Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18227
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林敏聰(Minn-Tsong Lin)
dc.contributor.authorChristopher John Butleren
dc.contributor.author揚羽zh_TW
dc.date.accessioned2021-06-08T00:55:40Z-
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-13
dc.identifier.citation[1] K. Ishizaka et al., Nat. Mater. 10, 521-526 (2011).
[2] X-L. Qi and S-C. Zhang, Rev. Mod. Phys. 83, 1057-1110 (2011).
[3] Z. K. Liu et al., Nat. Mater. 13, 677681 (2014).
[4] M. Neupane et al., Nat. Commun. 5, 3786 (2014).
[5] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83,
205101 (2011).
[6] Z. Wang et al., Phys. Rev. B 85, 195320 (2012).
[7] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806
(2011).
[8] P. Roushan et al., Nature 460, 1106-1110 (2009).
[9] S. Jeon et al., Nat. Mater. 13, 851-856 (2014).
[10] A. K. Geim, and K. S. Novoselov, Nat. Mater. 6, 183-191 (2007).
[11] L. Fu, and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[12] Y. Fan et al., Nat. Mater. 13, 699704 (2014).
[13] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[14] E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960).
[15] Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).
[16] J. Nitta, T. Akazaki and H. Takayanagi, Phys. Rev. Lett. 78, 7 (1997).
[17] S. LaShell, B. A. McDougall, E. Jensen, Phys Rev. Lett. 77, 3419 (1996).
[18] www:psi-k.org/newsletters/News78/Highlight78.pdf (retrieved 28.10.2014).
[19] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
[20] http : //www:nims.go.jp/apfim/SpinFET.html (retrieved 02.12.2014).
[21] T. Koga, J. Nitta, and H. Takayanagi, Phys. Rev. Lett. 8, 126601 (2002).
[22] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. Mac-Donald, Phys. Rev. Lett. 92, 126603 (2004).
[23] J.-I. Ohe, M. Yamamoto, T. Ohtsuki, and J. Nitta, Phys. Rev. B 72,041308(R) (2005).
[24] V. M. Edelstein, Solid State Commun. 73, 233-235 (1990).
[25] C. H. Li, et al., Nat. Nanotech. 9, 218-224 (2014).
[26] J. C. Rojas-Sanchez, et al., Nat. Commun. 4, 2944 (2013).
[27] I. M. Miron, et al., Nature Mater. 9, 230-234 (2010).
[28] J. D. Sau et al., Phys. Rev. Lett. 104, 040502 (2010).
[29] V. Mourik et al., Science 336, 1003-1007 (2012).
[30] K. He, T. Hirahara, S. Hasegawa, A. Kakizaki and I. Matsuda Phys. Rev. Lett. 101, 107604 (2008).
[31] Y. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V. Chulkov, S. Bl ugel, P. M.
Echenique, and Ph. Hoffmann, Phys. Rev. Lett. 93, 046403 (2004).
[32] C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub, D. Pacil e, P. Bruno,
K. Kern, and M. Grioni, Phys. Rev. Lett. 98, 186807 (2007).
[33] G. Bihlmayer, S. Bl ugel, and E. V. Chulkov, Phys. Rev. B 75, 195414 (2007).
[34] C. R. Ast, D. Pacil e, L. Moreschini, M. C. Falub, M. Papagno, K. Kern, and M. Grioni, Phys. Rev. B 77, 081407(R) (2008).
[35] H. Mirhosseini, J. Henk, A. Ernst, S. Ostanin, C.-T. Chiang, P. Yu, A. Winkelmann, and J. Kirschner, Phys. Rev. B 79, 245428 (2009).
[36] S. Eremeev, I. Nechaev, Y. Koroteev, P. Echenique and E. Chulkov, Phys. Rev. Lett. 108, 1-5 (2012).
[37] A. V. Shevelkov, E. V. Dikarev, R. V. Shpanchenko, and B. A. Popovkinn, J. Solid State Chem. 114, 379 (1995).
[38] http : //genchem1.chem.okstate.edu/BDA/ENTAble.jpg (retrieved 25.12.2014).
[39] M. Sakano et al., Phys. Rev. Lett. 110, 107204 (2013).
[40] S. V. Eremeev, I. A. Nechaev, and E. V. Chulkov, JETP Lett. 96, 484491 (2012).
[41] S. V. Eremeev, I. P. Rusinov, I. A. Nechaev, and E. V. Chulkov, New J. Phys. 15, 075015 (2013).
[42] S. V. Eremeev et al., Phys. Rev. Lett. 108, 246802 (2012).
[43] M. S. Bahramy, B.-J. Yang, R. Arita and N. Nagaosa, Nat. Commun. 3, 679 (2012).
[44] Y. L. Chen, et al., Nature Phys. 9, 2768 (2013).
[45] K. Kuroda et al., Phys. Rev. Lett. 105, 146801 (2010).
[46] C. Brune et al., Phys. Rev. Lett. 106, 126803 (2011).
[47] C. J. Butler, et al., Nat. Commun. 5, 4066 (2014).
[48] R. Sankar, et al., CrystEngComm 16, 8678-8683 (2014).
[49] D. P. Woodruff and T. A. Delchar, Modern Techniques of Surface Science, (Cambridge University Press 2nd ed.)
[50] X. He, W. Zhou, Z. Y. Wang, Y. N. Zhang, J. Shi, R. Q. Wu, and J. Yarmoff, Phys. Rev. Lett. 110, 156101 (2013).
[51] J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).
[52] J. Tersoff and D. R. Hamann, Phys Rev. B 31, 805 (1985).
[53] J. Tersoff and D. R. Hamann, Phys Rev. Lett. 50, 1998 (1983).
[54] D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press 84th ed.)
[55] J. Wintterlin, J. Wiechers, H. Brune, T. Gritsch, H. H ofer and R. J. Behm, Phys. Rev. Lett. 62, 59 (1989).
[56] V. M. Hallmark, S. Chiang, J. F. Raboldt, J. D. Swalen, and R. J. Wilson, Phys Rev. Lett. 59, 2879 (1987).
[57] C. J. Chen, Phys Rev. Lett. 65, 448 (1990).
[58] C. J. Chen, Introduction to Scanning Tunneling Microscopy, New York, Oxford (1993).
[59] V. A. Ukraintsev, Phys. Rev. B 53, 11176 (1996).
[60] R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy (Cambridge University Press, Cambridge, UK, 1994).
[61] bnl.gov/nsls2/workshops/BeamlineDevelopment/docs/pdf/Bostwick.pdf (retrieved 13.09.2014).
[62] A. Str ozecka, A. Eiguren and J. I. Pascual, Phys. Rev. Lett. 107, 186805 (2011).
[63] P. Aynajian et al., Nature 486, 11204 (2012).
[64] T. H anke et al., Phys. Rev. Lett. 108, 127001 (2012).
[65] 'The Nobel Prize in Physics 1921'. Nobelprize.org. Nobel Media AB 2014. http://www:nobelprize.org/nobelprizes/physics/laureates/1921/ (retrieved 06.01.2015).
[66] The X-ray Data Booklet, compiled by the Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory, can be found at http : //xdb.lbl.gov/ (retrieved 28.10.2014).
[67] M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 2 (1979).
[68] R. Klauser et al., Surf. Rev. Lett. 9, 213-222 (2002).
[69] I. H. Hong et al., Nucl. Instrum. Methods A 467, 905-908 (2001).
[70] M. Born and J. R. Oppenheimer, Annalen der Physik 389, 457484 (1927).
[71] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[72] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[73] J. P. Perdew and A. Zunger, Phys. Rev. B, 23, 5048, (1981).
[74] P. E. Blochl, Phys. Rev. B, 50, 17953, (1994).
[75] G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758, (1999).
[76] G. Kresse and J. Furthmller, Phys. Rev. B, 54, 11169, (1996).
[77] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[78] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys. Condens. Matter 21, 395502 (2009).
[79] E. Z. D onges, Anorg. Allg. Chem. 265, 56 (1951).
[80] V. Marinkovic, S. Perovski and N. Vene, J. of Cryst. Growth 44, 615-616 (1978).
[81] A. Crepaldi et al., Phys. Rev. Lett. 109, 096803 (2012).
[82] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[83] M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 2 (1979).
[84] http : ==www:uni leipzig:de= unifit (retrieved on 16.12.2014).
[85] V. Cheianov, V. Falko, and B. L. Altshuler, Science 315, 12521255 (2007).
[86] J. Wang, X. Chen, B.-F. Zhu, and S.-C. Zhang, Phys. Rev. B 85, 235131 (2012).
[87] C. Tournier-Colletta et al., Phys. Rev. B 89, 085402 (2014).
[88] I. Horcas, R. Fernandez, J. M. G omez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).
[89] V. A. Kulbachinskii, V. G. Kytin, A. A. Kudryashov, A. N. Kuznetsov and A. V. Shevelkov J. Solid State Chem. 193, 154160 (2012).
[90] A. V. Shevelkov et al., J. Solid State Chem. 114, 379 (1995).
[91] S. Zhou, J. Long and W. Huang, Mater. Sci. in Semicond. Process. 27, 605-610 (2014).
[92] S. V. Eremeev, I. P. Rusinov, I. A. Nechaev and E. V. Chulkov New Journal of Physics 15, 075015 (2013).
[93] S. Fiedler et al., New J. Phys. 16, 075013 (2014).
