Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛文証(Wen-Jeng Hsueh)
dc.contributor.authorKui-Jun Huangen
dc.contributor.author黃奎鈞zh_TW
dc.date.accessioned2021-06-08T00:52:58Z-
dc.date.copyright2015-08-28
dc.date.issued2015
dc.date.submitted2015-06-15
dc.identifier.citation[1] B. D. Cullity and C. D. Graham, Introduction to magnetic materials, John Wiley & Sons, New York (2011).
[2] J. J. Sakurai and S. F. Tuan, Modern quantum mechanics, Addison-Wesley Reading, Massachusetts (1985).
[3] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, 'Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange', Phys. Rev. B, 39, 4828-4830 (1989).
[4] M. N. Baibich, J. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, 'Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices', Phys. Rev. Lett., 61, 2472 (1988).
[5] J. C. Slonczewski, 'Current-driven excitation of magnetic multilayers', J. Magn. Magn. Mater., 159, L1-L7 (1996).
[6] L. Berger, 'Emission of spin waves by a magnetic multilayer traversed by a current', Phys. Rev. B, 54, 9353 (1996).
[7] L. Berger, 'Low‐field magnetoresistance and domain drag in ferromagnets', J. Appl. Phys., 49, 2156-2161 (1978).
[8] P. Freitas and L. Berger, 'Observation of s‐d exchange force between domain walls and electric current in very thin Permalloy films', J. Appl. Phys., 57, 1266-1269 (1985).
[9] P. Grünberg, R. Schreiber, Y. Pang, M. Brodsky, and H. Sowers, 'Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers', Phys. Rev. Lett., 57, 2442 (1986).
[10] C. Majkrzak, J. Cable, J. Kwo, M. Hong, D. McWhan, Y. Yafet, J. Waszczak, and C. Vettier, 'Observation of a magnetic antiphase domain structure with long-range order in a synthetic Gd-Y superlattice', Phys. Rev. Lett., 56, 2700 (1986).
[11] M. Salamon, S. Sinha, J. Rhyne, J. Cunningham, R. W. Erwin, J. Borchers, and C. Flynn, 'Long-range incommensurate magnetic order in a Dy-Y multilayer', Phys. Rev. Lett., 56, 259-262 (1986).
[12] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, 'Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions', Phys. Rev. Lett., 74, 3273-3276 (1995).
[13] J. C. Slonczewski, 'Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier', Phys. Rev. B, 39, 6995-7002 (1989).
[14] P. Villard, U. Ebels, D. Houssameddine, J. Katine, D. Mauri, B. Delaet, P. Vincent, M.-C. Cyrille, B. Viala, and J.-P. Michel, 'A GHz spintronic-based RF oscillator', IEEE J. Solid-State Circuits, 45, 214-223 (2010).
[15] K. D. Sattler, Handbook of Nanophysics: Functional Nanomaterials, CRC Press, New York (2010).
[16] M. Tsoi, A. G. M. Jansen, J. Bass, W. C. Chiang, M. Seck, V. Tsoi, and P. Wyder, 'Excitation of a magnetic multilayer by an electric current', Phys. Rev. Lett., 80, 4281-4284 (1998).
[17] J. Sun, 'Current-driven magnetic switching in manganite trilayer junctions', J. Magn. Magn. Mater., 202, 157-162 (1999).
[18] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, 'Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars', Phys. Rev. Lett., 84, 3149-3152 (2000).
[19] A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, 'Real-space observation of current-driven domain wall motion in submicron magnetic wires', Phys. Rev. Lett., 92, 077205 (2004).
[20] I. Theodonis, N. Kioussis, A. Kalitsov, M. Chshiev, and W. H. Butler, 'Anomalous bias dependence ofspin torque in magnetic tunnel junctions', Phys. Rev. Lett., 97, 237205 (2006).
[21] A. Manchon, N. Ryzhanova, N. Strelkov, A. Vedyayev, and B. Dieny, 'Modelling spin transfer torque and magnetoresistance in magnetic multilayers', J. Phys.: Condens. Matter, 19, 165212 (2007).
[22] J. Xiao, G. E. W. Bauer, and A. Brataas, 'Spin-transfer torque in magnetic tunnel junctions: Scattering theory', Phys. Rev. B, 77, 224419 (2008).
[23] M. Wilczyński, J. Barnaś, and R. Świrkowicz, 'Free-electron model of current-induced spin-transfer torque in magnetic tunnel junctions', Phys. Rev. B, 77, 054434 (2008).
[24] J. Slonczewski and J. Sun, 'Theory of voltage-driven current and torque in magnetic tunnel junctions', J. Magn. Magn. Mater., 310, 169-175 (2007).
[25] J. C. Slonczewski, 'Currents, torques, and polarization factors in magnetic tunnel junctions', Phys. Rev. B, 71, 024411 (2005).
[26] Y. H. Tang, N. Kioussis, A. Kalitsov, W. H. Butler, and R. Car, 'Controlling the nonequilibrium interlayer exchange coupling in asymmetric magnetic tunnel junctions', Phys. Rev. Lett., 103, 057206 (2009).
[27] Y. H. Tang, N. Kioussis, A. Kalitsov, W. H. Butler, and R. Car, 'Influence of asymmetry on bias behavior of spin torque', Phys. Rev. B, 81, 054437 (2010).
[28] X. Jia, K. Xia, Y. Ke, and H. Guo, 'Nonlinear bias dependence of spin-transfer torque from atomic first principles', Phys. Rev. B, 84, 014401 (2011).
[29] C. Heiliger and M. D. Stiles, 'Ab Initio studies of the spin-transfer torque in magnetic tunnel junctions', Phys. Rev. Lett., 100, 186805 (2008).
[30] H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa, K. Ando, H. Maehara, Y. Nagamine, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y. Suzuki, 'Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions', Nat. Phys., 4, 37-41 (2008).
[31] A. Aharoni, Introduction to the Theory of Ferromagnetism, Oxford University Press, New York (2000).
[32] D. C. Jiles, Introduction to Magnetism and Magnetic Materials, CRC Press, New York (1998).
[33] N. F. Mott, 'Electrons in transition metals', Adv. Phys., 13, 325-422 (1964).
[34] A. Fert and I. Campbell, 'Electrical resistivity of ferromagnetic nickel and iron based alloys', J. Phys. F, 6, 849 (1976).
[35] J. Mathon and A. Umerski, 'Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction', Phys. Rev. B, 63, 220403 (2001).
[36] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, 'Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions', Nat. Mater., 3, 868-871 (2004).
[37] S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, S. Von Molnar, M. Roukes, A. Y. Chtchelkanova, and D. Treger, 'Spintronics: a spin-based electronics vision for the future', Science, 294, 1488-1495 (2001).
[38] L. D. Landau and E. Lifshitz, 'On the theory of the dispersion of magnetic permeability in ferromagnetic bodies', Phys. Z. Sowjetunion, 8, 101-114 (1935).
[39] T. L. Gilbert, 'A phenomenological theory of damping in ferromagnetic materials', IEEE Trans. Magn., 40, 3443-3449 (2004).
[40] M. d’Aquino, 'Nonlinear magnetization dynamics in thin-films and nanoparticles', PhD thesis, Facolta di Ingegneria, Universita degli studi di Napoli Federico II, Napoli, (2004).
[41] J. E. Moore, 'The birth of topological insulators', Nature, 464, 194-198 (2010).
[42] C. L. Kane and E. J. Mele, 'Z2 topological order and the quantum spin Hall effect', Phys. Rev. Lett., 95, 146802 (2005).
[43] J. Schliemann, 'Spin hall effect', Int. J. Mod. Phys. B, 20, 1015-1036 (2006).
[44] H.-A. Engel, B. I. Halperin, and E. I. Rashba, 'Theory of spin Hall conductivity in n-doped GaAs', Condens. Matter, (2005).
[45] Y. Ohno, D. Young, B. a. Beschoten, F. Matsukura, H. Ohno, and D. Awschalom, 'Electrical spin injection in a ferromagnetic semiconductor heterostructure', Nature, 402, 790-792 (1999).
[46] M. Johnson, 'Spin accumulation in gold films', Phys. Rev. Lett., 70, 2142-2145 (1993).
[47] T. Shinjo, Nanomagnetism and Spintronics, Elsevier, New York (2013).
[48] C. B. Duke, Tunneling in Solids, Academic Press, New York (1969).
[49] H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa, K. Ando, H. Maehara, Y. Nagamine, K. Tsunekawa, and D. D. Djayaprawira, 'Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions', Nat. Phys., 4, 37-41 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18155-
dc.description.abstract本文主旨為研究於磁性穿隧接面中的自旋轉移力矩特性,自旋轉移力矩是一種使用自旋極化電流趨動鐵磁性金屬中磁化的自旋電子學概念,受到力矩的磁矩將會進行轉動甚至是翻轉,本研究探討自旋轉移力矩的性質,首先在理論上使用自由電子模型建構出於金屬內傳輸的自旋流的基本性質,並且使用了轉移矩陣法求出磁性穿隧接面內的自旋流,最後使用自旋角動量守恆得到兩種分量的自旋轉移力矩,分別為平面內力矩與平面外力矩。透過對磁性穿隧接面與外加偏壓之參數分析,發現了元件的厚度、位能、自旋分裂能與外加偏壓等變化而影響到穿隧磁阻以及自旋轉移力矩的大小,並且即使在對稱結構中力矩對電壓也會呈現非對稱關係。自旋轉移力矩現象最主要的用途在使用電流而不是磁場調控磁阻大小,本研究提供製作元件的參考,有助於提升磁性穿隧接面中關於自旋轉移力矩的性能。zh_TW
dc.description.abstractIn this thesis, the properties of spin-transfer torque in magnetic tunnel junction are studied. In the beginning, free electron model is used to construct the basic properties of the transfer of spin current. The spin current in magnetic tunnel junction is calculated using transfer matrix method. Spin angular momentum conservation is used to obtain the spin transfer torques, which have two components, in-plane torque and out-of-plane torque. The numerical results show that the bias-induced spin-transfer torque is a function of angle between magnetic moments, barrier height, thickness and spin splitting energy. It is find that the bias voltage dependence of the spin torque is not symmetric, even for symmetric magnetic tunnel junctions.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:52:58Z (GMT). No. of bitstreams: 1
ntu-104-R01525037-1.pdf: 2397706 bytes, checksum: 86c38c10b946d6ccedc47f8a6f8da31f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 vii
符號表 viii

第一章 導論 1
1.1 背景與研究動機 1
1.2 歷史文獻回顧 3
1.3 論文架構 4
第二章 磁性材料與磁性穿隧接面 6
2.1 磁性之起源 6
2.2 磁矩與磁化強度 6
2.3 磁性物質的分類 9
2.3.1 反磁性 9
2.3.2 順磁性 9
2.3.3 鐵磁性 10
2.3.4 亞鐵磁性與反鐵磁性 10
2.4 磁阻 11
2.4.1 巨磁阻現象 11
2.4.2 穿隧磁阻現象 12
2.4.3 磁阻式隨機存取記憶體 13
2.5 動態方程式 14
2.5.1 旋磁進動 14
2.5.2 Landau-Lifshitz-Gilbert方程式 15
第三章 自旋流與自由電子模型 27
3.1 自旋流 27
3.2 自旋注入 28
3.3 自由電子模型 30
3.3.1 波函數與波向量 30
3.3.2 勢壘層與鐵磁層外加偏壓之變化 34
3.3.3 邊界條件 34
3.3.4 穿隧機率流 36
3.3.5 外加偏壓引起的自旋流 37
3.4 轉移矩陣法 39
3.5 磁性穿隧接面中的自旋流 41
3.5.1 自旋流與垂直能量 41
3.5.2 自旋分裂能量 43
第四章 磁性穿隧接面中自旋轉移力矩特性 54
4.1 自旋流與自旋轉移力矩 54
4.2 於Landau-Lifshitz-Gilbert方程式引入自旋力矩 55
4.3 磁矩角度差異與自旋轉移力矩 57
4.4 磁性穿隧接面中自旋分裂能量之影響 57
4.5 自旋轉移力矩以及勢壘層之厚度以及位能關係 58
4.6 磁性穿隧接面中自旋轉移力矩受偏壓之影響 59
第五章 結論與未來展望 73
5.1 結論 73
5.2 未來展望 74
參考文獻 75
dc.language.isozh-TW
dc.title外加偏壓下磁性穿隧接面之自旋轉移力矩zh_TW
dc.titleBias-Induced Spin Transfer Torque in Magnetic Tunneling
Junctions
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭勝文(Sheng-Wen Cheng),黃俊穎,余宗興
dc.subject.keyword自旋轉移力矩,磁性穿隧接面,穿隧磁阻,自由電子模型,轉移矩陣法,zh_TW
dc.subject.keywordspin transfer torque,magnetic tunnel junction,tunnel magnetoresistance,free-electron model,transfer matrix method,en
dc.relation.page78
dc.rights.note未授權
dc.date.accepted2015-06-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved