 193, 860-870. 134. Motsch, N., Pfuhl, T., Mrazek, J., Barth, S., and Grasser, F. A. (2007) Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a, RNA Biol 4, 131-137. 135. Lanford, R. E., Hildebrandt-Eriksen, E. S., Petri, A., Persson, R., Lindow, M., Munk, M. E., Kauppinen, S., and Orum, H. (2009) Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection, Science 3, 3. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18236 | - |
dc.description.abstract | 第一型單純皰疹病毒(Herpes simplex virus type 1, HSV-1)是一種普遍存在的病毒,會潛伏在人體內並可能造成嚴重疾病。現行治療單純皰疹病毒感染之藥物Acyclovir使用量不斷增加,因而產生具有抗藥性之病毒,故急需發展新的藥物以治療單純皰疹病毒之感染。魚腥草為一天然中草藥,已有文獻指出魚腥草可經由作用於第二波NF-κB來活化抑制第一型單純皰疹病毒。然而對於更詳細的抑制機轉則還不清楚。本研究結果顯示魚腥草水萃取物抑制HSV-1 、HSV-2以及具有Acyclovir抗性的HSV-1(HSV-AR)其作用主要是透過抑制病毒和細胞結合以及抑制病毒進入宿主細胞。除此之外,魚腥草水萃取物也可以經由抑制第一波NF-κB活化來減少病毒複製。進一步分析魚腥草水萃取物之六個主要成分,顯示quercetin可以同時抑制病毒進入細胞以及NF-κB活化,而isoquercitrin可以抑制NF-κB活化。上述結果顯示魚腥草水溶液萃取物可以經由不同機制來抑制單純皰疹病毒感染,並且可能對於未來抗單純皰疹病毒藥物的發展有所幫助。
另外,微核醣核酸(microRNAs)最近也被用來研究作為抗病毒的標的。微核醣核酸是近來發現的一類小片段、非蛋白質編碼的核醣核酸,可藉由內源性RNA干擾方式來調控廣泛的生物功能,其中包括宿主與病毒的相互作用。目前對於微核醣核酸在單純皰疹病毒感染過程中的角色仍不全然清楚。研究細胞生成的微核醣核酸如何調控病毒感染有助於了解病毒和宿主細胞之間的交互作用。本研究使用單核球細胞株THP1,並利用即時反轉錄聚合酶連鎖反應分析平台,比較第一型單純皰疹病毒感染THP1後微核醣核酸表現量的差異。MicroRNA-27a*為 第一型單純皰疹病毒感染細胞後下降最顯著的微核醣核酸。用相關電腦軟體分析,指出第二型成對類免疫球蛋白受體α (paired immunoglobulin-like type 2 receptor α, PILRα)為其可能作用之標的基因。PILRα是第一型單純皰疹病毒感染時的受體,除此之外,在它的細胞質端區域具有免疫受體酪氨酸抑制模體(ITIM)可以傳遞抑制的訊號。在本研究中,我們假設第一型單純皰疹病毒感染後會抑制 miR-27a*,因而增加PILRα的表現並進而幫助抑制宿主細胞抗病毒的先天免疫反應。進一步的實驗顯示病毒在高度表現miR-27a*的細胞中複製會被抑制高達20倍。除此之外,細胞激素TNF-α,IFN-β以及 IL-6的表現也有增加的現象。如果在細胞中送入對PILRα有特異性的siRNA也可以觀察到相似的結果。綜合以上實驗顯示miR-27a*對於經由抑制 PILRα表現來調控細胞抗病毒的先天免疫扮演著重要角色。 | zh_TW |
dc.description.abstract | Herpes simplex virus (HSV), a common latent virus in humans, causes certain severe diseases. Extensive use of acyclovir (ACV) results in the development of drug-resistant HSV strains, hence, there is an urgent need to develop new drugs to treat HSV infection. Houttuynia cordata (H. cordata), a natural herbal medicine, has been reported to exhibit anti-HSV effect which is partly NF-κB-dependent. However, the molecular mechanisms by which H. cordata inhibits HSV infection are not elucidated thoroughly. In this study, we found that H. cordata water extract (HCWE) inhibited the infection of HSV-1, HSV-2, and acyclovir-resistant HSV-1, mainly via blocking viral binding and penetration in the beginning of infection. HCWE also suppressed HSV replication. Furthermore, HCWE attenuated the first-wave of NF-κB activation, which is essential for viral gene expression. Further analysis of six compounds identified in H. cordata revealed that quercetin and isoquercitrin inhibit NF-κB activation and additionally, quercetin also has an inhibitory effect on viral entry. These results indicate that H. cordata could inhibit HSV infection through multiple mechanisms and could be a potential lead for development of new drugs for treating HSV.
Recently, the microRNA also can be the antiviral target. MicroRNA is a class of small non-protein-coding RNAs that may act via endogenous RNA interference. However, few studies have explored the role of microRNA in HSV infection. In this study, we used the monocytic cell line THP1 and found that the expression of miR-27a* in THP1 was reduced after HSV-1 infection. Potential target genes of miR-27a* were predicted by the target prediction program, miRanda. One of the predicted targets is paired immunoglobulin-like type 2 receptor α (PILRα), the co-receptor of HSV-1, which contains an immunoreceptor tyrosine-based inhibition motif (ITIM) and can deliver inhibitory signals in immune cells. We hypothesized that HSV-1 infection could down-regulate the expression of miR-27a* and increase the expression of PILRα and then inhibit the antiviral immunity. Further studies showed that overexpression of miR-27a* in cells could significantly inhibit virus replication and also could increase the expression of TNF-α, IFN-β, and IL-6. Similar results were also observed by delivering PILRα-specific siRNA. Collectively, miR-27a* had important role in regulating innate antiviral immunity by inhibiting the expression of PILRα. Further studies will be required to elucidate the role of PILRα in HSV-1 infection. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:56:00Z (GMT). No. of bitstreams: 1 ntu-104-F95424014-1.pdf: 8221607 bytes, checksum: c1640e59b547b28b95348204afb926a7 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 1.5 Biosynthesis and functions of microRNA …………..………………….…………29
1.6 Host microRNA and HSV………………………………………………………….32 1.7 Virus-encoded microRNAs……………………………………………………….33 1.8 Specific aims…………………………………….………………...……………….35 Chapter 2 Materials and Methods……………..………………...…….…….…….37 2.1 Virus and cell culture……………..…………………………………..…………….37 2.2 HCWE preparation………………………….…………………….……………….37 2.3 Plaque reduction assay……………….……………………………….……………38 2.4 Cytotoxicity assay……………….…………………………………………………38 2.5 Cell pre-treatment and virus pre-treatment assays…………………………………38 2.6 Binding and penetration assays……………….……………………………………39 2.7 Time-of-addition assay……………….……………………………………….……40 2.8 Western blot assay……………….………………………………………………41 2.9 Immunofluorescence assay…………………………………………..…………..41 2.10 Plasmid construction for ICP0 promoter……………….…………………………42 2.11 Production of recombinant glycoprotein D……………….………………………43 2.12 Promoter luciferase assay……………….……………………………...…………43 2.13 HPLC instrumentation and conditions……………….…………………...………44 2.14 Compounds preparation……………….…………………………………..………44 2.15 RNA extraction and microRNA profiling………………..………...…………44 2.16 Quantification of miR-27a*……………….……...……………………….………45 2.17 Plasmid constructions of PILRα 3’UTR……………………………....…….……45 2.18 Luciferase assay……………….…………………………………………..………46 2.19 siPILRα transfections……………….…………………………………….………46 2.20 Statistical Analysis……………….……………………………………….………47 Chapter 3 Results…….……….……………………………….…..………….………48 3.1 HCWE inhibited HSV replications……………..…………………….…….....……48 3.2 HCWE inhibited HSV infections by targeting virus particles directly….…………49 3.3 HCWE inhibited viral entry……………………………………………….…..……50 3.4 HCWE blocked recombinant gD binding to host cells…………………………..52 3.5 HCWE suppressed HSV replication after viral entry………………...…………….53 3.6 HCWE suppressed viral gene expression via inhibiting HSV-inducedNF-κB activation……………………………..…..…..……………………………….…..53 3.7 HCWE universally inhibited HSV replication in different cell lines…………….56 3.8 HPLC analysis of the HCWE collected from Taiwan…………………….………..57 3.9 Major compounds of HCWE possess anti-HSV activity…………………………..57 3.10 The expression of microRNA-27a* is decreased by HSV-1 infection……..……..59 3.11 PILRα is a target of miR-27a*………………………………….……..…………..59 3.12 HSV can infect and replicate in immune cell………………………....…..…61 3.13 MicroRNA-27a* involved in host immune responses after HSV-1 infection….....62 3.14 Overexpression of miR-27a* reduces virus production…………………………..63 3.15 UV-inactivated HSV-1 could inhibit the expression of miR-27a*…………...…..64 Chapter 4 Discussion………………………..…………….…………….…....……..66 Chapter 5 Conclusions………………………………………………………………..76 References………………………………..……………………..……………..………77 Tables………..……………………...………………………….…………………....101 Figures…..…………………………..…………….…………….……………...….…104 | |
dc.language.iso | en | |
dc.title | 單純皰疹病毒感染中魚腥草抗病毒作用之機制及miR-27a*所扮演之角色 | zh_TW |
dc.title | Mechanism of Anti-virus Activity of Houttuynia Cordata and The Role of miR-27a* in Herpes Simplex Virus Infection | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 高全良(Chuan-Liang Kao),張淑媛(Sui-Yuan Chang),劉旻禕(Min-yi Liu),陳基旺(Ji-Wang Chern) | |
dc.subject.keyword | 單純皰疹病毒,魚腥草,微核醣核酸, | zh_TW |
dc.subject.keyword | Herpes simplex virus,Houttuynia cordata,microRNA, | en |
dc.relation.page | 146 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-02-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 8.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。