Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18118
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊彬
dc.contributor.authorTung-Jung Chiangen
dc.contributor.author蔣東融zh_TW
dc.date.accessioned2021-06-08T00:51:45Z-
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-06-29
dc.identifier.citation1. Schilder, H., Filling Root Canals in Three Dimensions. Journal of Endodontics, 1967. 32(4): p. 281-290.
2. Gulabivala, K. and S. Leung, Review of a new root canal obturation technique. Dental update, 1994. 21(2): p. 73-8, 80-3.
3. Mc Cullagh, J.J.P., et al., A comparison of thermocouple and infrared thermographic analysis of temperature rise on the root surface during the continuous wave of condensation technique. International Endodontic Journal, 2000. 33(4): p. 326-332.
4. Combe, E.C., B.D. Cohen, and K. Cummings, Alpha- and beta-forms of gutta-percha in products for root canal filling. Int Endod J, 2001. 34(6): p. 447-51.
5. Glickman, G.N. and J.L. Gutmann, Contemporary perspectives on canal obturation. Dental clinics of North America, 1992. 36(2): p. 327-41.
6. Schäfer, E. and T. Zandbiglari, Solubility of root-canal sealers in water and artificial saliva. International Endodontic Journal, 2003. 36(10): p. 660-669.
7. Wennber, A. and D.Ø. Niom, Adhesion of root canal sealers to bovine dentine and gutta-percha. International Endodontic Journal, 1990. 23(1): p. 13-19.
8. Jia, W. and B. Alpert, An endodontic filling material comprising a biodegrable thermoplastic polymer and a bioactive substance. 2007, Google Patents.
9. Teixeira, F.B., et al., Dentinal Bonding Reaches the Root Canal System. Journal of Esthetic and Restorative Dentistry, 2004. 16(6): p. 348-354.
10. Shipper, G., et al., An evaluation of microbial leakage in roots filled with a thermoplastic synthetic polymer-based root canal filling material (Resilon). Journal of Endodontics, 2004. 30(5): p. 342-347.
11. Gesi, A., et al., Interfacial Strength of Resilon and Gutta-Percha to Intraradicular Dentin. Journal of Endodontics, 2005. 31(11): p. 809-813.
12. Ungor, M., E.O. Onay, and H. Orucoglu, Push-out bond strengths: the Epiphany–Resilon endodontic obturation system compared with different pairings of Epiphany, Resilon, AH Plus and gutta-percha. International Endodontic Journal, 2006. 39(8): p. 643-647.
13. Miner, M.R., D.W. Berzins, and J.K. Bahcall, A Comparison of Thermal Properties Between Gutta-Percha and a Synthetic Polymer Based Root Canal Filling Material (Resilon). Journal of Endodontics, 2006. 32(7): p. 683-686.
14. A, T., Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the International Biomaterial Symposium. 1991. 14(93): p. 15731.
15. Bruil, A., et al., Poly(ethyleneimine) modified filters for the removal of leukocytes from blood. Journal of Biomedical Materials Research, 1993. 27(10): p. 1253-1268.
16. Bordenave, L., et al., Endothelial cell compatibility testing of three different Pellethanes. J Biomed Mater Res, 1993. 27(11): p. 1367-81.
17. Gutmann JL, W.D., Obturation of the cleaned and shaped root canal system. In: Pathways of the pulp. 7th ed. Chapter 9. Cohen S, Burns RC, editors. St. Louis: Mosby. 1998: p. 258-271.
18. Marciano, J., P. Michailesco, and M.M. Abadie, Stereochemical structure characterization of dental gutta-percha. Journal of Endodontics, 1993. 19(1): p. 31-34.
19. Möller, B. and D. Ørstavik, Chemical and energy-dispersive x-ray analyses of gutta-percha points. Journal of Endodontics, 1984. 10(9): p. 413-416.
20. Friedman, C.M., et al., Composition and mechanical properties of gutta-percha endodontic points. Journal of dental research, 1975. 54(5): p. 921-925.
21. Barkhordar, R.A., et al., Evaluation of temperature rise on the outer surface of teeth during root canal obturation techniques. Quintessence international (Berlin, Germany: 1985), 1990. 21(7): p. 585-588.
22. Johansson, B.I., A methodological study of the mechanical properties of endodontic gutta-percha points. Journal of endodontics, 1980. 6(10): p. 781-783.
23. Williams, C., et al., A comparison of cohesive strength and stiffness of Resilon and gutta-percha. Journal of Endodontics, 2006. 32(6): p. 553-555.
24. Blum, J.-Y., E. Parahy, and P. Machtou, Warm vertical compaction sequences in relation to gutta-percha temperature. Journal of endodontics, 1997. 23(5): p. 307-311.
25. Marciano, J. and P.M. Michailesco, Dental gutta-percha: chemical composition, X-ray identification, enthalpic studies, and clinical implications. Journal of endodontics, 1989. 15(4): p. 149-153.
26. 鄭雅安, 馬來膠之熱能與晶相轉換研究. 2002: National Taiwan University.
27. Fouad, A., M. Torabinejad, and R.E. Walton, Endodontics: principles and practice. 2008: Elsevier Health Sciences.
28. Glickman, G.N. and J. Gutmann, Contemporary perspectives on canal obturation. Dental clinics of North America, 1992. 36(2): p. 327-341.
29. Weine FS, W.C., Canal filling with semisolid materials. In: Endodontic therapy,2004., 6th edition. Chapter 8. Weine FS, editor. Illinios: Mosby, pp. 304-312.
30. Augsburger, R.A. and D.D. Peters, Radiographic evaluation of extruded obturation materials. Journal of endodontics, 1990. 16(10): p. 492-497.
31. Kazemi, R.B., K.E. Safavi, and L.S. Spångberg, Dimensional changes of endodontic sealers. Oral surgery, oral medicine, oral pathology, 1993. 76(6): p. 766-771.
32. Peters, D.D., Two-year in vitro solubility evaluation of four gutta-percha sealer obturation techniques. Journal of Endodontics, 1986. 12(4): p. 139-145.
33. Tagger, M., E. Tagger, and A. Kfir, Release of calcium and hydroxyl ions from set endodontic sealers containing calcium hydroxide. Journal of endodontics, 1988. 14(12): p. 588-591.
34. Gatewood, R.S., Endodontic materials. Dental Clinics of North America, 2007. 51(3): p. 695-712.
35. Lee, K.-W., et al., Adhesion of endodontic sealers to dentin and gutta-percha. Journal of Endodontics, 2002. 28(10): p. 684-688.
36. Apicella, M., et al., A comparison of root fracture resistance using two root canal sealers. International Endodontic Journal, 1999. 32(5): p. 376-380.
37. Moshonov, J., M. Trope, and S. Friedman, Retreatment efficacy 3 months after obturation using glass ionomer cement, zinc oxide-eugenol, and epoxy resin sealers. Journal of endodontics, 1994. 20(2): p. 90-92.
38. Ørstavik, D., Materials used for root canal obturation: technical, biological and clinical testing. Endodontic Topics, 2005. 12(1): p. 25-38.
39. Cohen, S., et al., Pathways of the pulp. 2006: Elsevier Mosby.
40. Pascon, E.A. and L.S. Spangberg, In vitro cytotoxicity of root canal filling materials: 1. Gutta-percha. J Endod, 1990. 16(9): p. 429-33.
41. Jia WT, A.B., Root canal filling material. 2003, US Patent 20030113686. June 19.
42. Teixeira FB, T.M., Advances in Endodontic Obturation. US Dent Endod, 2006: p. 45-48.
43. Pitout, E., et al., Coronal leakage of teeth root-filled with gutta-percha or Resilon root canal filling material. Journal of Endodontics, 2006. 32(9): p. 879-881.
44. Teixeira, F.B., et al., Fracture resistance of roots endodontically treated with a new resin filling material. The Journal of the American Dental Association, 2004. 135(5): p. 646-652.
45. Tay, F.R., et al., Ultrastructural evaluation of the apical seal in roots filled with a polycaprolactone-based root canal filling material. Journal of endodontics, 2005. 31(7): p. 514-519.
46. Jensen, S.D. and D.E. Fischer, Method for filling and sealing a root canal. 2008, Google Patents.
47. Tay, F.R., et al., Effectiveness of resin-coated gutta-percha cones and a dual-cured, hydrophilic methacrylate resin-based sealer in obturating root canals. J Endod, 2005. 31(9): p. 659-64.
48. Sevimay, S. and A. Kalayci, Evaluation of apical sealing ability and adaptation to dentine of two resin-based sealers. J Oral Rehabil, 2005. 32(2): p. 105-10.
49. Eldeniz, A.U., A. Erdemir, and S. Belli, Shear Bond Strength of Three Resin Based Sealers to Dentin With and Without the Smear Layer. Journal of Endodontics, 2005. 31(4): p. 293-296.
50. Yen, M.S. and S.C. Kuo, Effects of mixing procedure on the structure and physical properties of ester–ether‐type soft segment waterborne polyurethane. Journal of applied polymer science, 1996. 61(10): p. 1639-1647.
51. Hsieh, K., C. Tsai, and S. Tseng, Vapor and gas permeability of polyurethane membranes. Part I. Structure-property relationship. Journal of membrane science, 1990. 49(3): p. 341-350.
52. Hsieh, K., C. Tsai, and D. Chang, Vapor and gas permeability of polyurethane membranes. Part II. Effect of functional group. Journal of membrane science, 1991. 56(3): p. 279-287.
53. Xiu, Y., et al., Morphology‐property relationship of segmented polyurethaneurea: Influences of soft‐segment structure and molecular weight. Journal of applied polymer science, 1993. 48(5): p. 867-869.
54. Boretos, J.W. and W.S. Pierce, Segmented polyurethane: a new elastomer for biomedical applications. Science, 1967. 158(3807): p. 1481-1482.
55. Huang, B., et al., Cellular reaction to the Vascugraft® polyesterurethane vascular prosthesis: in vivo studies in rats. Biomaterials, 1992. 13(4): p. 209-216.
56. King, M.W., et al., Quantitative analysis of the surface morphology and textile structure of the polyurethane Vascugraft arterial prosthesis using image and statistical analyses. Biomaterials, 1994. 15(8): p. 621-7.
57. Okkema, A.Z., et al., Bulk, surface and blood-contacting properties of polyether polyurethanes modified with polydimethylsiloxane macroglycols. Biomaterials, 1989. 10(1): p. 23-32.
58. Okkema, A.Z., S.A. Visser, and S.I. Cooper, Physical and blood-contacting properties of polyurethanes based on a sulfonic acid-containing diol chain extender. Journal of Biomedical Materials Research, 1991. 25(11): p. 1371-1395.
59. Wabers, H.D., et al., Biostability and blood-contacting properties of sulfonate grafted polyurethane and Biomer. Journal of Biomaterials Science, Polymer Edition, 1993. 4(2): p. 107-133.
60. O'Brien, J., et al., Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 2000. 267(17): p. 5421-5426.
61. Weiss, E., M. Shalhav, and Z. Fuss, Assessment of antibacterial activity of endodontic sealers by a direct contact test. Dental Traumatology, 1996. 12(4): p. 179-184.
62. Anumula, L., et al., An Assessment of Antibacterial Activity of Four Endodontic Sealers on Enterococcus faecalis by a Direct Contact Test: An In Vitro Study. International Scholarly Research Notices, 2012. 2012.
63. Wang, J., et al., Physicochemical and biological properties of a novel injectable polyurethane system for root canal filling. International journal of nanomedicine, 2015. 10: p. 697.
64. Hsieh, K.-H., et al., A Novel polyurethane-based root canal–obturation material and urethane acrylate–based root canal sealer—Part I: Synthesis and evaluation of mechanical and thermal properties. Journal of endodontics, 2008. 34(3): p. 303-305.
65. Pascon, E.A. and L.S.W. Spngberg, In vitro cytotoxicity of root canal filling materials: 1. Gutta-percha. Journal of Endodontics, 1990. 16(9): p. 429-433.
66. Szep, S., et al., In Vitro Cytotoxicity of Medicated and Nonmedicated Gutta-percha Points in Cultures of Gingival Fibroblasts. Journal of Endodontics, 2003. 29(1): p. 36-40.
67. Scotti, R., et al., Biocompatibility of various root canal filling materials ex vivo. International Endodontic Journal, 2008. 41(8): p. 651-657.
68. Lee, B.-S., et al., A Novel Urethane Acrylate–based Root Canal Sealer with Improved Degree of Conversion, Cytotoxicity, Bond Strengths, Solubility, and Dimensional Stability. Journal of endodontics, 2011. 37(2): p. 246-249.
69. Ratanasathien, S., et al., Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. Journal of Dental Research, 1995. 74(9): p. 1602-1606.
70. Bouillaguet, S., et al., Cytotoxicity and sealing properties of four classes of endodontic sealers evaluated by succinic dehydrogenase activity and confocal laser scanning microscopy. European Journal of Oral Sciences, 2004. 112(2): p. 182-187.
71. Eldeniz, A.U., et al., Cytotoxicity of new resin-, calcium hydroxide- and silicone-based root canal sealers on fibroblasts derived from human gingiva and L929 cell lines. International Endodontic Journal, 2007. 40(5): p. 329-337.
72. Al-Hiyasat, A.S., M. Tayyar, and H. Darmani, Cytotoxicity evaluation of various resin based root canal sealers. International Endodontic Journal, 2010. 43(2): p. 148-153.
73. Heil, J., et al., Genotoxicity of dental materials. Mutation Research/Genetic Toxicology, 1996. 368(3–4): p. 181-194.
74. Cohen, B.I., et al., Formaldehyde evaluation from endodontic materials. Oral health, 1998. 88(12): p. 37-39.
75. Miletić, I., et al., The Cytotoxicity of RoekoSeal and AH Plus Compared during Different Setting Periods. Journal of Endodontics, 2005. 31(4): p. 307-309.
76. Sousa, C.J.A., et al., Comparison of the Intraosseous Biocompatibility of AH Plus, EndoREZ, and Epiphany Root Canal Sealers. Journal of Endodontics, 2006. 32(7): p. 656-662.
77. Merdad, K., et al., Short-Term Cytotoxicity Assessment of Components of the Epiphany Resin-Percha Obturating System by Indirect and Direct Contact Millipore Filter Assays. Journal of Endodontics, 2007. 33(1): p. 24-27.
78. Lodienė, G., et al., Toxicity evaluation of root canal sealers in vitro. International Endodontic Journal, 2008. 41(1): p. 72-77.
79. Klaiber, B., et al., [Determination of the toxicity of root canal filling materials and thier separate components in cell cultures]. Deutsche zahnarztliche Zeitschrift, 1981. 36(4): p. 212-216.
80. Hume, W.R., The pharmacologic and toxicological properties of zinc oxide-eugenol. The Journal of the American Dental Association, 1986. 113(5): p. 789-791.
81. Segura, J.J. and A. Jiménez-Rubio, Effect of eugenol on macrophage adhesion in vitro to plastic surfaces. Dental Traumatology, 1998. 14(2): p. 72-74.
82. Abdulkader, A., R. Duguid, and E.M. Saunders, The antimicrobial activity of endodontic sealers to anaerobic bacteria. International Endodontic Journal, 1996. 29(4): p. 280-283.
83. Çobankara, F.K., et al., In Vitro Antibacterial Activities of Root-Canal Sealers By Using Two Different Methods. Journal of Endodontics, 2004. 30(1): p. 57-60.
84. Saleh, I.M., et al., Survival of Enterococcus faecalis in infected dentinal tubules after root canal filling with different root canal sealers in vitro. International Endodontic Journal, 2004. 37(3): p. 193-198.
85. Leonardo, M.R., et al., Release of formaldehyde by 4 endodontic sealers. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 1999. 88(2): p. 221-225.
86. Barkhordar, R.A., Evaluation of antimicrobial activity in vitro of ten root canal sealers on Streptococcus sanguis and Streptococcus mutans. Oral Surgery, Oral Medicine, Oral Pathology, 1989. 68(6): p. 770-772.
87. Pumarola, J., et al., Antimicrobial activity of seven root canal sealers: Results of agar diffusion and agar dilution tests. Oral Surgery, Oral Medicine, Oral Pathology, 1992. 74(2): p. 216-220.
88. Torabinejad, M., et al., Antibacterial effects of some root end filling materials. Journal of Endodontics, 1995. 21(8): p. 403-406.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18118-
dc.description.abstract傳統型根管封填材料主要以馬來膠錐體( Gutta-percha )搭配各類傳統根管封填劑,然而馬來膠錐體及各類傳統封填劑之間黏著力不足,根管封填劑和牙本質之黏著亦不理想,因此無法達到有效根管密封的目的。本研究團隊以聚己二酸丁二醇( Polybutylene adipate, PBA )合成之聚胺酯根管封填材料在臨床操作上有極佳的機械性質及熱性質,並且與牙本質有非常好的鍵結,可達到良好密封性的目的,但此類材料接觸組織液時,仍有水解之疑慮。
本研究乃利用聚胺酯及胺酯壓克力樹脂徑而開發新穎牙科根管充填材料。實驗主要分為兩部份,第一部分為根管封填錐體,首先探討聚四亞甲基醚二醇( Polytetramethylene oxide, PTMO )合成低水解根管封填錐體材料,結果顯示其熔點低於體溫不利臨床操作,因此以PBA-based進行後續聚胺酯合成,並利用熱塑性聚胺酯做為基材以化學鍵結方式接枝氯己定( Chlorhexidine, CHX );第二部份為根管封填劑,是利用紫外光硬化之胺酯壓克力樹脂做為基材並以化學鍵結方式接枝氯己定,及使用三丙烯乙二醇雙丙烯酸脂( Tripropylene glycol diacrylate, TPGDA )做為稀釋單體,提高胺酯壓克力樹脂於牙科根管封填劑上之可行性。並使用傅立葉轉換紅外線光譜儀( Fourier-Transformed Infrared Spectrometer, FTIR )、核磁共振儀( Nuclear magnetic resonance, NMR )證實氯己定以化學鍵結方式接枝在基材上;熱重損失分析儀( Thermo Gravimetric Analysis, TGA )、微差掃瞄卡計儀( Differential Scanning Calorimetry, DSC )顯示其熱裂解溫度及熔點符合臨床操作溫度;細胞毒性結果顯示都優於ISO 10993-5的規範;抗菌結果可以發現改質後的根管封填材料都具有抗菌性,並在濃度0.6 wt%時達到一穩定較佳的抗菌效果。
zh_TW
dc.description.abstractConventional root canal materials do not have enough dentinal adhesion and cannot achieve the ideal sealing properties with cone materials. Our research team have developed the polyurethane root canal obturation system containing PBA polyol-based cone materials and dual cured urethane acrylate sealer. Although these materials have good mechanical properties and bonding strength to dentin, the cytotoxicity and hydrolytic stability are questioned.
The purpose of this study was to develop a novel polyurethane-based root obturation material, including cone and sealer materials. At first, we developed the low hydrolytic polyurethane cone material by replacing the PBA polyol with PTMO polyol and investigated the thermal properties. The results showed that the PTMO-based polyurethane cone material cannot be used in human body because the low melting point. Thus, cone materials was synthesized from polyester-type polyol and covalently bonded with CHX. For the sealer materials, ultraviolet-light photo polymerization urethane-acrylate oligomer was synthesized and covalently bonded with CHX to mix with dilute monomer to form UA/TPGDA resin. From FT-IR and NMR analysis, CHX have covalently bonded with matrix. TGA and DSC showed thermal properties appropriate for the clinical temperature. The consequences of the Cytotoxicity was better than ISO 10993-5 standard and antibacterial evaluation revealed that 0.6 wt% reached to a stable antibacterial effect.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:51:45Z (GMT). No. of bitstreams: 1
ntu-104-R02549017-1.pdf: 3051093 bytes, checksum: 790479daccd752ea0e5c366faef00b98 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1 理想的根管封填 5
2.2 傳統根管封填材料的發展 6
2.2.1 根管封填錐體材料( cone materials ) 6
2.2.2 根管封填劑材料( sealer materials ) 7
2.3 高分子根管封填系統 8
2.3.1 ResilonTM/ EpiphanyTM根管封填系統 8
2.3.2 EndoREZTM根管封填系統 11
2.4 聚胺酯材料作為高分子根管封填系統的潛力 12
2.4.1 熱塑性聚胺酯( thermoplastic polyurethane ) 12
2.4.2 本研究團隊初步試驗結果 13
2.5 根管材料生物相容性之測試 14
2.5.1 AlamarBlue assay 15
2.5.2 LDH assay 16
2.6 根管材料之抗菌測試 16
2.6.1 瓊脂凝膠擴散法( Agar diffusion test ) 16
2.6.2 直接接觸法( Direct contact test ) 17
2.6.3 細菌計數法 17
第三章 實驗方法 19
3.1 實驗藥品 19
3.2 實驗儀器 23
3.3 實驗步驟 26
3.3.1 低水解聚胺酯根管封填錐體製備 26
3.3.2 抗菌改質根管封填錐體 27
3.3.3 抗菌改質根管封填劑 30
3.4 材料性質測試 32
3.4.1 傅立葉轉換紅外線光譜儀( Fourier Transformed Infrared Spectra, FT-IR )分析測試 32
3.4.2 熱重分析儀( Thermo Gravimetric Analysis, TGA )分析測試 32
3.4.3 微差掃描卡計儀( Differential Scanning Calorimetry, DSC )分析測試 32
3.4.4 核磁共振儀( Nuclear magnetic resonance, NMR )分析測試 33
3.5 材料細胞毒性測試 33
3.5.1 磷酸鹽緩衝溶液配製 33
3.5.2 3T3纖維母細胞培養基配製 33
3.5.3 Trypsin配製 34
3.5.4 解凍細胞 34
3.5.5 細胞計數 34
3.5.6 細胞繼代培養 35
3.5.7 材料樣本與萃取液製備 36
3.5.8 LDH assay 37
3.5.9 AlamarBlue assay 38
3.6 材料抗菌測試 39
3.6.1 培養基配製 39
3.6.2 菌種培養 39
3.6.3 細菌計數 40
3.6.4 材料樣品製備 41
3.6.5 抗菌測試 42
3.7 統計分析 42
第四章 結果與討論 43
4.1 傅立葉轉換紅外線光譜分析 43
4.1.1 低水解聚胺酯材料之傅立葉轉換紅外線光譜分析 43
4.1.2 抗菌改質根管封填錐體之傅立葉轉換紅外線光譜分析 44
4.1.3 抗菌改質根管封填劑之傅立葉轉換紅外線光譜分析 47
4.2 熱重分析儀分析 49
4.3 微差掃描卡計儀分析 52
4.4 核磁共振儀分析 55
4.4.1 抗菌改質根管封填錐體之核磁共振分析 55
4.4.2 抗菌改質根管封填劑之核磁共振分析 60
4.5 根管封填材料之細胞毒性分析 63
4.5.1 AlamarBlue assay 63
4.5.2 LDH assay 64
4.5.3 根管封填材料細胞毒性之探討 66
4.6 根管封填材料之抗菌分析 68
4.6.1 Antibacterial assay for drop-plating method 68
4.6.2 根管封填材料抗菌性質之探討 70
第五章 結論 71
參考文獻 72
dc.language.isozh-TW
dc.title研發新型抗菌改質熱塑性聚胺酯及胺酯壓克力樹脂材料於牙科根管充填zh_TW
dc.titleDevelopment of novel antibacterial-modified thermoplastic polyurethane and urethane-acrylate materials for dental root canal fillingen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor謝國煌
dc.contributor.oralexamcommittee張志豪,林弘萍,章浩宏
dc.subject.keyword牙科根管充填,熱塑性聚胺酯,胺酯壓克力樹脂,細胞毒性,抗菌性質,zh_TW
dc.subject.keywordRoot canal filling,Thermoplastic polyurethane,Urethane-acrylate resin,Cytotoxicity,Antibacterial effect,en
dc.relation.page80
dc.rights.note未授權
dc.date.accepted2015-06-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved