請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18094完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 華筱玲(Hsiao-Lin Hwa) | |
| dc.contributor.author | Siao-Wen Chen | en |
| dc.contributor.author | 陳曉雯 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:50:58Z | - |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-01 | |
| dc.identifier.citation | 1.何柏芳 and 楼迪栋 (2006). 降解生物檢材遺傳標記檢測的研究進展. 法医学杂志 22: 156-158.
2.李俊億 and 謝幸媚 (2008). 親子鑑定的演算邏輯, 國立臺灣大學出版中心. 3.Agilent Technologies (2013). Agilent DNA 1000 Kit Guide. 4.Alaeddini, R., Walsh, S. J. and Abbas, A. (2010). Forensic implications of genetic analyses from degraded DNA--a review. Forensic Sci Int Genet 4: 148-157. 5.Amorim, A. and Pereira, L. (2005). Pros and cons in the use of SNPs in forensic kinship investigation: a comparative analysis with STRs. Forensic Sci Int 150: 17-21. 6.Ayres, K. L. (2005). The expected performance of single nucleotide polymorphism loci in paternity testing. Forensic Sci Int 154: 167-172. 7.Bar, W., Karatzer, A., Machler, M. and Schmid, W. (1988). Postmortem stability of DNA. Forensic Science International 39: 59-70. 8.Baranovskii, A., Buneva, V. and Nevinsky, G. (2004). Human deoxyribonucleases. Biochemistry (Mosc) 69: 587-601. 9.Bender, K., Farfan, M. J. and Schneider, P. M. (2004). Preparation of degraded human DNA under controlled conditions. Forensic Sci Int 139: 135-140. 10.Biesecker, L. G., Bailey-Wilson, J. E., Ballantyne, J., Baum, H., Bieber, F. R., Brenner, C., Budowle, B., Butler, J. M., Carmody, G., Conneally, P. M., Duceman, B., Eisenberg, A., Forman, L., Kidd, K. K., Leclair, B., Niezgoda, S., Parsons, T. J., Pugh, E., Shaler, R., Sherry, S. T., Sozer, A. and Walsh, A. (2005). DNA identifications after the 9/11 World Trade Center attack. Science 125: 891-894. 11.Borsting, C., Fordyce, S. L., Olofsson, J., Mogensen, H. S. and Morling, N. (2014). Evaluation of the Ion Torrent HID SNP 169-plex: A SNP typing assay developed for human identification by second generation sequencing. Forensic Sci Int Genet 12: 144-154. 12.Borsting, C., Mogensen, H. S. and Morling, N. (2013). Forensic genetic SNP typing of low-template DNA and highly degraded DNA from crime case samples. Forensic Sci Int Genet 7: 345-352. 13.Borsting, C., Sanchez, J. J., Hansen, H. E., Hansen, A. J., Bruun, H. Q. and Morling, N. (2008). Performance of the SNPforID 52 SNP-plex assay in paternity testing. Forensic Sci Int Genet 2: 292-300. 14.Bray, M. S., Borerwinkle, E. and Doris, P. A. (2001). High-throughput multiplex SNP genotyping with MALDI-TOF mass spectrometry- Practice, problems and promise. Human Mutation 17: 296-304. 15.Bregu, J., Conklin, D., Coronado, E., Terrill, M., Cotton, R. W. and Grgicak, C. M. (2013). Analytical thresholds and sensitivity: establishing RFU thresholds for forensic DNA analysis. J Forensic Sci 58: 120-129. 16.Butler, J. M. (2007). Short tandem repeat typing technologies used in human identity testing. BioTechniques 43: Sii-Sv. 17.Butler, J. M. (2005). Forensic DNA Typing, Second Edition: Biology, Technology, and Genetics of STR Markers, Walthan, MA, Elsevier/Academic Press. 18.Butler, J. M. (2012). Advanced topics in forensic DNA typing: methodology. Walthan, MA, Elsevier/Academic Press. 19.Butler, J. M., Coble, M. D. and Vallone, P. M. (2007). STRs vs. SNPs: thoughts on the future of forensic DNA testing. Forensic Science, Medicine, and Pathology 3: 200-205. 20.Canturk, K. M., Emre, R., Kinoglu, K., Baspinar, B., Sahin, F. and Ozen, M. (2014). Current status of the use of single-nucleotide polymorphisms in forensic practices. Genet Test Mol Biomarkers 18: 455-460. 21.Dario, P., Ribeiro, T., Espinheira, R. and Geada, H. (2009). SNPs in paternity investigation: The simple future. Forensic Science International: Genetics Supplement Series 2: 127-128. 22.Debode, F., Janssen, E. and Berben, G. (2007). Physical degradation of genomic DNA of soybean flours does not impair relative quantification of its transgenic content. European Food Research and Technology 226: 273-280. 23.Diegoli, T. M., Farr, M., Cromartie, C., Coble, M. D. and Bille, T. W. (2012). An optimized protocol for forensic application of the PreCR Repair Mix to multiplex STR amplification of UV-damaged DNA. Forensic Sci Int Genet 6: 498-503. 24.Fondevila, M., Phillips, C., Naveran, N., Fernandez, L., Cerezo, M., Salas, A., Carracedo, A. and Lareu, M. V. (2008). Case report: identification of skeletal remains using short-amplicon marker analysis of severely degraded DNA extracted from a decomposed and charred femur. Forensic Sci Int Genet 2: 212-218. 25.Freese, E. and Cashel, M. (1964). Crosslinking of deoxyribonucleic acid by exposure to low ph. Biochim. Biophys. Acta 91: 67-77. 26.Gabriel, S., Ziaugra, L. and Tabbaa, D. (2009). SNP genotyping using the Sequenom MassARRAY iPLEX platform. Current Protocols in Human Genetics, Wiley Interscience: 2.12.11-12.12.18. 27.Georgiou, C. D. and Papapostolou, I. (2006). Assay for the quantification of intact/fragmented genomic DNA. Anal Biochem 358: 247-256. 28.Gettings, K. B., Kiesler, K. M. and Vallone, P. M. (2015). Performance of a next generation sequencing SNP assay on degraded DNA. Forensic Sci Int Genet 19: 1-9. 29.Gilder, J. R., Doom, T. E., Inman, K. and Krane, D. E. (2007). Run-specific limits of detection and quantitation for STR-based DNA testing. J Forensic Sci 52: 97-101. 30.Gill, P. (2001). An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes. Int J Legal Med 114: 204-210. 31.Gojanović, M. D. and Sutlović, D. (2007). Skeletal remains from World War II mass grave- from discovery to identification. Croatian Medical Journal 48: 520-527. 32.Hall, A. and Ballantyne, J. (2004). Characterization of uvc-induced DNA damage in bloodstains: forensic implications. Anal. Bioanal. Chem 380: 72-83. 33.Hall, S., Sims, L. M. and Ballantyne, J. (2014). Assessment of DNA damage induced by terrestrial UV irradiation of dried bloodstains: Forensic implications. Forensic Science International: Genetics 8: 24-32. 34.Higuchi, R., Bowman, B., Fereiberger, M. and OA., R. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature 312: 282-284. 35.Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M. and Pääbo, S. (2001). Ancient DNA. Nat. Rev. Genet 2:353-359. 36.Hou, G., Jiang, X., Yang, Y., Jia, F., Li, Q., Zhao, J., Guo, F. and Liu, L. (2014). A 21-locus autosomal SNP multiplex and its application in forensic science. J Forensic Sci 59: 5-14. 37.Hughes-Stamm, S. R., Ashton, K. J. and van Daal, A. (2011). Assessment of DNA degradation and the genotyping success of highly degraded samples. Int J Legal Med 125: 341-348. 38.Interpol (2009). Disaster victim identification guide. 39.Jeffreys, A. J., Wilson, V. and Thein, S. L. (1985). Hypervariable 'minisatellite' regions in human DNA. Nature 314: 67-73. 40.Jobling, M. A. and Gill, P. (2004). Encoded evidence: DNA in forensic analysis. Nat Rev Genet 5: 739-751. 41.Kitayama, T., Fujii, K., Nakahara, H., Mizuno, N., Kasai, K., Yonezawa, N. and Sekiguchi, K. (2013). Estimation of the detection rate in STR analysis by determining the DNA degradation ratio using quantitative PCR. Leg Med (Tokyo) 15: 1-6. 42.Krjutskov, K., Viltrop, T., Palta, P., Metspalu, E., Tamm, E., Suvi, S., Sak, K., Merilo, A., Sork, H., Teek, R., Nikopensius, T., Kivisild, T. and Metspalu, A. (2009). Evaluation of the 124-plex SNP typing microarray for forensic testing. Forensic Sci Int Genet 4: 43-48. 43.Larguinho, M., Santos, H. M., Doria, G., Scholz, H., Baptista, P. V. and Capelo, J. L. (2010). Development of a fast and efficient ultrasonic-based strategy for DNA fragmentation. Talanta 81: 881-886. 44.Life Technologies Corporation (2012). AmpFlSTR® Identifiler® PCR Amplification User Guide. 45.Lindahl, T. (1996). The Croonian Lecture, 1996: Endogenous Damage to DNA. Philos Trans R Soc Lond B Biol Sci. 351: 1529-1538. 46.Maciejewska, A., Jakubowska, J. and Pawlowski, R. (2013). Whole genome amplification of degraded and nondegraded DNA for forensic purposes. Int J Legal Med 127: 309-319. 47.Meyer, H. J. (2003). The Kaprun cable car fire disaster—aspects of forensic organisation following a mass fatality with 155 victims. Forensic Science International 138: 1-7. 48.Mundorff, A. Z., Bartelink, E. J. and Mar-Cash, E. (2009). DNA preservation in skeletal elements from the World Trade Center disaster: recommendations for mass fatality management. J Forensic Sci 54: 739-745. 49.Pääbo, S. (1985). Molecular cloning of Ancient Egyptian mummy DNA. Nature 314: 644-645 50.Pääbo, S., Poinar, H., Serre, D., Jaenicke-Despres, V., Hebler, J., Roh-land, N., Kuch, M., Krause, J., Vigilant, L. and Hofreiter, M. (2004). Genetic analyses from ancient DNA. Annu Rev Genet 38: 645-679. 51.Pang, B. C. and Cheung, B. K. (2007). One-step generation of degraded DNA by UV irradiation. Anal Biochem 360: 163-165. 52.Pereira, R., Phillips, C., Alves, C., Amorim, A., Carracedo, A. and Gusmao, L. (2009). A new multiplex for human identification using insertion/deletion polymorphisms. Electrophoresis 30: 3682-3690. 53.Piccinini, A., Cucurachi, N., Betti, F., Capra, M., Coco, S., D'Avila, F., Lorenzoni, R. and Lovisolo, A. (2006). Forensic DNA typing of human nails at various stages of decomposition. International Congress Series 1288: 586-588. 54.Pospelov, V. A. and Svetlikova, S. B. (1982). Higher order chromatin structure determines double-nucleosome periodicity of DNA fragmentation. Mol Biol Rep. 8: 117-122. 55.Romanini, C., Catelli, M. L., Borosky, A., Pereira, R., Romero, M., Puerto, M. S., Phillips, C., Fondevila, M., Freire, A., Santos, C., Carracedo, A., Lareu, M. V., Gusmao, L. and Vullo, C. M. (2012). Typing short amplicon binary polymorphisms: supplementary SNP and Indel genetic information in the analysis of highly degraded skeletal remains. Forensic Sci Int Genet 6: 469-476. 56.Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. and Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73: 39-85. 57.Sanchez, J. J., Phillips, C., Borsting, C., Balogh, K., Bogus, M., Fondevila, M., Harrison, C. D., Musgrave-Brown, E., Salas, A., Syndercombe-Court, D., Schneider, P. M., Carracedo, A. and Morling, N. (2006). A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27: 1713-1724. 58.Schwark, T., Heinrich, A. and von Wurmb-Schwark, N. (2011). Genetic identification of highly putrefied bodies using DNA from soft tissues. Int J Legal Med 125: 891-894. 59.Sealy, L. and Chalkley, R. (1978). DNA associated with hyperacetylated histone is preferentially digested by DNase I. Nucleic Acids Research 5: 1863-1876. 60.Seo, S. B., King, J. L., Warshauer, D. H., Davis, C. P., Ge, J. and Budowle, B. (2013). Single nucleotide polymorphism typing with massively parallel sequencing for human identification. Int J Legal Med 127: 1079-1086. 61.SEQUENOM (2010). iPLEX MassARRAY Typer v4.0 Software User's Guide. 62.Shapiro, B. (2013). Ancient DNA. The Princeton Guide to Evolution. J. B. Losos, Princeton University Press. 63.Staiti, N., Di Martino, D. and Saravo, L. (2004). A novel approach in personal identification from tissue samples undergone different processes through STR typing. Forensic Sci Int 146 Suppl: S171-173. 64.SWGDAM (2010). SWGDAM validation study of the profiler plus kit for forensic casework analysis. 65.Takada, Y., Tokutomi, T., Kanetake, J. and Mukaida, M. (2009). Application of SNPs in forensic casework: identification of pathological and autoptical specimens due to sample mix-up. Leg Med (Tokyo) 11 Suppl 1: S196-197. 66.Teoule, R., Cadet, J., Bertinchamps, A. J., Hutterman, J., Kohnlein, W. and Teoule, R. (1978). Effects of Ionizing Radiation on DNA. Springer, Berlin: 171-203. 67.Tomas, C., Stangegaard, M., Borsting, C., Hansen, A. J., Morling, N. and Consortium, S. N. (2008). Typing of 48 autosomal SNPs and amelogenin with GenPlex SNP genotyping system in forensic genetics. Forensic Sci Int Genet 3: 1-6. 68.Tsokos, M., Lessig, R., Grundmann, C., Benthaus, S. and Peschel, O. (2006). Experiences in tsunami victim identification. Int J Legal Med 120: 185-187. 69.Utsuno, H. and Minaguchi, K. (2004). Influence of template DNA degradation on the genotyping of SNPs and STR polymorphisms from forensic materials by PCR. Bulletin of Tokyo Dental Collage 45: 33-46. 70.Westen, A. A. and Sijen, T. (2009). Degraded DNA sample analysis using DNA repair enzymes, mini-STRs and (tri-allelic) SNPs. Forensic Science International: Genetics Supplement Series 2: 505-507. 71.Yang, Y. and Hang, J. (2013). Fragmentation of genomic DNA using microwave irradiation. J Biomol Tech 24: 98-103. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18094 | - |
| dc.description.abstract | 在法醫學上進行人別鑑定之技術,目前是以PCR為基礎的短相連重複序列(STR)為主,但是STR對於分析腐敗DNA(degraded DNA)檢體的能力有限。而目前許多研究指出單核苷酸多型性(SNP)分析可以有效使用於腐敗DNA型別檢測,因此本研究目的主要是要設計一套適合應用於腐敗檢體的SNP分析套組
本研究收集16個台灣漢人血液檢體以及17個台灣漢人胎盤組織檢體(包括2個家族的3個3人親子組及1個2人親子組),萃取DNA後使用DNase I酵素法作用30及60分鐘,將DNA進行裂解以模擬法醫檢體腐敗DNA的片段長度(<100bp),使用即時定量聚合酶連鎖反應(qPCR)進行DNA定量,並以定量結果進行STR基因座分析,分析結果若STR圖形訊號由短片段至長片段逐漸遞減,甚至是長片段基因座消失,則確定其為裂解DNA檢體之STR圖形,且無法完整得知STR基因座之訊息。另以電泳生物分析(Bioanalyzer)來觀察裂解DNA片段分布,發現本研究所製作之裂解DNA片段分布在15bp以下,再把這些確定為裂解DNA之檢體,使用產物長度為60~100bp的145個體染色體SNP點位以基質輔助雷射脫附游離飛行時間質譜儀(MALDI–TOF)的方法進行SNP分析。 研究結果顯示此145個SNP點位在30分鐘及60分鐘之裂解DNA檢體平均成功率各為46%以及60%,其中51個點位在30分鐘及60分鐘裂解檢體之成功分析率達50%以上,可做裂解檢體之分析。145個SNP點位於研究族群中的哈溫平衡值皆無顯著差異,而鑑別力(power of discrimination)可達0.9999999999,累積三人排除率(CPEtrio)達0.9999999999,累積兩人排除率(CPEduo)則是達到0.999999。以研究族群中的家族實例計算,無法以STR分析之裂解檢體可以使用SNP分析進行親子鑑定。我們的結論是,本研究所使用的SNP系統能分析裂解DNA檢體的SNP型別及協助人別鑑定。 | zh_TW |
| dc.description.abstract | Forensic genetics has been currently using PCR based Short Tandem Repeat (STR) polymorphisms. However, STR can be non-informative when DNA samples are degraded. Recent advances in single nucleotide polymorphisms (SNPs) research have raised the possibility that the SNP markers could replace the STR in analyzing degraded DNA samples. The purpose of this study was to develope an effective SNPs panel to genotype degraded DNA samples.
We collected 16 blood samples and 17 pacenta samples of Han Taiwanese (including 2 families with 3 trio and 1 duo sets). DNA was extracted and degraded to <100bp by DNase I treatment. Then qPCR quantification and STR genotyping were performed. The STR typing of degraded DNA showed gradually degradation signal pattern from shorter size STR loci to longer size, eventhough disappeared. The DNA fragments distribution was analyzed using Bioanalyzer and the length of DNA fragments revealed below 15 bp. Finally, a panel including 145 autosomal SNP loci was used to analyze degraded DNA by matrix-assisted laser desorption/ionization time of flight mass spectrometer (MALDI-TOF MS). The target amplicons for each 145 SNPs arranged from 60 bp to 100 bp. Among the 145 SNP loci, 46% and 60% of genotypes could be successfully identified in 30 min and 60 min degeaded DNA samples. There were 51 SNP loci with detection rate above 50% for both 30min and 60min degraded samples. The total power of discrimination (Pd) was 0.9999999999, the cumulative probability of exclusion (CPEtrio) of trios-testing was 0.9999999999, and the cumulative probability of exclusion of duo-testing (CPEduo) was 0.999999. Compared to STR loci, these SNP loci offered a more informative analysis for degraded DNA in real parentage testing. In conclusion, this 145 SNP loci panel can be helpful in the analysis of degraded DNA and individual identification. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:50:58Z (GMT). No. of bitstreams: 1 ntu-104-R99452004-1.pdf: 2482864 bytes, checksum: 723e026d7d04523f7b594c31183048f9 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 國立臺灣大學碩士學位論文 口試委員會審定書 I
致謝 II 中文摘要 III Abstract V 第一章 序言 1 第二章 研究目的與文獻回顧 2 第一節 法醫學人別鑑定 2 一、 司法分子生物學簡介 2 二、 基因變異性以及重複序列DNA 2 三、 短相連重複序列 (Short tandem repeat, STR) 3 四、 單核苷酸多型性 (Single nucleotide polymorphism, SNP) 4 第二節 人體死亡後DNA的改變 5 一、 DNA之基本結構 5 二、 影響DNA裂解之因素 6 三、 古老DNA 7 第三節 裂解DNA (Degraded DNA) 8 一、 製作裂解DNA之方法 8 二、 法醫腐敗檢體之人別鑑定 12 第四節 研究目的 13 第三章 實驗材料與方法 14 第一節 實驗設計 14 一、 實驗設計流程 14 第二節 實驗材料 14 一、 周邊血液檢體 14 二、 胎盤組織檢體 15 第三節 實驗方法 15 一、 裂解DNA檢體製作 15 二、 裂解DNA基因分析 17 第四節 資料分析及統計 20 一、 短相連重複序列(STR)資料分析 20 二、 單核苷酸多型性序列(SNP)資料分析 21 三、 統計分析 22 第四章 實驗結果 23 第一節 DNA萃取以及定量結果 23 第二節 製作裂解DNA 23 第三節 DNA片段分佈分析結果 24 第四節 短相連重複序列(STR)基因分析 24 第五節 單核苷酸多型性基因(SNP)分析 27 第六節 親子鑑定實例分析比較 31 第五章 討論 33 第一節 DNA萃取以及定量結果 33 第二節 製作裂解DNA及其定量 35 第三節 DNA片段分析結果 35 第四節 短相連重複序列(STR)基因分析 36 第五節 單核苷酸多型性基因(SNP)分析 37 第六節 親子鑑定實例分析比較 41 第七節 研究限制討論 41 第六章 結論與展望 44 參考文獻 45 | |
| dc.language.iso | zh-TW | |
| dc.title | 以單核苷酸多型性之分析應用於裂解DNA人別鑑定之研究 | zh_TW |
| dc.title | Using Single Nucleotide Polymorphism for Individual Identification of Degraded Human DNA | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李俊億(Chun-I Lee),謝幸媚(Hsing-Mei Hsieh) | |
| dc.subject.keyword | 人別鑑定,法醫DNA型別鑑定,短相連重複序列,單核?酸多型性,裂解DNA, | zh_TW |
| dc.subject.keyword | Individual identification,forensic DNA typing,short tandem repeat,single nucleotide polymorphism,degraded DNA, | en |
| dc.relation.page | 105 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-07-01 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 法醫學研究所 | zh_TW |
| 顯示於系所單位: | 法醫學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
