Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18223
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 李水盛 | |
dc.contributor.author | Yung-Ping Lee | en |
dc.contributor.author | 李泳平 | zh_TW |
dc.date.accessioned | 2021-06-08T00:55:29Z | - |
dc.date.copyright | 2015-03-12 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-02-13 | |
dc.identifier.citation | (1) Steinmetz, K. L.; Spack, E. G. The basics of preclinical drug development for neurodegenerative disease indications. BMC Neurol 2009, 9 Suppl 1, S2. (2) Fisher, S. J.; Swaan, P. W.; Eddington, N. D. The ethanol metabolite acetaldehyde increases paracellular drug permeability in vitro and oral bioavailability in vivo. J Pharmacol Exp Ther 2010, 332, 326-333. (3) Chaurasia, C. S.; Muller, M.; Bashaw, E. D.; Benfeldt, E.; Bolinder, J.; Bullock, R.; Bungay, P. M.; DeLange, E. C.; Derendorf, H.; Elmquist, W. F.; Hammarlund-Udenaes, M.; Joukhadar, C.; Kellogg, D. L., Jr.; Lunte, C. E.; Nordstrom, C. H.; Rollema, H.; Sawchuk, R. J.; Cheung, B. W.; Shah, V. P.; Stahle, L.; Ungerstedt, U.; Welty, D. F.; Yeo, H. AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res 2007, 24, 1014-1025. (4) Toma-Dasu, I.; Uhrdin, J.; Lazzeroni, M.; Carvalho, S.; van Elmpt, W.; Lambin, P.; Dasu, A. Evaluating tumor response of non-small cell lung cancer patients with (18)f-fludeoxyglucose positron emission tomography: potential for treatment individualization. Int J Radiat Oncol Biol Phys 2015, 91, 376-384. (5) Atzrodt, J.; Derdau, V. Selected scientific topics of the 11th International Isotope Symposium on the Synthesis and Applications of Isotopes and Isotopically Labeled Compounds. J Labelled Comp Radiopharm 2013, 56, 408-416. (6) Abdelaziz, M. M.; Khair, O. A.; Devalia, J. L. The potential of active metabolites of antihistamines in the management of allergic disease. Allergy 2000, 55, 425-434. (7) Liao, H. L.; Ma, T. C.; Li, Y. C.; Chen, J. T.; Chang, Y. S. Concurrent Use of Corticosteroids with Licorice-Containing TCM Preparations in Taiwan: A National Health Insurance Database Study. J Altern Complement Med 2010, 16, 539-544. (8) 吳明哲: 豬實驗動物. 實驗動物管理與使用指南; 第三版; 實驗動物管理與使用指南編輯委員會; 余俊強, 2010; pp 166-180. (9) Henion, J.; Wachs, T.; Mordehai, A. Recent developments in electrospray mass spectrometry including implementation on an ion trap. J Pharm Biomed Anal 1993, 11, 1049-1061. (10) Wang, C. Y.; Lee, S. S. Analysis and identification of lignans in Phyllanthus urinaria by HPLC-SPE-NMR. Phytochemical Analysis 2005, 16, 120-126. (11) Lam, S. H.; Wang, C. Y.; Chen, C. K.; Lee, S. S. Chemical investigation ofPhyllanthus reticulatus by HPLC-SPE-NMR and conventional methods. Phytochem Analysis 2007, 18, 251-255. (12) Lee, S. S.; Lai, Y. C.; Chen, C. K.; Tseng, L. H.; Wang, C. Y. Characterization of isoquinoline alkaloids from Neolitsea sericea var. aurata by HPLC-SPE-NMR. J Nat Prod 2007, 70, 637-642. (13) Johansen, K. T.; Wubshet, S. G.; Nyberg, N. T. HPLC-NMR revisited: using time-slice high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance with database-assisted dereplication. Anal Chem 2013, 85, 3183-3189. (14) Clarkson, C.; Staerk, D.; Hansen, S. H.; Smith, P. J.; Jaroszewski, J. W. Discovering new natural products directly from crude extracts by HPLC-SPE-NMR: chinane diterpenes in Harpagophytum procumbens. J Nat Prod 2006, 69, 527-530. (15) Burton, K. I.; Everett, J. R.; Newman, M. J.; Pullen, F. S.; Richards, D. S.; Swanson, A. G. On-line liquid chromatography coupled with high field NMR and mass spectrometry (LC-NMR-MS): a new technique for drug metabolite structure elucidation. J Pharm Biomed Anal 1997, 15, 1903-1912. (16) Spraul, M.; Freund, A. S.; Nast, R. E.; Withers, R. S.; Maas, W. E.; Corcoran, O. Advancing NMR sensitivity for LC-NMR-MS using a cryoflow probe: Application to the analysis of acetaminophen metabolites in urine. Anal Chem 2003, 75, 1536-1541. (17) Lai, Y. C.; Kuo, T. F.; Chen, C. K.; Tsai, H. J.; Lee, S. S. Metabolism of Dicentrine: Identification of the Phase I and Phase II Metabolites in Miniature Pig Urine. Drug Metab Dispos 2010, 38, 1714-1722. (18) Fukuoka, M.; Kuroyanagi, M.; Yoshihira, K.; Natori, S. Chemical and Toxicological Studies on Bracken Fern, Pteridium-Aquilinum Var Latiusculum .2. Structures of Pterosins, Sesquiterpenes Having 1-Indanone Skeleton. Chem Pharm Bull 1978, 26, 2365-2385. (19) Wu, Z.: XinHuaBenCaoGangYao; Shanghai Press of Science and Technology Shanghai, 1990. (20) Pamukcu, A. M.; Price, J. M.; Bryan, G. T. Naturally Occurring and Bracken-Fern Induced Bovine Urinary-Bladder Tumors - Clinical