[94] J.-J. Yeh, Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters, AT&T Bell Laboratories (Gordon and Breach Science Publishers, Langhorne PA, 1993).
[95] G. Landolt, et al., New J. Phys. 15, 085022 (2013).
[96] Y. Jiang et al., Phys. Rev. Lett. 108, 066809 (2012).
[97] Z. Zhiyong, Y. C. Cheng and U. Schwingenschlogl, New J. Phys. 15, 023010 (2013).
[98] bnl.gov/nsls2/workshops/BeamlineDevelopment/docs/pdf (retrieved on 13.09.2014).
[99] I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18227-
dc.description.abstract自旋軌道交互作用是藉著電子自旋以及外加電場產生出一個基本的耦合效應。具有強自旋分裂現象的材料,像是藉由材料的Rashba效應,使我們可以利用電場控制自旋電流,來調節許多自旋電子學的應用。鉍碲和鹵素的化合物具有強自旋軌道分裂,提供了一個廣大的平台供我們作關於強自旋軌道分裂之載子的研究。另外,鉍碲和鹵素的化合物具有非中央對稱的極化結構,破壞了空間的反轉對稱性,在導電帶和價電帶產生出巨大的Rashba自旋分裂;因著此結構在其兩種不同的表面帶有兩種相反的電荷,使帶有相反電荷的兩種表面產生強的極化效應和強的能帶彎曲,分別產生二維的累積層與空乏層。在本篇論文中,我們結合了實驗上藉由掃描式穿隧電子顯微鏡測得的表面地形圖、掃描式穿隧電子能譜和模擬計算的結果,以及碘碲化鉍和溴碲化鉍的化學性質及電性結構。在碘碲化鉍表面,我們在碲和碘的極化表面發現類似局域化的區域,也藉由X射線光電子能譜、穿隧能譜和ab initio的計算結果明白了在兩種表面產生的兩種相反的能帶彎曲效應。我們也發現因著表面能帶彎曲使電荷在不同表面間的側向邊界遷移,產生出從類似p型的電子結構反轉至n型的電子結構。這種接面可藉由空間解析的穿隧能譜視覺化的呈現,這樣的邊界也顯示了第一個發現的二維pn接面。在溴碲化鉍表面,藉由表面的地形圖、穿隧電子能譜和X射線光電子能譜發現尺度超過1公釐的廣大極化表面。其中,在碲表面產生的累積層發現布洛赫波函數的準粒子干涉表明了因著表面缺陷產生的電子駐波。藉由能量相關的探索,確認了類似電子的高線性相關之色散關係。在碲的導電帶,6p軌域的布洛赫電子散射對於因著內層的鉍缺失造成的缺陷顯示為最為強烈,使我們得知原子等級缺線的化學性質以及彈道傳輸之特性之間的交互作用。這些探索提供人們一個平台去明瞭以及如何去應用一個真實材料的二維、相對論性自旋軌道分裂載子的表面系統。zh_TW
dc.description.abstractThe spin orbit interaction provides the most fundamental coupling of the electron spin to applied electric fields. Materials with strong spin-orbit splitting phenomena such as the Rashba effect offer a path towards the all-electric control of spin currents and a myriad of other spintronic functions. Semiconductor materials with giant spin orbit splitting, such as the family of compounds BiTeX, provide a versatile platform for the investigation of strongly spin-orbit split carriers. The non-centrosymmetric polar structure of BiTeX strongly breaks spatial inversion symmetry, driving a giant Rashba spin splitting in both the conduction and valence bands. This structure also features strong polarization induced band bending, with opposite signs at its two different polar terminations, creating a two-dimensional accumulation or depletion layer depending on the termination. In this work, combined microscopic, spectroscopic and computational investigations of the surface morphology, chemistry and electronic structure are presented for the compounds BiTeI and BiTeBr. For BiTeI, domain-like regions of polar Te- and I-terminated surfaces are observed using scanning tunneling microscopy. Opposite polarization induced band bending effects, understood with the aid of ab initio calculations, are observed in scanning tunneling spectroscopy measurements and in core level x-ray photoemission spectra. At the lateral boundary between regions of different termination, a reversal of the surface band bending leading to a transition at the boundary from p-like to n-like electronic structure is revealed. This type of junction, previously speculated upon, and dubbed the `Rashba p-n junction' due to the strong Rashba splitting of electrons and holes at either side, is directly visualized using spatially resolved tunneling spectroscopy. This boundary represents the first two-dimensional p-n junction discovered. For BiTeBr, scanning tunneling microscopy images, tunneling spectra and also x-ray photoemission spectra reveal uniform polar surfaces on scales exceeding 1 mm. In the accumulation layer confined to the Te terminated surface of BiTeBr, quasi-particle interference of Bloch wavefunctions is observed to manifest as standing electron waves around surface defects. Energy dependent observations are used to confirm the expected highly linear electron-like dispersion. Scattering of Bloch electrons in the Bi 6p-derived conduction band is shown to be strongest for defects in the Bi sublattice of the crystal, revealing the interplay between atomic scale defect chemistry and ballistic transport properties. These investigations provide a platform for the understanding and harnessing of two dimensional, relativistic and strongly spin-orbit split carriers at the surfaces of real materials systems.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:55:40Z (GMT). No. of bitstreams: 1
ntu-104-D98222030-1.pdf: 146133433 bytes, checksum: 3f981489ffaf9982dcd54e6cd6ce8720 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents1 Overview (1)
2 Introduction (4)
2.1 The Rashba Effect (4)
2.2 A `Toy Model' Derivation of the Rashba Dispersion Relation (5)
2.3 The Datta-Das Transistor (8)
2.4 Further Applications of the Rashba Effect (11)
2.5 The Bulk Rashba Semiconductors BiTeX (12)
2.6 Bulk Rashba Semiconductors and Topological Insulators (18)
3 Experimental Techniques and Apparatus (22)
3.1 Crystal Growth and Preparation Methods (22)
3.1.1 Ultra-High Vacuum (23)
3.1.2 Vacuum Cleavage of BiTeX Crystals for STM Measurements (25)
3.1.3 In situ Cleavage of BiTeI Crystals on the STM Stage (27)
3.1.4 Vacuum Cleavage of BiTeX Crystals for XPS Measurements (29)
3.2 Scanning Tunneling Microscopy (31)
3.2.1 The Basics of STM (31)
3.2.2 The Quantum Tunneling Eect (33)
3.2.3 The Tersoff-Hamann Theory (34)
3.2.4 Scanning Tunneling Spectroscopy (37)
3.2.5 Quasi-Particle Interference and Fourier Transform STS (39)
3.2.6 Collection and Processing of Fourier Transform STS Images (41)
3.2.7 STM Apparatus (45)
3.3 X-ray Photoemission Spectroscopy (48)
3.3.1 Scanning Photo-Emission Microscopy (51)
3.4 Density Functional Theory (53)
3.4.1 The Hohenberg-Kohn Theorems (54)
3.4.2 The Kohn-Sham equations (55)
4 Polarization Induced Surface Band Bending in BiTeI (58)
4.1 Background (58)
4.2 Results (60)
4.2.1 Bulk and Surface Band Structure Calculations (60)
4.2.2 STM and STS Measurements on the Vacuum-Cleaved BiTeI
surface (63)
4.2.3 XPS Measurements on the Vacuum-Cleaved BiTeI Surface. . . 66
4.2.4 Spatially Resolved Tunneling Spectroscopy Across a `Rashba p-n Junction' (69)
4.2.5 Voltage Dependent Morphology Across a `Rashba p-n Junction' (70)
4.2.6 Determination of Coverage for `Domains' of Each Termination (71)
4.2.7 The Influence of Growth Method on `Domain' Distribution (74)
4.3 Discussion (74)
4.3.1 A Possible Origin of `Domains' of Differing Stacking Order (74)
4.4 Summary (77)
5 Polar Terminations and Quasi-Particle Interference at the Surface of BiTeBr (79)
5.1 Background (79)
5.2 Results (82)
5.2.1 STM and STS Identication of Surface Terminations (82)
5.2.2 XPS Measurements (85)
5.2.3 Comparison of Band Bending in BiTeI and BiTeBr (86)
5.2.4 Quasi-Particle Interference in the 2-D Accumulation Layer at the Te-Terminated Surface (88)
5.2.5 Interpretation of QPI Observations Using the Rashba Model (93)
5.2.6 Identification of Surface Defects at the Te Termination (95)
5.2.7 Defects and QPI at the Te Termination of BiTeI (99)
5.3 Summary (103)
dc.language.isoen
dc.titleRashba半導體碘碲化鉍及溴碲化鉍之表面電子結構研究zh_TW
dc.titleInvestigations of the Surface Electronic Structure
of the Rashba Semiconductors BiTeI and BiTeBr
en
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree博士
dc.contributor.oralexamcommittee白偉武(Woei-Wu Pai),魏金明(Ching-Ming Wei),魏德新(Der-Hsin Wei),周方正(Fang-Cheng Chou)
dc.subject.keywordRashba效應,極化表面,碘碲化鉍,溴碲化鉍,掃描式穿隧電子顯微鏡,掃描式穿隧電子能譜,光電子能譜,準粒子干涉,zh_TW
dc.subject.keywordRashba effect,polar terminations,BiTeI,BiTeBr,scanning tunneling microscopy,scanning tunneling spectroscopy,photo-emission spectroscopy,quasi-particle interference,en
dc.relation.page115
dc.rights.note未授權
dc.date.accepted2015-02-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
142.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved