請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18142
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳珮珊(Pai-Shan Chen) | |
dc.contributor.author | Yueh-Chan Lee | en |
dc.contributor.author | 李岳展 | zh_TW |
dc.date.accessioned | 2021-06-08T00:52:31Z | - |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-06-18 | |
dc.identifier.citation | [1] A. Jelić, M. Gros, M. Petrović, A. Ginebreda, and D. Barceló, 'Occurrence and Elimination of Pharmaceuticals During Conventional Wastewater Treatment,' Emerging and Priority Pollutants in Rivers, The Handbook of Environmental Chemistry H. Guasch, A. Ginebreda and A. Geiszinger, eds., pp. 1-23: Springer Berlin Heidelberg, 2012.
[2] A. Tauxe-Wuersch, L. F. De Alencastro, D. Grandjean, and J. Tarradellas, “Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment,” Water Res, vol. 39, no. 9, pp. 1761-72, May, 2005. [3] D. Bendz, N. A. Paxeus, T. R. Ginn, and F. J. Loge, “Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Hoje River in Sweden,” J Hazard Mater, vol. 122, no. 3, pp. 195-204, Jul 15, 2005. [4] I. Rodriguez, J. Carpinteiro, J. B. Quintana, A. M. Carro, R. A. Lorenzo, and R. Cela, “Solid-phase microextraction with on-fiber derivatization for the analysis of anti-inflammatory drugs in water samples,” J Chromatogr A, vol. 1024, no. 1-2, pp. 1-8, Jan 23, 2004. [5] C. D. Metcalfe, X. S. Miao, B. G. Koenig, and J. Struger, “Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada,” Environ Toxicol Chem, vol. 22, no. 12, pp. 2881-9, Dec, 2003. [6] M. Gros, M. Petrović, and D. Barceló, “Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters,” Talanta, vol. 70, no. 4, pp. 678-690, Nov 15, 2006. [7] K. Kimura, H. Hara, and Y. Watanabe, “Elimination of Selected Acidic Pharmaceuticals from Municipal Wastewater by an Activated Sludge System and Membrane Bioreactors,” environ sci technol, vol. 41, no. 10, pp. 3708-3714, May 1, 2007. [8] B. Soulet, A. Tauxe, and J. Tarradellas, “Analysis of Acidic Drugs in Swiss Wastewaters,” Int. J. Environ. Anal. Chem., vol. 82, no. 10, pp. 659-667, Jan 1, 2002. [9] P. Lucci, D. Pacetti, N. G. Frega, and O. Núñez, Current Trends in Sample Treatment Techniques for Environmental and Food Analysis, 2012. [10] M. Rezaee, Y. Assadi, M.-R. Milani Hosseini, E. Aghaee, F. Ahmadi, and S. Berijani, “Determination of organic compounds in water using dispersive liquid–liquid microextraction,” J. Chromatogr. A, vol. 1116, no. 1–2, pp. 1-9, May 26, 2006. [11] M. C. Hennion, “Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography,” J Chromatogr A, vol. 856, no. 1-2, pp. 3-54, Sep 24, 1999. [12] V. Lemos, and U. Vieira, “Single-drop microextraction for the determination of manganese in seafood and water samples,” Microchim Acta, vol. 180, no. 5-6, pp. 501-507, Apr 1, 2013. [13] H. Faraji, A. Feizbakhsh, and M. Helalizadeh, “Modified dispersive liquid-liquid microextraction for pre-concentration of benzene, toluene, ethylbenzene and xylenes prior to their determination by GC,” Microchim Acta, vol. 180, no. 11-12, pp. 1141-1148, Aug 1, 2013. [14] M. A. Jeannot, and F. F. Cantwell, “Solvent Microextraction into a Single Drop,” Anal. Chem., vol. 68, no. 13, pp. 2236-2240, Jul 1, 1996. [15] F. Ahmadi, Y. Assadi, S. M. Hosseini, and M. Rezaee, “Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chromatography-flame photometric detector,” J Chromatogr A, vol. 1101, no. 1-2, pp. 307-12, Jan 6, 2006. [16] Y. Li, P. S. Chen, and S. D. Huang, “Water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction for the determination of organochlorine pesticides in aqueous samples,” J Chromatogr A, vol. 1300, pp. 51-7, Jul 26, 2013. [17] W. Liu, K. Bi, X. Liu, J. Zhao, and X. Chen, “Cloud-Point Extraction Combined with LC–MS for Analysis of Memantine in Rat Plasma,” Chromatographia, vol. 69, no. 9-10, pp. 837-842, May 1, 2009. [18] E. K. Paleologos, D. L. Giokas, and M. I. Karayannis, “Micelle-mediated separation and cloud-point extraction,” Trends. Anal. Chem., vol. 24, no. 5, pp. 426-436, May, 2005. [19] A. S. Yazdi, “Surfactant-based extraction methods,” Trends. Anal. Chem., vol. 30, no. 6, pp. 918-929, Jun, 2011. [20] H. Watanabe, T. Saitoh, T. Kamidate, and K. Haraguchi, “Distribution of metal chelates between aqueous and surfactant phases separated from a micellar solution of a nonionic surfactant,” Microchim. Acta, vol. 106, no. 1-2, pp. 83-90, Jan 1, 1992. [21] H. Watanabe, and H. Tanaka, “A non-ionic surfactant as a new solvent for liquid-liquid extraction of zinc(II) with 1-(2-pyridylazo)-2-naphthol,” Talanta, vol. 25, no. 10, pp. 585-9, Oct, 1978. [22] M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J Hazard Mater, vol. 150, no. 3, pp. 533-40, Feb 11, 2008. [23] J. F. Liu, R. Liu, Y. G. Yin, and G. B. Jiang, “Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase,” Chem Commun (Camb), no. 12, pp. 1514-6, Mar 28, 2009. [24] A. Niazi, T. Momeni-Isfahani, and Z. Ahmari, “Spectrophotometric determination of mercury in water samples after cloud point extraction using nonionic surfactant Triton X-114,” J Hazard Mater, vol. 165, no. 1-3, pp. 1200-3, Jun 15, 2009. [25] R. Carabias-Martinez, E. Rodriguez-Gonzalo, B. Moreno-Cordero, J. L. Perez-Pavon, C. Garcia-Pinto, and E. Fernandez Laespada, “Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis,” J Chromatogr A, vol. 902, no. 1, pp. 251-65, Dec 1, 2000. [26] M. Moradi, and Y. Yamini, “Surfactant roles in modern sample preparation techniques: a review,” J Sep Sci, vol. 35, no. 18, pp. 2319-40, Sep, 2012. [27] A. S. Yazdi, “Surfactant-based extraction methods,” Trends Anal. Chem., vol. 30, no. 6, pp. 918-929, Jun, 2011. [28] F. J. Lopez-Jimenez, S. Rubio, and D. Perez-Bendito, “Single-drop coacervative microextraction of organic compounds prior to liquid chromatography. Theoretical and practical considerations,” J Chromatogr A, vol. 1195, no. 1-2, pp. 25-33, Jun 27, 2008. [29] M. Moradi, and Y. Yamini, “Application of vesicular coacervate phase for microextraction based on solidification of floating drop,” J Chromatogr A, vol. 1229, pp. 30-7, Mar 16, 2012. [30] J. Dua, A. Rana, and A. Bhandari, “Liposome: methods of preparation and applications,” Int J Pharm Stud Res, vol. 3, pp. 14-20, 2012. [31] I. U. Khan, C. A. Serra, N. Anton, and T. Vandamme, “Microfluidics: A focus on improved cancer targeted drug delivery systems,” J. Controlled Release, vol. 172, no. 3, pp. 1065-1074, Dec 28, 2013. [32] I. Cabrera, E. Elizondo, O. Esteban, J. L. Corchero, M. Melgarejo, D. Pulido, A. Cordoba, E. Moreno, U. Unzueta, E. Vazquez, I. Abasolo, S. Schwartz, Jr., A. Villaverde, F. Albericio, M. Royo, M. F. Garcia-Parajo, N. Ventosa, and J. Veciana, “Multifunctional nanovesicle-bioactive conjugates prepared by a one-step scalable method using CO2-expanded solvents,” Nano Lett, vol. 13, no. 8, pp. 3766-74, Aug 14, 2013. [33] S. C. d. A. Lopes, C. d. S. Giuberti, T. G. R. Rocha, D. d. S. Ferreira, E. A. Leite, and M. C. Oliveira, Liposomes as Carriers of Anticancer Drugs, 2013. [34] D. J. Pochan, L. Pakstis, B. Ozbas, A. P. Nowak, and T. J. Deming, “SANS and Cryo-TEM study of self-assembled diblock copolypeptide hydrogels with rich nano-through microscale morphology,” Macromolecules, vol. 35, no. 14, pp. 5358-5360, Apr 24, 2002. [35] H. Cui, T. K. Hodgdon, E. W. Kaler, L. Abezgauz, D. Danino, M. Lubovsky, Y. Talmon, and D. J. Pochan, “Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy,” Soft Matter, vol. 3, no. 8, pp. 945-955, Jun 28, 2007. [36] 'http://www.foodnetworksolution.com/wiki/word/0303/emulsifier.' [37] A. Sharma, and U. S. Sharma, “Liposomes in drug delivery: Progress and limitations,” int. j. pharm., vol. 154, no. 2, pp. 123-140, Aug 26, 1997. [38] V. Singh, P. Khullar, P. N. Dave, and N. Kaur, “Micelles, mixed micelles, and applications of polyoxypropylene (PPO)-polyoxyethylene (PEO)-polyoxypropylene (PPO) triblock polymers,” Int. J. Indus. Chem., vol. 4, no. 1, pp. 1-18, 2013. [39] K. T. Oh, T. K. Bronich, and A. V. Kabanov, “Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic block copolymers,” J Control Release, vol. 94, no. 2-3, pp. 411-22, Feb 10, 2004. [40] M. Alauddin, T. Parvin, and T. Begum, “Effect of organic additives on the cloud point of triton X-100 micelles,” J. Applied Sci., vol. 9, no. 12, pp. 2301-2306, 2009. [41] D. A. Balazs, and W. Godbey, “Liposomes for use in gene delivery,” Journal of drug delivery, vol. 2011, pp. 1-12, Oct, 2010. [42] D. L. Giokas, V. A. Sakkas, T. A. Albanis, and D. A. Lampropoulou, “Determination of UV-filter residues in bathing waters by liquid chromatography UV-diode array and gas chromatography-mass spectrometry after micelle mediated extraction-solvent back extraction,” J Chromatogr A, vol. 1077, no. 1, pp. 19-27, Jun 3, 2005. [43] I. Casero, D. Sicilia, S. Rubio, and D. Pérez-Bendito, “An Acid-Induced Phase Cloud Point Separation Approach Using Anionic Surfactants for the Extraction and Preconcentration of Organic Compounds,” Analytical Chemistry, vol. 71, no. 20, pp. 4519-4526, Oct 1, 1999. [44] T. Wang, X. Gao, J. Tong, and L. Chen, “Determination of formaldehyde in beer based on cloud point extraction using 2,4-dinitrophenylhydrazine as derivative reagent,” Food Chemistry, vol. 131, no. 4, pp. 1577-1582, Apr 15, 2012. [45] K. Schillén, K. Bryskhe, and Y. S. Mel'Nikova, “Vesicles formed from a poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymer in dilute aqueous solution,” Macromolecules, vol. 32, no. 20, pp. 6885-6888, May, 1999. [46] M. R. Payán, M. Á. B. López, R. F. Torres, M. V. Navarro, and M. C. Mochón, “Electromembrane extraction (EME) and HPLC determination of non-steroidal anti-inflammatory drugs (NSAIDs) in wastewater samples,” Talanta, vol. 85, no. 1, pp. 394-399, 7/15/, 2011. [47] A. Macia, F. Borrull, M. Calull, and C. Aguilar, “Different sample stacking strategies to analyse some nonsteroidal anti-inflammatory drugs by micellar electrokinetic capillary chromatography in mineral waters,” J Chromatogr A, vol. 1117, no. 2, pp. 234-45, Jun 9, 2006. [48] M. Cruz-Vera, R. Lucena, S. Cárdenas, and M. Valcárcel, “One-step in-syringe ionic liquid-based dispersive liquid–liquid microextraction,” J. Chromatogr. A, vol. 1216, no. 37, pp. 6459-6465, Sep 11, 2009. [49] J. Wu, and H. K. Lee, “Orthogonal array designs for the optimization of liquid–liquid–liquid microextraction of nonsteroidal anti-inflammatory drugs combined with high-performance liquid chromatography-ultraviolet detection,” J. Chromatogr. A, vol. 1092, no. 2, pp. 182-190, Oct 28, 2005. [50] X. Wen, C. Tu, and H. K. Lee, “Two-Step Liquid−Liquid−Liquid Microextraction of Nonsteroidal Antiinflammatory Drugs in Wastewater,” Anal. Chem., vol. 76, no. 1, pp. 228-232, Jan 1, 2004. [51] M. Cruz-Vera, R. Lucena, S. Cárdenas, and M. Valcárcel, “Ionic liquid-based dynamic liquid-phase microextraction: Application to the determination of anti-inflammatory drugs in urine samples,” J. Chromatogr. A, vol. 1202, no. 1, pp. 1-7, Aug 15, 2008. [52] T. Hirai, S. Matsumoto, and I. Kishi, “Simultaneous analysis of several non-steroidal anti-inflammatory drugs in human urine by high-performance liquid chromatography with normal solid-phase extraction,” J. Chromatogr. B, vol. 692, no. 2, pp. 375-388, May 9, 1997. [53] H. Filik, I. Sener, S. D. Cekic, E. Kilic, and R. Apak, “Spectrophotometric determination of paracetamol in urine with tetrahydroxycalix[4]arene as a coupling reagent and preconcentration with triton X-114 using cloud point extraction,” Chem Pharm Bull (Tokyo), vol. 54, no. 6, pp. 891-6, Jun, 2006. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18142 | - |
dc.description.abstract | 以臨床上藥物或遺傳物質載體設計常常使用的微胞,將其包覆及釋放物質的特性應用在化學萃取上,利用其裝載親水及疏水性物質的特性來增加包覆之萃取物數量。其微小體積增加在水中之懸浮性與溶液之接觸面積,可減少傳統萃取方法所需時間,提高萃取效率。本研究萃取環境中常見的抗發炎藥物,依親水性之差異,選擇七種抗發炎藥物。在環境中,抗發炎類藥物廣為人們所使用,此類藥物儼然成為生活中的一部份。然而,如此廣泛使用的藥物也成為生活中最易暴露的物質之一。當藥物被隨地丟棄,或是因代謝進入排水道系統,甚至醫療院所之廢液處理不全,遂而使原型藥物溶解於水體中,並且排入大自然之河川、溪流、湖泊等等,這些藥物會自然而然的溶入飲用水。因此,要監測水樣中之藥物,樣品前處理方法往往耗時久且工序繁複,需高人力與技術的配合。再者,所用的有機溶劑對環境及人體而言大多有害。本實驗希望開發一種快速、有效、對環境及人體無害的萃取方法。
本研究將兩種界面活性劑組成的雙系統結合雲點萃取法,搭配上製作藥物載體的薄層水合法,來進行抗發炎藥物的萃取,並且使用極致效能液相層析儀-光電二極體陣列偵測器來進行偵測。萃取條件最佳化後,針對PL121及PF68兩種介面活性劑組成的系統在不同溫度下之結構,以冷凍穿透式電子顯微鏡進行分析,確認其結構在攝氏40度時會組成最穩定之球狀複合物,因此可得到最佳萃取效果。 方法最佳化的實驗在去離子水樣中進行,在最佳化的條件之下,萃取物質偵測之線性範圍介於50-8000 μg L-1之間,線性為0.9953-0.9995,偵測極限約為10-100 μg L-1,再現性的標準偏差在14.1%以下。以環境中水樣為真實檢體萃取得到之相對回收率為17.34-133.03%,其中Acetaminophen及Salicylic acid兩種較親水之藥物,其萃取效果濃縮倍率較差,相對回收率也較低。 本方法使用之萃取過程快速且產量高,不使用有機溶劑,是個簡單環保的萃取方法,並特別對疏水性物質有較佳之萃取效果。 | zh_TW |
dc.description.abstract | A simple cloud-point extraction (CPE) method for the determination of 7 common used anti-inflammatory drugs in the natural water system was developed. The CPE system was built up on a binary mixing system of the non-ionic surfactants of Pluronic series, and the CPE kit, which was coated with PL121 and PF68 surfactants on the bottom of eppendorf, was produced vast amount efficiently by combining the thing-film hydration method which is widely used in manufacturing the clinical drug delivery system. The prepared CPE kit makes the extraction procedure in a much simpler way. Anti-inflammatory drugs (acetaminophen, salicylic acid, ketoprofen, diclofenac, indomethacin, ibuprofen, and mefenamic acid) were extracted from water specimens by adding 2 mL specimen into the CPE kit, then sonication in a water bath was performed for accelerating the thin-film hydration process. After the CPE procedure, anti-inflammatory drugs were present in the surfactant-rich phase, and were analyzed by the Ultra-performance liquid chromatography coupled to photodiode array detection (UPLC-PDA) system directly. For developing an extraction method which is friendly to the environment and non-toxic to the technician, the CPE procedure used only surfactants that were biocompatible and biodegradable, and non of organic solvent has been used.
The optimum analytical conditions for binary mixing and the CPE system were established. Under these conditions, linear calibration curves were obtained over the range of 50 to 8000 μg L-1, and exhibited coefficients of determination (R2) ranging from 0.9953 to 0.9995, with detection limits of 10 to 100 μg L-1 of each analytes. Relative standard deviations (RSDs) were from 3.2 to 12.7% for intraday (n= 5), while for inter-day (n= 15) the values were between 2.5% and 14.1%. The average relative recoveries ranged from 17.34% for acetaminophen to 133.03% for mefenamic acid Additionally, the self-assembly trend was studied by cryo-TEM, and the optimum aggregation temperature that may produce the maximum stability of the vesicular aggregate of the binary mixing system has been correlated with the CPE experimental results. These results may study forward in CPE techniques and the drug delivery systems in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:52:31Z (GMT). No. of bitstreams: 1 ntu-104-R99452002-1.pdf: 11928981 bytes, checksum: bdc8a072d7ef9b54212940e16e413ba6 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Microscale pollutants around our environment 1 1.2 Motivation 1 1.3 Cloud-point extraction 3 1.4 Drug delivery techniques 6 1.5 Thin-film hydration 7 Chapter 2 Experimental 9 2.1 Chemicals and reagents 9 2.2 Instrumentation 10 2.3 Sample preparation 11 2.4 CPE kit preparation (thin-film hydration) 11 2.5 Preparation of binary mixing systems 11 2.6 CPE procedures 12 2.7 Size measurements 12 2.8 TEM method 13 2.9 Cryo-TEM method 13 Chapter 3 Results and discussion 14 3.1 PL121 concentration 14 3.2 Binary mixing systems 15 3.3 Optimization of PF68 ratio 17 3.4 Optimization of cloud-point extraction 17 3.4.1 Sonication time 17 3.4.2 Sonication temperature 18 3.4.3 Effect of pH on CPE 20 3.4.4 Effect of sodium chloride concentration 20 3.5 Optimization of CPE 21 3.6 Vesicle size measurments 22 3.7 Regular TEM imaging 22 3.8 Cryo-TEM imaging 23 3.9 Calibration and method validation 26 3.10 Environmental sample analysis 27 3.11 Method comparison 28 Chapter 4 Conclusions 29 Chapter 5 References 88 | |
dc.language.iso | en | |
dc.title | 應用溫感微胞雲點微萃取法偵測抗發炎藥物 | zh_TW |
dc.title | Determination of anti-inflammatory drugs using thermosensitive microvesicle-cloud point microextraction | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 謝堅銘(Chien-Ming Hsieh) | |
dc.contributor.oralexamcommittee | 黃賢達(Shang-Da Huang),陳惠文(Huei-Wen Chen) | |
dc.subject.keyword | 雲點萃取法,薄層水合法,微胞,界面活性劑,極致效能液相層析儀,光電二極體陣列偵測器,冷凍穿透式電子顯微鏡, | zh_TW |
dc.subject.keyword | cloud-point extraction,thin-film hydration,binary mixing system,PL121,PF68,cryo-TEM, | en |
dc.relation.page | 95 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-06-18 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 法醫學研究所 | zh_TW |
顯示於系所單位: | 法醫學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 11.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。