and Morphological-Characteristics. Vet Pathol 1976, 13, 110-122. (21) Castillo, U. F.; Wilkins, A. L.; Lauren, D. R.; Smith, B. L.; Alonso-Amelot, M. Pteroside A2 - a new illudane-type sesquiterpene glucoside from Pteridium caudatum L. Maxon, and the spectrometric characterization of caudatodienone. Jf Agricul Food Chem 2003, 51, 2559-2564. (22) Ojika, M.; Sugimoto, K.; Okazaki, T.; Yamada, K. Modification and Cleavage of DNA by Ptaquiloside - a New Potent Carcinogen Isolated from Bracken Fern. J Chem SOC Commun 1989, 1775-1777. (23) Lioi, M. Chromosome Aberrations in Cattle with Chronic Enzootic Haematuria. J Comp Pathol 2004, 131, 233-236. (24) Yoshihira, K.; Fukuoka, M.; Kuroyanagi, M.; Natori, S.; Umeda, M.; Morohoshi, T.; Enomoto, M.; Saito, M. Chemical and Toxicological Studies on Bracken Fern, Pteridium-Aquilinum Var Latiusculum .1. Introduction, Extraction and Fractionation of Constituents, and Toxicological Studies Including Carcinogenicity Tests. Chem Pharm Bull 1978, 26, 2346-2364. (25) Hsu, F. L.; Huang, C. F.; Chen, Y. W.; Yen, Y. P.; Wu, C. T.; Uang, B. J.; Yang, R. S.; Liu, S. H. Antidiabetic effects of pterosin A, a small-molecular-weight natural product, on diabetic mouse models. Diabetes 2013, 62, 628-638. (26) Kuroyanagi, M.; Fukuoka, M.; Yoshihira, K.; Natori, S. Chemical and Toxicological Studies on Bracken Fern, Pteridium-Aquilinum Var Latiusculum .5. Circular-Dichroism and Conformations of Pterosins, 1-Indanone Derivatives from Bracken. Chem Pharm Bull 1979, 27, 731-741. (27) Snatzke, G. Circulardichroismus-VIII. Tetrahedron 1965, 21, 413-419. (28) Snatzke, G. Circulardichroismus-IX. Tetrahedron 1965, 21, 421-438. (29) Snatzke, G. Circulardichroismus-X. Tetrahedron 1965, 21, 439-448. (30) Fukuoka, M.; Yoshihira, K.; Natori, S.; Mihashi, K.; Nishi, M. Chemical and Toxicological Studies on Bracken Fern, Pteridium-Aquilinum Var Latiusculum .7. C-13 Nuclear Magnetic-Resonance Spectra of Pterosin-Sesquiterpenes and Related Indan-1-One Derivatives. Chem Pharm Bull 1983, 31, 3113-3128. (31) Kuroyanagi, M.; Fukuoka, M.; Yoshihira, K.; Natori, S. Chemical and Toxicological Studies on Bracken Fern, Pteridium-Aquilinum Var Latiusculum .3. Further Characterization of Pterosins and Pterosides, Sesquiterpenes and the Glucosides Having 1-Indanone Skeleton, from the Rhizomes. Chem Pharm Bull 1979, 27, 592-601. (32) Ouyang, D. W.; Ni, X.; Xu, H. Y.; Chen, J.; Yang, P. M.; Kong, D. Y. Pterosins from Pteris multifida. Planta Med 2010, 76, 1896-1900. (33) Yoshihira, K.; Fukuoka, M.; Kuroyanagi, M.; Natori, S. 1-Indanone derivatives from bracken, Pteridium aquilinum var. latiusculum. Chem Pharm Bull 1971, 19, 1491-1495. (34) Sengupta, P.; Sen, M.; Niyogi, S. Isolation of wallichoside, a novel pteroside from Pteris wallichiana. Phytochemistry 1976, 15, 995-998. (35) Yi, P.; Hadden, C.; Kulanthaivel, P.; Calvert, N.; Annes, W.; Brown, T.; Barbuch, R. J.; Chaudhary, A.; Ayan-Oshodi, M. A.; Ring, B. J. Disposition and Metabolism of Semagacestat, a -Secretase Inhibitor, in Humans. Drug Metab Dispos 2010, 38, 554-565. (36) Coombs, M.; Russell, J.; Jones, J.; Ribeiro, O. A comparative examination of the in vitro metabolism of five cyclopenta[a]phenathrenes of varying carcinogenic potential. Carcinogenesis 1985, 6, 1217-1222. (37) Boyd, G.; Young, R.; Harvey, R.; Coombs, M.; Ioannides, C. The metabolism and activation of 15,16-dihydrocyclopenta[a]phenanthren-17-one by cytochrome P-450 proteins. Eur J Pharmacol 1993, 228, 275-282. (38) Brunel, P.; Hornych, A.; Guyene, T. T.; Sioufi, A.; Turri, M.; Menard, J. Renal and endocrine effects of flosulide, after single and repeated administration to healthy volunteers. Eur J Clin Pharmacol 1995, 49, 193-201. (39) House, H. O.: Modern Synthetic Reactions; 2nd ed.; W.A. Benjamin, Inc., Menlo Park, CA.: , 1972. (40) Chen, Y. H.; Chang, F. R.; Lu, M. C.; Hsieh, P. W.; Wu, M. J.; Du, Y. C.; Wu, Y. C. New benzoyl glucosides and cytotoxic pterosin sesquiterpenes from Pteris ensiformis burm. Molecules 2008, 13, 255-266. (41) Hsu, F. L.; Liu, S. H.; Uang, B. J. Use of pterosin compounds for treating diabetes and obesity. TW201039836 2010. (42) Heimbach, T.; Oh, D. M.; Li, L. Y.; Rodriguez-Hornedo, N.; Garcia, G.; Fleisher, D. Enzyme-mediated precipitation of parent drugs from their phosphate prodrugs. Int J Pharm 2003, 261, 81-92. (43) Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Jarvinen, T.; Savolainen, J. Prodrugs: design and clinical applications. Nat Rev Drug Discov 2008, 7, 255-270. (44) Kreis, W.; Budman, D. R.; Vinciguerra, V.; Hock, K.; Baer, J.; Ingram, R.; Schacter, L. P.; Fields, S. Z. Pharmacokinetic evaluation of high-dose etoposide phosphate after a 2-hour infusion in patients with solid tumors. Cancer Chemother Pharmacol 1996, 38, 378-384. (45) Handbook of Microdialysis, 2007. (46) Xu, J.; Chen, Y.; Li, L.; Li, Z.; Wang, C.; Zhou, T.; Lu, W. An improved HPLC method for the quantitation of 3'-phosphoadenosine 5'-phosphate (PAP) to assay sulfotransferase enzyme activity in HepG2 cells. J Pharm Biomed Anal 2012, 62, 182-186. (47) Zhang, Z. J.; Gu, W. J.: Treatise on febrile diseases; first ed.; China Press of Traditional Chinese Medicine: Beijing, China, 1996. (48) Sun, Y.; Chen, T.; Xu, Q. Si-Ni-San, a traditional Chinese prescription, and its drug-pairs suppress contact sensitivity in mice via inhibition of the activity of metalloproteinases and adhesion of T lymphocytes. J Pharm Pharmacol 2003, 55, 839-846. (49) Zhang, L.; Sun, Y.; Chen, T.; Xu, Q. Selective depletion of glycyrrhizin from Si-Ni-San, a traditional Chinese prescription, blocks its effect on contact sensitivity in mice and recovers adhesion and metalloproteinases production of T lymphocytes. Int Immunopharmacol 2005, 5, 1193-1204. (50) Zhang, L.; Dong, Y.; Sun, Y.; Chen, T.; Xu, Q. Role of four major components in the effect of Si-Ni-San, a traditional Chinese prescription, against contact sensitivity in mice. J Pharm Pharmacol 2006, 58, 1257-1264. (51) Sun, Y.; Dong, Y.; Jiang, H. J.; Cai, T. T.; Chen, L.; Zhou, X.; Chen, T.; Xu, Q. Dissection of the role of paeoniflorin in the traditional Chinese medicinal formula Si-Ni-San against contact dermatitis in mice. Life Sci 2009, 84, 337-344. (52) Jiang, J.; Zhou, C.; Xu, Q. Alleviating effects of si-ni-san, a traditional Chinese prescription, on experimental liver injury and its mechanisms. Biol Pharm Bull 2003, 26, 1089-1094. (53) Ohta, Y.; Kobayashi, T.; Hayashi, T.; Inui, K.; Yoshino, J.; Nakazawa, S. Preventive effect of Shigyaku-san on progression of acute gastric mucosal lesions induced by compound 48/80, a mast cell degranulator, in rats. Phytother Res 2006, 20, 256-262. (54) Sun, Y.; Cai, T. T.; Shen, Y.; Zhou, X. B.; Chen, T.; Xu, Q. Si-Ni-San, a traditional Chinese prescription, and its active ingredient glycyrrhizin ameliorate experimental colitis through regulating cytokine balance. Int Immunopharmacol 2009, 9, 1437-1443. (55) Ninomiya, F. Clinical Evaluation of Perspiration Reducing Effects of a Kampo Formula, Shigyaku-san, on Palmoplantar Hidrosis. Evid Based Complement Alternat Med. 2008, 5, 199-203. (56) 常用中藥; 台大醫學院藥物研究中心. (57) 劉振麗; 宋志前; 張玲; 李林福; 王躍生. 枳實飲片中3類化學成分含量測定. 中國中藥雜誌 2006, 31. (58) Yan, Z.; Chen, Y.; Li, T.; Zhang, J.; Yang, X. Identification of metabolites of Si-Ni-San, a traditional Chinese medicine formula, in rat plasma and urine using liquid chromatography/diode array detection/triple-quadrupole spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012, 885-886, 73-82. (59) Kitagawa, I.; Chen, W. Z.; Hori, K.; Harada, E.; Yasuda, N.; Yoshikawa, M.; Ren, J. Chemical studies of Chinese licorice-roots. I. Elucidation of five new flavonoid constituents from the roots of Glycyrrhiza glabra L. collected in Xinjiang. Chem Pharm Bull (Tokyo) 1994, 42, 1056-1062. (60) S, N.; Shimokoriyama, M.; Kanao, M. Studies on Flavanone Glycosides. IV. the Glycosides of Ripe Fruit Peel and Flower Petals of Citrus Aurantium L. J. Am. Chem. SOC. 1952, 74, 3614-3615. (61) Brussel, W. V.; Sumere, C. F. V. N-Acylamino acids and peptides VI. A simple synthesis of N-acylglycines of the benzoyl- and cinnamyl type. Bull. SOC. Chim. Belg. 1978, 87, 791-797. (62) Soule, J. F.; Miyamura, H.; Kobayashi, S. Powerful amide synthesis from alcohols and amines under aerobic conditions catalyzed by gold or gold/iron, -nickel or -cobalt nanoparticles. J Am Chem Soc 2011, 133, 18550-18553. (63) Sakurai, S.; Komachiya, Y.; Ito, T. Process for producing synthetic trptophane. US3019232 1962. (64) De Luca, L.; Ferro, S.; Morreale, F.; Christ, F.; Debyser, Z.; Chimirri, A.; Gitto, R. Fragment hopping approach directed at design of HIV IN-LEDGF/p75 interaction inhibitors. J Enzyme Inhib Med Chem 2013, 28, 1002-1009. (65) Igel, P.; Schneider, E.; Schnell, D.; Elz, S.; Seifert, R.; Buschauer, A. N(G)-acylated imidazolylpropylguanidines as potent histamine H4 receptor agonists: selectivity by variation of the N(G)-substituent. J Med Chem 2009, 52, 2623-2627. (66) Karim, M. R.; Freudenberg, N.; Freudenberg, M. A.; Galanos, C. Dose related effect of endotoxin on the reticulo endothelial system (RES), the sinusoidal cells in the liver, and on hepatocytes from rats. Prog Clin Biol Res 1989, 308, 407-412. (67) Rauwald, H.-W.; Huang, J.-T. Taraxaxoside, a type of acaylated y-butyrolactone glycoside from Taraxacum officinale. Phytochemistry 1985, 24, 1557-1559. (68) Hoefer, A.; Cahnmann, H. J. Desamino Analogs of Thyroxine. J Med Chem 1964, 7, 326-329. (69) Tsukamoto, H.; Yoshimura, H.; Ide, H.; Mitsui, S. Metabolism of Drug. XXXVI The metabolic fate of Thiamylal [5-Allyl-5-(1-methylbutyl)-2-thiobarbituric Acid]. Chem Pharm Bull 1963, 11, 427-450. (70) Kaneda, M.; Iitaka, Y.; Shibata, S. Chemical studies on the oriental plant drugs—XXXIII : The absolute structures of paeoniflorin, albiflorin, oxypaeoniflorin and benzoylpaeoniflorin isolated from chinese paeony root. Tetrahedron 1972, 28, 4309-4317. (71) Zapesochnaya, G. G.; Kurkin, V. A.; Avdeeva, E. V.; Popov, D. M.; Kolpakova, M. V. A Chemical Study of the Roots of Paeonia anomala. Chemistry of Natural Compounds 1992, 28, 45-47. (72) Bhardwaj, D. K.; M, S. B.; Jain, R. K.; Munjal, A. Phenolics from the seeds of Argemone Mexicana. Phytochemistry 1982, 21, 2154-2156. (73) Prescott, A. G.; Stamford, N. P.; Wheeler, G.; Firmin, J. L. In vitro properties of a recombinant flavonol synthase from Arabidopsis thaliana. Phytochemistry 2002, 60, 589-593. (74) Kim, D. H.; Song, M. J.; Bae, E. A.; Han, M. J. Inhibitory effect of herbal medicines on rotavirus infectivity. Biol Pharm Bull 2000, 23, 356-358. (75) Li, F.; Meng, F.; Xiong, Z.; Li, Y.; Liu, R.; Liu, H. Stimulative activity of Drynaria fortunei (Kunze) J. Sm. extracts and two of its flavonoids on the proliferation of osteoblastic like cells. Pharmazie 2006, 61, 962-965. (76) Matsubara, Y.; Kumamoto, H.; Iizuka, Y.; Murakami, T.; Okamoto, K.; Miyake, H.; Yokoi, K. Structure and Hypertensive Effect of Flavonoid Glycosides in Citrus unshiu Peelings. Agric. Biol. Chem. 1985, 49, 909-914. (77) Akiyama, T.; Yamada, M.; Yamada, T.; Maitani, T. Naringin glycosides alpha-glucosylated on ring B found in the natural food additive, enzymatically modified naringin. Biosci Biotechnol Biochem 2000, 64, 2246-2249. (78) Chimsook, T.; Teerawatananond, T.; Ngamrojnavanich, N.; Chaichit, N.; Kongsaeree, P.; Muangsin, N. Structure–spectroscopic relationship of co-crystals between a rare chromone structure type of barakol and some organic acids. J Mol Struct 2013, 1054-1055, 188-198. (79) Hegarty, A. F.; Dignam, K. J. Sequential Displacement of Chloride in N-Aryl- and N-Aroyl-carbonimidoyl Dichlorides. J. C. S. Perkin II 1975, 1046-1051. (80) Simon, A.; Chulia, A. J.; Kaouadji, M.; Delage, C. Quercetin 3-[triacetylarabinosyl(1-->6)galactoside] and chromones from Calluna vulgaris. Phytochemistry 1994, 36, 1043-1045. (81) Baterham, T. J.; Highet, R. J. Nuclear Magnetic Resonance Spectra of Flavonoids. Aust. J. Chem. 1964, 17, 428-439. (82) Rao, L. J. M.; Kumari, G. N. K.; Rao, N. S. P. 5,6-Dimethoxy-7,3',4'-trihydroxyflavone from Anisomeles Ovata. Phytochemistry 1983, 22, 1522. (83) Duarte, N.; Lage, H.; Ferreira, M. J. Three new jatrophane polyesters and antiproliferative constituents from Euphorbia tuckeyana. Planta Med 2008, 74, 61-68. (84) Kim, J. M.; Ko, R. K.; Jung, D. S.; Kim, S. S.; Lee, N. H. Tyrosinase inhibitory constituents from the stems of Maackia fauriei. Phytother Res 2010, 24, 70-75. (85) Vasconcelos, J. M. J.; Silva, A. M. S.; Cavaleiro, J. A. S. Chromones and Flavanones from Artemisia Campestris Subsp. Maritima. Phytochemistry 1998, 49, 1421-1424. (86) Iinuma, M.; Tanaka, T.; Mizuno, M.; Yamamoto, H.; Kobayashi, Y.; Yonemori, S. Phenolic constituents in Erythrina x bidwilli and their activity against oral microbial organisms. Chem Pharm Bull (Tokyo) 1992, 40, 2749-2752. (87) Desire, O.; Riviere, C.; Razafindrazaka, R.; Goossens, L.; Moreau, S.; Guillon, J.; Uverg-Ratsimamanga, S.; Andriamadio, P.; Moore, N.; Randriantsoa, A.; Raharisololalao, A. Antispasmodic and antioxidant activities of fractions and bioactive constituent davidigenin isolated from Mascarenhasia arborescens. J Ethnopharmacol 2010, 130, 320-328. (88) Ryu, Y. B.; Kim, J. H.; Park, S. J.; Chang, J. S.; Rho, M. C.; Bae, K. H.; Park, K. H.; Lee, W. S. Inhibition of neuraminidase activity by polyphenol compounds isolated from the roots of Glycyrrhiza uralensis. Bioorg Med Chem Lett 2010, 20, 971-974. (89) Piccinelli, A. L.; Campo Fernandez, M.; Cuesta-Rubio, O.; Marquez Hernandez, I.; De Simone, F.; Rastrelli, L. Isoflavonoids isolated from Cuban propolis. J Agric Food Chem 2005, 53, 9010-9016. (90) Antus, S.; Kurtan, T.; Juhasz, L.; Kiss, L.; Hollosi, M.; Majer, Z. Chiroptical properties of 2,3-dihydrobenzo[b]furan and chromane chromophores in naturally occurring O-heterocycles. Chirality 2001, 13, 493-506. (91) Olennikov, D. N.; Chirikova, N. K. Phenolic compounds and cinnamamide from Scutellaria scordiifolia. Chemistry of Natural Compounds 2013, 49, 124-126. (92) Zhang, Y. Z.; Xu, F.; Dong, J.; Liang, J.; Hashi, Y.; Shang, M. Y.; Yang, D. H.; Wang, X.; Cai, S. Q. Profiling and identification of the metabolites of calycosin in rat hepatic 9000xg supernatant incubation system and the metabolites of calycosin-7-O-beta-D-glucoside in rat urine by HPLC-DAD-ESI-IT-TOF-MS(n) technique. J Pharm Biomed Anal 2012, 70, 425-439. (93) Matsumoto, H.; Ikoma, Y.; Sugiura, M.; Yano, M.; Hasegawa, Y. Identification and quantification of the conjugated metabolites derived from orally administered hesperidin in rat plasma. J Agric Food Chem 2004, 52, 6653-6659. (94) Guo, J.; Liu, A.; Cao, H.; Luo, Y.; Pezzuto, J. M.; van Breemen, R. B. Biotransformation of the chemopreventive agent 2',4',4-trihydroxychalcone (isoliquiritigenin) by UDP-glucuronosyltransferases. Drug Metab Dispos 2008, 36, 2104-2112. (95) Jin, M. J.; Kim, U.; Kim, I. S.; Kim, Y.; Kim, D. H.; Han, S. B.; Kwon, O. S.; Yoo, H. H. Effects of gut microflora on pharmacokinetics of hesperidin: a study on non-antibiotic and pseudo-germ-free rats. J Toxicol Environ Health A 2010, 73, 1441-1450. (96) Guo, B.; Fan, X. R.; Fang, Z. Z.; Cao, Y. F.; Hu, C. M.; Yang, J.; Zhang, Y. Y.; He, R. R.; Zhu, X.; Yu, Z. W.; Sun, X. Y.; Hong, M.; Yang, L. Deglycosylation of liquiritin strongly enhances its inhibitory potential towards UDP-glucuronosyltransferase (UGT) isoforms. Phytother Res 2013, 27, 1232-1236. (97) Ishii, K.; Furuta, T.; Kasuya, Y. Determination of naringin and naringenin in human urine by high-performance liquid chromatography utilizing solid-phase extraction. J Chromatogr B Biomed Sci Appl 1997, 704, 299-305. (98) Chen, L. C.; Lee, M. H.; Chou, M. H.; Lin, M. F.; Yang, L. L. Pharmacokinetic study of paeoniflorin in mice after oral administration of Paeoniae radix extract. J Chromatogr B Biomed Sci Appl 1999, 735, 33-40. (99) Chen, L. C.; Chou, M. H.; Lin, M. F.; Yang, L. L. Pharmacokinetics of paeoniflorin after oral administration of Shao-yao Gan-chao Tang in mice. Jpn J Pharmacol 2002, 88, 250-255. (100) Li, C.; Homma, M.; Oka, K. Characteristics of delayed excretion of flavonoids in human urine after administration of Shosaiko-to, a herbal medicine. Biol Pharm Bull 1998, 21, 1251-1257. (101) Zhao, X.; Yang, D. H.; Zhou, Q. L.; Xu, F.; Zhang, L.; Liang, J.; Liu, G. X.; Cai, S. Q.; Yang, X. W. Identification of metabolites in WZS-miniature pig urine after oral administration of Danshen decoction by HPLC coupled with diode array detection with electrospray ionization tandem ion trap and time-of-flight mass spectrometry. Biomed Chromatogr 2013, 27, 720-735. (102) Surampalli, G.; B, K. N.; Patil, P. A. Corroboration of naringin effects on the intestinal absorption and pharmacokinetic behavior of candesartan cilexetil solid dispersions using in-situ rat models. Drug Dev Ind Pharm 2014, 1-9. (103) Chen, Y.; Wang, J.; Wang, L.; Chen, L.; Wu, Q. Absorption and interaction of the main constituents from the traditional Chinese drug pair Shaoyao-Gancao via a Caco-2 cell monolayer model. Molecules 2012, 17, 14908-14917. (104) Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A. C.; Wilson, M. R.; Knox, C.; Bjorndahl, T. C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; Dame, Z. T.; Poelzer, J.; Huynh, J.; Yallou, F. S.; Psychogios, N.; Dong, E.; Bogumil, R.; Roehring, C.; Wishart, D. S. The human urine metabolome. PLoS One 2013, 8, e73076. (105) Da Silva, L.; Godejohann, M.; Martin, F. P.; Collino, S.; Burkle, A.; Moreno-Villanueva, M.; Bernhardt, J.; Toussaint, O.; Grubeck-Loebenstein, B.; Gonos, E. S.; Sikora, E.; Grune, T.; Breusing, N.; Franceschi, C.; Hervonen, A.; Spraul, M.; Moco, S. High-resolution quantitative metabolome analysis of urine by automated flow injection NMR. Anal Chem 2013, 85, 5801-5809. (106) Chen, J.; Zhao, X.; Fritsche, J.; Yin, P.; Schmitt-Kopplin, P.; Wang, W.; Lu, X.; Haring, H. U.; Schleicher, E. D.; Lehmann, R.; Xu, G. Practical approach for the identification and isomer elucidation of biomarkers detected in a metabonomic study for the discovery of individuals at risk for diabetes by integrating the chromatographic and mass spectrometric information. Anal Chem 2008, 80, 1280-1289. (107) Bondia-Pons, I.; Barri, T.; Hanhineva, K.; Juntunen, K.; Dragsted, L. O.; Mykkanen, H.; Poutanen, K. UPLC-QTOF/MS metabolic profiling unveils urinary changes in humans after a whole grain rye versus refined wheat bread intervention. Mol Nutr Food Res 2013, 57, 412-422. (108) Badenhorst, C. P.; Erasmus, E.; van der Sluis, R.; Nortje, C.; van Dijk, A. A. A new perspective on the importance of glycine conjugation in the metabolism of aromatic acids. Drug Metab Rev 2014, 46, 343-361. (109) Miao, Z.; Kayahara, H.; Tadasa, K. Synthesis and Biological Activities of Ferulic Acid-Amino Acid Derivatives. Biosci. Biotech. Biochem. 1997, 61, 527-529. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18223 | - |
dc.description.abstract | 利用本實驗室已建立的分析技術模式:液相層析-質譜及液相層析-固相萃取-核磁共振儀,鑑定代謝物之結構,除能提升藥物後續深入研究之效率,也能探討藥物潛在之藥理或毒理作用。 第一部分為降血糖先導化合物(2S)-pterosin A在大鼠之體內代謝研究,使用胃管餵針給予(2S)-pterosin A,研究大鼠尿中及糞便藥物的代謝物。總共鑑定出19個代謝物,其中16個經高效液相層析-固相萃取-樣品轉移-核磁共振(HPLC-SPE-TT-NMR)串聯技術鑑定而得,7個代謝物經進一步分離決定其結構,有12個代謝物為新化合物。phase I代謝物於C-3, C-10, C-12, C-13或C-14位置進行氧化,接著在C-10或C-14進行脫羧反應(decarboxylation)及產生C-12/C-14或C-14/C-12內酯反應(lactonization)。phase II代謝物為原化合物或phase I代謝物之葡萄糖醛酸共軛化合物。主要的代謝物為(2S)-14-O-glucuronylpterosin A (M9), (2S)-2-hydroxymethylpterosin E (M14)和(±)-pterosin B (M19),所得代謝物擁有類似的紫外光發光團,因此由高效液相層析分析取得原化合物之回歸線推算各代謝物在大鼠尿液及糞便中含量,指出約71%的原化合物以原形和代謝物形式經尿中排出。 第二部分為TM-1-1Ps系列藥物在大鼠之藥物動力學研究,探討由天然物半合成製備之系列化合物活性、代謝物及毒性的研究,由於具磷酸基的TM-1-1Ps相較於TM-1-1具甚佳之水溶解度,且TM-1-1DP具較佳的心臟保護作用並在有效劑量下亦無震顫之中樞神經作用,藉由TM-1-1DP之代謝研究證明其為TM-1-1之前驅藥。靜脈注射(60 mg/kg/ rat)結果顯示:TM-1-1DP之半衰期約15分鐘;在血中有兩葡萄糖醛酸共軛代謝物(TM-1-1 GlcUA1和TM-1-1 GlcUA2)生成;雖然在腦部紋狀體內檢測到TM-1-1DP (iv後0−30 min)及TM-1-1 (小於100 ng/mL),但和全血中的濃度分別相差約1000及100倍,確認服用有效劑量的TM-1-1DP可避免TM-1-1產生的腦部副作用。 至於單磷酸基取代之TM-1-1MPa及TM-1-1MPb分別靜脈注射(50.8 mg/kg/ rat)結果顯示:TM-1-1MPa之半衰期約14分鐘;在血中有葡萄糖醛酸共軛代謝物(TM-1-1a GlcUA)生成;在腦部紋狀體檢測到TM-1-1MPa (iv後0−150 min)及持續之TM-1-1a 約100 ng/mL。TM-1-1MPb之半衰期約94分鐘;在血中有葡萄糖醛酸共軛代謝物(TM-1-1b GlcUA)生成;在腦部紋狀體檢測到持續之TM-1-1MPb (72−338 ng/mL)及TM-1-1b (iv後45−120 min)。 具磷酸基的TM-1-1Ps在大鼠體內會去除磷酸基,其中9號位置取代較2號位置取代安定,接者產生phase II葡萄糖醛酸共軛代謝物。在腦部紋狀體分佈的比例,具磷酸基的TM-1-1Ps明顯低於其去磷酸之代謝物(TM-1-1、TM-1-1a和TM-1-1b),應可避免TM-1-1產生的震顫中樞神經副作用。 第三部分為中藥傳統方劑四逆散在迷你豬隻體內代謝研究,在尿中共鑑定出50個化合物(1–50),包含10個未在服用四逆散之大鼠尿液發現的原形配醣體成份,其中36個化合物藉由HPLC-SPE-TT-NMR配合HPLC-HRESIMS串聯技術鑑定而得,之中有5個新化合物及9個蘭嶼小耳迷你豬隻內生性代謝物。大部分之phase I代謝物為原配醣體成分水解而得,phase II代謝物主要為葡萄糖醛共軛化合物,另有從芍藥苷及白芍苷水解而得之苯甲酸和從黃酮類化合物氧化斷裂之苯基丙酮酸類化合物,分別生成甘胺酸共軛之phase II代謝物。 綜合三部分之研究,運用HPLC-SPE-TT-NMR配合HPLC-HRESIMS串聯技術分析平台,提供更多藥物各代謝物之結構資訊,提升藥物代謝研究之效率,以利更深入地探討藥物潛在作用及藥物動力學性質,提高藥物開發之速度及成功率。 | zh_TW |
dc.description.abstract | The utilities of established LC-MS and LC-SPE-NMR techniques assisted the structural characterization of metabolites. The information might enhance the efficiency of following drug discovery and disclose potential bioactivities or toxicities of the drug. The metabolic profile of the potent hypoglycemic agent, (2S)-pterosin A (P), in rat urine via intragastrical oral administration was investigated in the first part. In total, 19 metabolites (M1–M19) were identified. Among these, 16 metabolites were characterized by high-performance liquid chromatography solid-phase extraction-tube transfer-NMR, and seven metabolites were further isolated from the treated urine to enable further structural determination. Twelve of these are new compounds. The phase I metabolites of P were formed via various oxidations at positions C-3, C-10, C-12, C-13, or C-14 followed by decarboxylation of C-10 or C-14, and lactonization at C-12/C-14 or C-14/C-12. The phase II metabolites were glucuronide conjugates from the parent compound or phase I metabolites. The major metabolites were found to be (2S)-14-O-glucuronylpterosin A (M9), (2S)-2-hydroxymethylpterosin E (M14), and (±)-pterosin B (M19). Quantitative HPLCanalysis of metabolites, based on similar UV absorption and use of the regression equation of P, indicated that ~71% P was excreted as metabolites in rat urine. The activity, metabolism, and toxicity of TM-1-1Ps, semi-synthesized from the natural product, were studied in the second part. TM-1-1DP was proved to increase dramatically the water solubility and abolish the CNS effect of TM-1, a drug candidate for the treatment of acute myocardial infarction. TM-1-1DP was proved to be the prodrug of TM-1-1 via metabolic study. To clarify its CNS effect, the presence of parent compound and its metabolites in the brain were examined via microdialysis and HPLC-Fluorescence techniques. After iv injection (60 mg/kg, rat), the following results were shown: T1/2 of TM-1-1DP was about 15 min; in striatum TM-1-1DP was detected during the intervals of 0−30 mins after injection; the concentration of TM-1-1 in striatum was below 100 ng/ml; the individual concentration, however, was about one thousandth and hundredth of aorta blood. This study supports that TM-1-1DP will not cause CNS effect, even at a dose 4000 times as the effective dose. After respective iv injection of TM-1-1MPa and TM-1-1MPb (50.8 mg/kg, rat), the following results were shown: T1/2 of TM-1-1MPa was about 14 min; in striatum TM-1-1MPa was detected during the intervals of 0−150 mins after injection; in striatum TM-1-1a was detected in 4 hours after injection, and the concentration was about 100 ng/mL. T1/2 of TM-1-1MPb was about 94 min; in striatum TM-1-1MPb was detected in 4 hours after injection, and the concentration was between 72 and 338 ng/mL; in striatum TM-1-1b was detected during the intervals of 45−120 mins after injection. The metabolites were formed in rat through dephosphorylation of TM-1-1Ps, followed by glucuronization to yield TM-1-1s glucuronide. 9-Phosphorylated TM-1-1s are found to be more stable than 2-phosphorylated ones. The ratios of TM-1-1Ps in blood to striatum are much higher than those of TM-1-1s. Therefore, TM-1-1Ps may prevent the CNS side effect resulted from the administration of TM-1-1. The metabolic profile of the traditional Chinese medicine, Sinisan, in miniature pig urine via intragastric administration was investigated in the third part. In total, 50 compounds, including 10 unchanged parent glycosides which were not found from Sinisan’s metabolic profile in rats’ urine, were identified. Among these, 36 compounds were characterized by HPLC-SPE-TT-NMR coupled with HPLC-HRESIMS, five of which are new and nine are endogenous metabolites of miniature pig. Most of phase I and phase II metabolites are hydrolytic products of parent glycosides and glucuronide conjugates, respectively, the latter having been reported as sulfate conjugates while the experimental animal is rat. Benzoic acid, obtained from hydrolysis of albiflorin and paeoniflorin, and phenylpropenoic acids, obtained from oxidative cleavage of flavones, formed phase II glycine conjugates. In summary, the application of HPLC-SPE-TT-NMR coupled with HPLC-HRESIMS provides more structural information of drug’s metabolites to facilitate the metabolic study of drugs. The suitable design to obtain the detail about potential activity and pharmacokinetic properties of drugs may increase the speed and successive opportunity of drug development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:55:29Z (GMT). No. of bitstreams: 1 ntu-104-D98423002-1.pdf: 14115251 bytes, checksum: 47cd0ded38719007632e05da86a41253 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 壹、 總論 1 1. 緒論 1 2. 實驗動物模式 3 2.1 韋斯大鼠(Wistar rats) 3 2.2 蘭嶼小耳迷你豬(Lanyu miniature pigs) 4 3. 分析技術及儀器 4 3.1 液相層析-質譜儀(LC-MS) 5 3.2 液相層析-固相萃取-樣品轉移-核磁共振儀(LC-SPE-TT-NMR) 6 貳、 實驗儀器及材料 8 1. 儀器與材料 8 1.1 理化性質測定儀器 8 1.2 成份分離之儀器及材料 8 2. 試藥與溶劑 11 3. 實驗藥物 12 參、 (2S)-Pterosin A在大鼠之代謝研究 13 1. 研究背景及目的 13 2. 實驗部份 13 2.1 實驗動物 13 2.2 給藥和收集樣品 14 2.3 尿液前處理及代謝物M1-3、-9、-14、-18和-19之分離 14 2.4 糞便前處理 16 2.5 HPLC-DAD分析尿液及糞便樣品之代謝物組成 16 2.6 液相層析-固相萃取-樣品轉移-核磁共振儀(HPLC-SPE-TT-NMR) 18 2.7 高解析電灑法離子化質譜(HRESIMS)及MS/MS分析 19 2.8 給藥組尿液及糞便代謝物之定量分析 20 3. 實驗結果與討論 22 3.1 給藥後之動物觀察 22 3.2 樣品處理及代謝物組成分析 22 3.3 (2S)-Pterosin A代謝物結構解析 23 3.3.1 保留C-10之Phase I代謝物(M1-4、-7、-11、-14、-16、-17) 23 3.3.1.1 (2R,3S)-Pterosin L (M1) 23 3.3.1.2 (2S)-12-Hydroxypterosin A (M2) 24 3.3.1.3 (2R,3R)-Pterosin L (M3) 24 3.3.1.4 (S)-12-Hydroxy-2-hydroxymethylpterosin E 14,12-lactone (M4) 25 3.3.1.5 (2R, 3R)-3-Hydroxy-2-hydroxymethylpterosin E (M7) 25 3.3.1.6 (S)-7-Hydroxymethyl-5,7-dimethyl-3,4,7,8-tetrahydrocyclopenta[g]iso- chromene-1,6-dione (M11) 25 3.3.1.7 (2S)-2-Hydroxymethylpterosin E (M14) 26 3.3.1.8 (2S)-2-Hydroxymethyl-pterosin E 14-methylester (M16) 27 3.3.1.9 (2R, 3R)-13-Dehydroxymethylpterosin L (M17) 27 3.3.2 去除C-10之Phase I代謝物(M6、-8、-10、-13、-18、-19) 29 3.3.2.1 (2R,3S)-Pterosin C (M6) 29 3.3.2.2 (2S, 3S)-Pterosin C (M8) 29 3.3.2.3 (±)-Pterosin P (M10) 30 3.3.2.4 (±)-13-Hydroxypterosin B (M13) 30 3.3.2.5 (±)-Pterosin E (M18) 31 3.3.2.6 (±)-Pterosin B (M19) 31 3.3.3 Phase II代謝物(M5、-9、-12、-15) 33 3.3.3.1 (2S)-2-Hydroxymethylpterosin E 14-glucuronylester (M5) 33 3.3.3.2 (2S)-14-O-Glucuronylpterosin A (M9) 33 3.3.3.3 (2S)-10-O-Glucuronylpterosin A (M12) 34 3.3.3.4 14-O-β-Glucuronylpterosin B (M15) 34 3.4 尿中藥物代謝物之定量 35 3.5 糞便中之代謝物 36 3.6 藥物P在大鼠之代謝途徑 36 3.7 代謝物潛在之活性及毒性 38 4. 結論 38 肆、 TM-1-1Ps在大鼠之藥物動力學研究 40 1. 研究目的 40 2. 微透析 41 3. 實驗部份 42 3.1 實驗動物 42 3.2 分析方法 42 3.2.1 LC-MS (MRM, Multiple Reaction Monitoring)分析 42 3.2.2 LC-Fluorescence分析 43 3.3 TM-1-1DP及TM-1-1在大鼠肝臟S9分層之體外實驗 44 3.4 大鼠預實驗 44 3.4.1 評估藥物微透析回收率 45 3.4.2 實驗動物準備 45 3.4.3 動物實驗給藥及取樣 46 3.4.4 血液樣品處理 46 3.4.5 血液樣品之定量分析 47 3.4.6 微透析樣品之定量分析 47 3.5 血液樣品液相萃取優化 47 3.6 藥品安定性 48 3.6.1 氘代水 48 3.6.2 血漿(plasma) 49 3.6.3 全血(whole blood) 49 3.6.3.1 TM-1-1DP存放於-20 ℃ 49 3.6.3.2 TM-1-1DP存放在室溫及37 ℃ 49 3.6.3.3 TM-1-1DP存放在0 ℃中 49 3.6.3.4 TM-1-1MPa及TM-1-1MPb分別存放在0 ℃及室溫 49 3.6.4 等張及其他溶液 50 3.6.5 血液萃取過程中的上層溶液 50 3.7 動物實驗 50 3.7.1 評估藥物微透析回收率 50 3.7.2 實驗動物準備 51 3.7.3 動物實驗給藥及取樣 51 3.7.4 血液樣品處理 51 3.7.5 微透析樣品之定量分析 52 3.7.6 血液樣品之定量分析 52 3.7.7 TM-1-1系列化合物之藥物動力學參數 57 3.8 TM-1-1Ps代謝物結構鑑定 57 3.8.1 以HPLC-SPE-TT-NMR鑑定TM-1-1MPIa和TM-1-1MPIb 57 3.8.2 以LC-MS確認葡萄醛酸共軛之代謝物 58 4. 實驗結果與討論 58 4.1 分析方法 58 4.2 TM-1-1DP及TM-1-1在大鼠肝臟S9之體外實驗 62 4.3 TM-1-1Ps血液樣品前處理 63 4.4 TM-1-1Ps之安定性 64 4.4.1 TM-1-1DP在-20 ℃環境下於全血或血漿之安定性 64 4.4.2 TM-1-1DP在0 ℃、室溫或37 ℃環境下之全血中安定性 65 4.4.3 TM-1-1MPa及TM-1-1MPb於全血之安定性 66 4.4.4 TM-1-1Ps於萃取溶液之安定性 67 4.4.5 於其他溶液之安定性 67 4.5 TM-1-1Ps代謝物結構解析 69 4.5.1 TM-1-1MPIa和TM-1-1MPIb 69 4.5.2 TM-1-1 GlcUA1和TM-1-1 GlcUA2 70 4.5.3 TM-1-1a GlcUA和TM-1-1b GlcUA 71 4.6 微透析實驗 71 4.7 給藥後動物反應 72 4.8 TM-1-1Ps之藥物動力學 72 4.8.1 TM-1-1DP之體內動物預實驗 72 4.8.2 TM-1-1DP 73 4.8.3 TM-1-1MPa 76 4.8.4 TM-1-1MPb 78 4.8.5 TM-1-1Ps在大鼠之代謝途徑及分佈 80 5. 結論 81 伍、 中藥方劑四逆散在迷你豬之代謝研究 82 1. 四逆散研究背景及目的 82 2. 實驗部份 82 2.1 實驗動物 82 2.2 給藥及收集樣品 83 2.3 尿液前處理 83 2.4 製備四逆散乙醇萃取物 84 2.5 以RP-HPLC-DAD-MS分析尿液代謝物及四逆散成分之組成 85 2.6 從D1U-C分離代謝物37−48 86 2.7 液相層析-固相萃取-樣品轉移-核磁共振儀條件 87 2.8 高解析電灑法離子化質譜分析 91 3. 實驗結果與討論 91 3.1 實驗動物之行為反應 91 3.2 四逆散之化學成分 91 3.3 尿液代謝物組成分析 93 3.4 尿液代謝物結構解析 94 3.4.1 內生性代謝物(1、2、5、7、10、16、20、28、29) 95 3.4.1.1 p-Hydroxyhippuric acid (1) 95 3.4.1.2 m-Hydroxyhippuric acid (2) 95 3.4.1.3 Hippuric acid (10) 95 3.4.1.4 (E)-Cinnamoylglycine (28) 96 3.4.1.5 2-Carboxytryptophan (5) 96 3.4.1.6 2-(1H-Indole-3-carboxamido)-acetic acid (16) 97 3.4.1.7 N-(Indole-2-carbonyl)-methylglycine (20) 97 3.4.1.8 Nonanedioic acid (29) 98 3.4.1.9 (4-Hydroxyphenyl)-acetic acid (7) 98 3.4.2 未歸類之化合物(3、A1、A2) 99 3.4.2.1 2-(4-Hydroxy-benzyl)-malonic acid (3) 99 3.4.2.2 Carboxysecobarbital (A1)、Carboxythiamylal (A2) 100 3.4.3 原形苷化合物(4、11、13、17、22、23、26、27、49、50) 100 3.4.3.1 Albiflorin (11)和Paeoniflorin (13) 101 3.4.3.2 5,7-Dihydroxychromone 7-neohesperidoside (4) 103 3.4.3.3 Neoeriocitrin (17)、Hesperidin (26)和Neohesperidin (27) 103 3.4.3.4 2(R/S)-Narirutin (22)和2(R/S)-Naringin (23) 106 3.4.4 Phase I代謝物(14、25、32、37−48) 107 3.4.4.1 m-Hydroxybenzoic acid (14)、Benzoylcarbamic acid (25)、Benzoic acid (32) 108 3.4.4.2 5,7-Dihydroxychromone (37) 108 3.4.4.3 Liquiritigenin (38) 109 3.4.4.4 3',4',7-Trihydroxy-5,6-dimethoxyflavone (39) 109 3.4.4.5 Naringenin (40)、Hesperitin (41) 109 3.4.4.6 Formononetin (44) 110 3.4.4.7 Ponciretin (48) 110 3.4.4.8 Sophoraisoflavanone A (46) 112 3.4.4.9 Davidigenin (42)、Isoliquiritigenin (43) 112 3.4.4.10 Vestitol (45) 113 3.4.4.11 (6aR,11aR)-Medicarpin (47) 114 3.4.5 Phase II代謝物(6、8、9、12、15、18、19、21、24、30、31、33−36) 114 3.4.5.1 (Z)-p-Coumaroylglycine (6)、(E)-p-Coumaroylglycine (9)、(E)-m-Coumaroylglycine (15) 114 3.4.5.2 (Z)-Feruloylglycine (8)、(E)-Feruloylglycine (12) 115 3.4.5.3 o-Hydroxyhippuric acid (19) 116 3.4.5.4 7-O-Glucuronylliquiritigenin (18)、4'-O-Glucuronylliquiritigenin (21) 117 3.4.5.5 3'-O-Glucuronylcalycosin (24)、7-O-Glucuronylformononetin (35) 118 3.4.5.6 7-O-Glucuronylhesperitin (30)、3'-O-Glucuronylhesperitin (31) 119 3.4.5.7 4'-O-Glucuronylisoliquiritigenin (33) 119 3.4.5.8 4'-O-Glucuronyldavidigenin (34)、4-O-glucuronyldavidigenin (36) 120 3.5 四逆散中配醣體成分之代謝途徑 122 3.6 內生性及特殊之代謝物(1−10、12、15、16、20、28、29、34、36、42) 126 4. 結論 126 陸、 討論 128 1. 實驗動物之選擇 128 1.1 給樣方式 128 1.2 取樣方式 128 1.3 應用 128 2. 樣品之處理 129 2.1 血液之處理 129 2.2 尿液之處理 129 2.3 其餘樣品之處理 130 3. 代謝物之分析儀器 130 3.1 HPLC-MS 130 3.2 HPLC-SPE-NMR 130 4. 結論 131 參考文獻 132 附 圖 139 | |
dc.language.iso | zh-TW | |
dc.title | (2S)-Pterosin A和TM-1-1Ps在大鼠之體內代謝及藥物動力學研究及中藥方劑四逆散在迷你豬之體內代謝研究 | zh_TW |
dc.title | Metabolism of (2S)-Pterosin A and Pharmacokinetic Study on TM-1-1Ps in Rat, and Metabolic Study on Sinisan, a Traditional Chinese Medicine Prescription, in Miniature Pig | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 李安榮,林君榮,徐鳳麟,林雲蓮,張嘉銓 | |
dc.subject.keyword | 液相層析-核磁共振儀,代謝研究,磷酸化前驅藥,四逆散,迷你豬, | zh_TW |
dc.subject.keyword | LC-NMR,metabolic study,phosphorylated prodrug,Sinisan,miniature pig, | en |
dc.relation.page | 250 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-02-13 | |
dc.contributor.author-college | 藥學專業學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
Appears in Collections: | 藥學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-104-1.pdf Restricted Access | 13.78 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.