Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18091
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余宏政(Hong-Jeng Yu),劉詩彬(Shih-Ping Liu),趙福杉(Fu-Shan Jaw)
dc.contributor.authorChen-Hsun Hoen
dc.contributor.author何承勳zh_TW
dc.date.accessioned2021-06-08T00:50:53Z-
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-07-02
dc.identifier.citation參考文獻
1 Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care 2012;35 Suppl 1:S64-71.
2 Garcia-Cruz E, Leibar-Tamayo A, Romero-Otero J, Asiain I, Carrion A, Castaneda R, Mateu L, Luque P, Cardenosa O, Alcaraz A. Marked Testosterone Deficiency-Related Symptoms May be Associated to Higher Metabolic Risk in Men with Low Testosterone Levels. J Sex Med 2014;11:2292-2301.
3 Martinez-Jabaloyas JM, group D-Ss. Testosterone deficiency in patients with erectile dysfunction: when should a higher cardiovascular risk be considered? J Sex Med 2014;11:2083-2091.
4 Corona G, Rastrelli G, Monami M, Guay A, Buvat J, Sforza A, Forti G, Mannucci E, Maggi M. Hypogonadism as a risk factor for cardiovascular mortality in men: a meta-analytic study. Eur J Endocrinol 2011;165:687-701.
5 Araujo AB, Dixon JM, Suarez EA, Murad MH, Guey LT, Wittert GA. Clinical review: Endogenous testosterone and mortality in men: a systematic review and meta-analysis. J Clin Endocrinol Metab 2011;96:3007-3019.
6 Ruige JB, Mahmoud AM, De Bacquer D, Kaufman JM. Endogenous testosterone and cardiovascular disease in healthy men: a meta-analysis. Heart 2011;97:870-875.
7 Kapoor D, Aldred H, Clark S, Channer KS, Jones TH. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care 2007;30:911-917.
8 Dhindsa S, Prabhakar S, Sethi M, Bandyopadhyay A, Chaudhuri A, Dandona P. Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. J Clin Endocrinol Metab 2004;89:5462-5468.
9 Grossmann M, Thomas MC, Panagiotopoulos S, Sharpe K, Macisaac RJ, Clarke S, Zajac JD, Jerums G. Low testosterone levels are common and associated with insulin resistance in men with diabetes. J Clin Endocrinol Metab 2008;93:1834-1840.
10 Haffner SM, Shaten J, Stern MP, Smith GD, Kuller L. Low levels of sex hormone-binding globulin and testosterone predict the development of non-insulin-dependent diabetes mellitus in men. MRFIT Research Group. Multiple Risk Factor Intervention Trial. Am J Epidemiol 1996;143:889-897.
11 Oh JY, Barrett-Connor E, Wedick NM, Wingard DL. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo study. Diabetes Care 2002;25:55-60.
12 Stellato RK, Feldman HA, Hamdy O, Horton ES, McKinlay JB. Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts male aging study. Diabetes Care 2000;23:490-494.
13 Lakshman KM, Bhasin S, Araujo AB. Sex hormone-binding globulin as an independent predictor of incident type 2 diabetes mellitus in men. J Gerontol A Biol Sci Med Sci 2010;65:503-509.
14 Kupelian V, Page ST, Araujo AB, Travison TG, Bremner WJ, McKinlay JB. Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men. J Clin Endocrinol Metab 2006;91:843-850.
15 Selvin E, Feinleib M, Zhang L, Rohrmann S, Rifai N, Nelson WG, Dobs A, Basaria S, Golden SH, Platz EA. Androgens and diabetes in men: results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 2007;30:234-238.
16 Alibhai SM, Duong-Hua M, Sutradhar R, Fleshner NE, Warde P, Cheung AM, Paszat LF. Impact of androgen deprivation therapy on cardiovascular disease and diabetes. J Clin Oncol 2009;27:3452-3458.
17 Faris JE, Smith MR. Metabolic sequelae associated with androgen deprivation therapy for prostate cancer. Curr Opin Endocrinol Diabetes Obes 2010;17:240-246.
18 Saylor PJ, Smith MR. Metabolic complications of androgen deprivation therapy for prostate cancer. J Urol 2013;189:S34-42; discussion S43-34.
19 Jones TH, Arver S, Behre HM, Buvat J, Meuleman E, Moncada I, Morales AM, Volterrani M, Yellowlees A, Howell JD, Channer KS, Investigators T. Testosterone replacement in hypogonadal men with type 2 diabetes and/or metabolic syndrome (the TIMES2 study). Diabetes Care 2011;34:828-837.
20 Cai X, Tian Y, Wu T, Cao CX, Li H, Wang KJ. Metabolic effects of testosterone replacement therapy on hypogonadal men with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Asian J Androl 2014;16:146-152.
21 Wang C, Jackson G, Jones TH, Matsumoto AM, Nehra A, Perelman MA, Swerdloff RS, Traish A, Zitzmann M, Cunningham G. Low testosterone associated with obesity and the metabolic syndrome contributes to sexual dysfunction and cardiovascular disease risk in men with type 2 diabetes. Diabetes Care 2011;34:1669-1675.
22 Grossmann M. Low testosterone in men with type 2 diabetes: significance and treatment. J Clin Endocrinol Metab 2011;96:2341-2353.
23 Rao PM, Kelly DM, Jones TH. Testosterone and insulin resistance in the metabolic syndrome and T2DM in men. Nat Rev Endocrinol 2013;9:479-493.
24 Zirkin BR, Chen H. Regulation of Leydig cell steroidogenic function during aging. Biol Reprod 2000;63:977-981.
25 Pitteloud N, Hardin M, Dwyer AA, Valassi E, Yialamas M, Elahi D, Hayes FJ. Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. J Clin Endocrinol Metab 2005;90:2636-2641.
26 Pitteloud N, Mootha VK, Dwyer AA, Hardin M, Lee H, Eriksson KF, Tripathy D, Yialamas M, Groop L, Elahi D, Hayes FJ. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 2005;28:1636-1642.
27 Ballester J, Munoz MC, Dominguez J, Rigau T, Guinovart JJ, Rodriguez-Gil JE. Insulin-dependent diabetes affects testicular function by FSH- and LH-linked mechanisms. J Androl 2004;25:706-719.
28 Oltmanns KM, Fruehwald-Schultes B, Kern W, Born J, Fehm HL, Peters A. Hypoglycemia, but not insulin, acutely decreases LH and T secretion in men. J Clin Endocrinol Metab 2001;86:4913-4919.
29 Haffner SM, Miettinen H, Karhapaa P, Mykkanen L, Laakso M. Leptin concentrations, sex hormones, and cortisol in nondiabetic men. J Clin Endocrinol Metab 1997;82:1807-1809.
30 Isidori AM, Caprio M, Strollo F, Moretti C, Frajese G, Isidori A, Fabbri A. Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J Clin Endocrinol Metab 1999;84:3673-3680.
31 Caprio M, Isidori AM, Carta AR, Moretti C, Dufau ML, Fabbri A. Expression of functional leptin receptors in rodent Leydig cells. Endocrinology 1999;140:4939-4947.
32 Hong CY, Park JH, Ahn RS, Im SY, Choi HS, Soh J, Mellon SH, Lee K. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol 2004;24:2593-2604.
33 Ding EL, Song Y, Malik VS, Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 2006;295:1288-1299.
34 Brand JS, Wareham NJ, Dowsett M, Folkerd E, van der Schouw YT, Luben RN, Khaw KT. Associations of endogenous testosterone and SHBG with glycated haemoglobin in middle-aged and older men. Clin Endocrinol (Oxf) 2011;74:572-578.
35 Laaksonen DE, Niskanen L, Punnonen K, Nyyssonen K, Tuomainen TP, Valkonen VP, Salonen R, Salonen JT. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care 2004;27:1036-1041.
36 Perry JR, Weedon MN, Langenberg C, Jackson AU, Lyssenko V, Sparso T, Thorleifsson G, Grallert H, Ferrucci L, Maggio M, Paolisso G, Walker M, Palmer CN, Payne F, Young E, Herder C, Narisu N, Morken MA, Bonnycastle LL, Owen KR, Shields B, Knight B, Bennett A, Groves CJ, Ruokonen A, Jarvelin MR, Pearson E, Pascoe L, Ferrannini E, Bornstein SR, Stringham HM, Scott LJ, Kuusisto J, Nilsson P, Neptin M, Gjesing AP, Pisinger C, Lauritzen T, Sandbaek A, Sampson M, Magic, Zeggini E, Lindgren CM, Steinthorsdottir V, Thorsteinsdottir U, Hansen T, Schwarz P, Illig T, Laakso M, Stefansson K, Morris AD, Groop L, Pedersen O, Boehnke M, Barroso I, Wareham NJ, Hattersley AT, McCarthy MI, Frayling TM. Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes. Hum Mol Genet 2010;19:535-544.
37 Ding EL, Song Y, Manson JE, Hunter DJ, Lee CC, Rifai N, Buring JE, Gaziano JM, Liu S. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N Engl J Med 2009;361:1152-1163.
38 Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet 2012;379:2279-2290.
39 Gerstein HC, Santaguida P, Raina P, Morrison KM, Balion C, Hunt D, Yazdi H, Booker L. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract 2007;78:305-312.
40 Bansal N. Prediabetes diagnosis and treatment: A review. World J Diabetes 2015;6:296-303.
41 Yeap BB, Chubb SA, Hyde Z, Jamrozik K, Hankey GJ, Flicker L, Norman PE. Lower serum testosterone is independently associated with insulin resistance in non-diabetic older men: the Health In Men Study. Eur J Endocrinol 2009;161:591-598.
42 Tsai EC, Matsumoto AM, Fujimoto WY, Boyko EJ. Association of bioavailable, free, and total testosterone with insulin resistance: influence of sex hormone-binding globulin and body fat. Diabetes Care 2004;27:861-868.
43 Simon D, Preziosi P, Barrett-Connor E, Roger M, Saint-Paul M, Nahoul K, Papoz L. Interrelation between plasma testosterone and plasma insulin in healthy adult men: the Telecom Study. Diabetologia 1992;35:173-177.
44 Corona G, Rastrelli G, Balercia G, Lotti F, Sforza A, Monami M, Forti G, Mannucci E, Maggi M. Hormonal association and sexual dysfunction in patients with impaired fasting glucose: a cross-sectional and longitudinal study. J Sex Med 2012;9:1669-1680.
45 Corona G, Giorda CB, Cucinotta D, Guida P, Nada E, group S-Ds. The SUBITO-DE study: sexual dysfunction in newly diagnosed type 2 diabetes male patients. J Endocrinol Invest 2013;36:864-868.
46 Corona G, Giorda CB, Cucinotta D, Guida P, Nada E, Gruppo di studio S-D. Sexual dysfunction at the onset of type 2 diabetes: the interplay of depression, hormonal and cardiovascular factors. J Sex Med 2014;11:2065-2073.
47 Liu RT, Chung MS, Wang PW, Chen CD, Lee JJ, Lee WC, Chancellor MB, Yang KD, Chuang YC. The prevalence and predictors of androgen deficiency in Taiwanese men with type 2 diabetes. Urology 2013;82:124-129.
48 Smith MR. Changes in fat and lean body mass during androgen-deprivation therapy for prostate cancer. Urology 2004;63:742-745.
49 Smith MR, Lee H, Nathan DM. Insulin sensitivity during combined androgen blockade for prostate cancer. J Clin Endocrinol Metab 2006;91:1305-1308.
50 Basaria S, Muller DC, Carducci MA, Egan J, Dobs AS. Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy. Cancer 2006;106:581-588.
51 Keating NL, O'Malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol 2006;24:4448-4456.
52 Christoffersen B, Raun K, Svendsen O, Fledelius C, Golozoubova V. Evalution of the castrated male Sprague-Dawley rat as a model of the metabolic syndrome and type 2 diabetes. Int J Obes (Lond) 2006;30:1288-1297.
53 Inoue T, Zakikhani M, David S, Algire C, Blouin MJ, Pollak M. Effects of castration on insulin levels and glucose tolerance in the mouse differ from those in man. Prostate 2010;70:1628-1635.
54 Xia F, Xu X, Zhai H, Meng Y, Zhang H, Du S, Xu H, Wu H, Lu Y. Castration-induced testosterone deficiency increases fasting glucose associated with hepatic and extra-hepatic insulin resistance in adult male rats. Reprod Biol Endocrinol 2013;11:106.
55 Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 1999;84:3666-3672.
56 Araujo AB, Esche GR, Kupelian V, O'Donnell AB, Travison TG, Williams RE, Clark RV, McKinlay JB. Prevalence of symptomatic androgen deficiency in men. J Clin Endocrinol Metab 2007;92:4241-4247.
57 Araujo AB, O'Donnell AB, Brambilla DJ, Simpson WB, Longcope C, Matsumoto AM, McKinlay JB. Prevalence and incidence of androgen deficiency in middle-aged and older men: estimates from the Massachusetts Male Aging Study. J Clin Endocrinol Metab 2004;89:5920-5926.
58 Mulligan T, Frick MF, Zuraw QC, Stemhagen A, McWhirter C. Prevalence of hypogonadism in males aged at least 45 years: the HIM study. Int J Clin Pract 2006;60:762-769.
59 Rosenstock J, Klaff LJ, Schwartz S, Northrup J, Holcombe JH, Wilhelm K, Trautmann M. Effects of exenatide and lifestyle modification on body weight and glucose tolerance in obese subjects with and without pre-diabetes. Diabetes Care 2010;33:1173-1175.
60 Onat A, Can G, Cicek G, Ayhan E, Dogan Y, Kaya H. Fasting, non-fasting glucose and HDL dysfunction in risk of pre-diabetes, diabetes, and coronary disease in non-diabetic adults. Acta Diabetol 2011;
61 Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006;29:1130-1139.
62 Montanya E, Tellez N. Pancreatic remodeling: beta-cell apoptosis, proliferation and neogenesis, and the measurement of beta-cell mass and of individual beta-cell size. Methods Mol Biol 2009;560:137-158.
63 Goodman-Gruen D, Barrett-Connor E. Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care 2000;23:912-918.
64 Tabak AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimaki M, Witte DR. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 2009;373:2215-2221.
65 Bergman M. Pathophysiology of prediabetes and treatment implications for the prevention of type 2 diabetes mellitus. Endocrine 2012;
66 Meyer C, Pimenta W, Woerle HJ, Van Haeften T, Szoke E, Mitrakou A, Gerich J. Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care 2006;29:1909-1914.
67 Basu R, Barosa C, Jones J, Dube S, Carter R, Basu A, Rizza RA. Pathogenesis of Prediabetes: Role of the Liver in Isolated Fasting Hyperglycemia and Combined Fasting and Postprandial Hyperglycemia. J Clin Endocrinol Metab 2013;
68 Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U, Schmechel H, Ziegelasch HJ, Lindner J. Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up. Diabetologia 1996;39:1577-1583.
69 Cavalot F, Pagliarino A, Valle M, Di Martino L, Bonomo K, Massucco P, Anfossi G, Trovati M. Postprandial blood glucose predicts cardiovascular events and all-cause mortality in type 2 diabetes in a 14-year follow-up: lessons from the San Luigi Gonzaga Diabetes Study. Diabetes Care 2011;34:2237-2243.
70 Barr RG, Nathan DM, Meigs JB, Singer DE. Tests of glycemia for the diagnosis of type 2 diabetes mellitus. Ann Intern Med 2002;137:263-272.
71 Avogaro A. Postprandial glucose: marker or risk factor? Diabetes Care 2011;34:2333-2335.
72 Cichosz SL, Fleischer J, Hoeyem P, Laugesen E, Poulsen PL, Christiansen JS, Ejskjaer N, Hansen TK. Assessment of postprandial glucose excursions throughout the day in newly diagnosed type 2 diabetes. Diabetes Technol Ther 2013;15:78-83.
73 Fritz KS, McKean AJ, Nelson JC, Wilcox RB. Analog-based free testosterone test results linked to total testosterone concentrations, not free testosterone concentrations. Clin Chem 2008;54:512-516.
74 Winters SJ, Kelley DE, Goodpaster B. The analog free testosterone assay: are the results in men clinically useful? Clin Chem 1998;44:2178-2182.
75 Morales A, Collier CP, Clark AF. A critical appraisal of accuracy and cost of laboratory methodologies for the diagnosis of hypogonadism: the role of free testosterone assays. Can J Urol 2012;19:6314-6318.
76 Sodergard R, Backstrom T, Shanbhag V, Carstensen H. Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J Steroid Biochem 1982;16:801-810.
77 Laaksonen DE, Niskanen L, Punnonen K, Nyyssonen K, Tuomainen TP, Valkonen VP, Salonen JT. The metabolic syndrome and smoking in relation to hypogonadism in middle-aged men: a prospective cohort study. J Clin Endocrinol Metab 2005;90:712-719.
78 Vikan T, Schirmer H, Njolstad I, Svartberg J. Low testosterone and sex hormone-binding globulin levels and high estradiol levels are independent predictors of type 2 diabetes in men. Eur J Endocrinol 2010;162:747-754.
79 Kapoor D, Goodwin E, Channer KS, Jones TH. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol 2006;154:899-906.
80 Kalinchenko SY, Tishova YA, Mskhalaya GJ, Gooren LJ, Giltay EJ, Saad F. Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study. Clin Endocrinol (Oxf) 2010;73:602-612.
81 Heufelder AE, Saad F, Bunck MC, Gooren L. Fifty-two-week treatment with diet and exercise plus transdermal testosterone reverses the metabolic syndrome and improves glycemic control in men with newly diagnosed type 2 diabetes and subnormal plasma testosterone. J Androl 2009;30:726-733.
82 Barr EL, Zimmet PZ, Welborn TA, Jolley D, Magliano DJ, Dunstan DW, Cameron AJ, Dwyer T, Taylor HR, Tonkin AM, Wong TY, McNeil J, Shaw JE. Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation 2007;116:151-157.
83 Laughlin GA, Barrett-Connor E, Bergstrom J. Low serum testosterone and mortality in older men. J Clin Endocrinol Metab 2008;93:68-75.
84 Bhasin S, Cunningham GR, Hayes FJ, Matsumoto AM, Snyder PJ, Swerdloff RS, Montori VM, Task Force ES. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2010;95:2536-2559.
85 Allan CA. Sex steroids and glucose metabolism. Asian J Androl 2014;16:232-238.
86 Traish AM, Saad F, Guay A. The dark side of testosterone deficiency: II. Type 2 diabetes and insulin resistance. J Androl 2009;30:23-32.
87 Corona G, Rastrelli G, Maggi M. Diagnosis and treatment of late-onset hypogonadism: systematic review and meta-analysis of TRT outcomes. Best Pract Res Clin Endocrinol Metab 2013;27:557-579.
88 Travison TG, Araujo AB, Kupelian V, O'Donnell AB, McKinlay JB. The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men. J Clin Endocrinol Metab 2007;92:549-555.
89 Wu FC, Tajar A, Pye SR, Silman AJ, Finn JD, O'Neill TW, Bartfai G, Casanueva F, Forti G, Giwercman A, Huhtaniemi IT, Kula K, Punab M, Boonen S, Vanderschueren D, European Male Aging Study G. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J Clin Endocrinol Metab 2008;93:2737-2745.
90 Kapoor D, Channer KS, Jones TH. Rosiglitazone increases bioactive testosterone and reduces waist circumference in hypogonadal men with type 2 diabetes. Diab Vasc Dis Res 2008;5:135-137.
91 Xu H, Jiang HW, Ding GX, Zhang H, Zhang LM, Mao SH, Ding Q. Diabetes mellitus and prostate cancer risk of different grade or stage: a systematic review and meta-analysis. Diabetes Res Clin Pract 2013;99:241-249.
92 Gacci M, Vignozzi L, Sebastianelli A, Salvi M, Giannessi C, De Nunzio C, Tubaro A, Corona G, Rastrelli G, Santi R, Nesi G, Serni S, Carini M, Maggi M. Metabolic syndrome and lower urinary tract symptoms: the role of inflammation. Prostate Cancer Prostatic Dis 2013;16:101-106.
93 Gacci M, Corona G, Vignozzi L, Salvi M, Serni S, De Nunzio C, Tubaro A, Oelke M, Carini M, Maggi M. Metabolic syndrome and benign prostatic enlargement: a systematic review and meta-analysis. BJU Int 2014;
94 Corona G, Boddi V, Lotti F, Gacci M, Carini M, De Vita G, Sforza A, Forti G, Mannucci E, Maggi M. The relationship of testosterone to prostate-specific antigen in men with sexual dysfunction. J Sex Med 2010;7:284-292.
95 Cooper CS, Perry PJ, Sparks AE, MacIndoe JH, Yates WR, Williams RD. Effect of exogenous testosterone on prostate volume, serum and semen prostate specific antigen levels in healthy young men. J Urol 1998;159:441-443.
96 Monath JR, McCullough DL, Hart LJ, Jarow JP. Physiologic variations of serum testosterone within the normal range do not affect serum prostate-specific antigen. Urology 1995;46:58-61.
97 Dhindsa S, Upadhyay M, Viswanathan P, Howard S, Chaudhuri A, Dandona P. Relationship of prostate-specific antigen to age and testosterone in men with type 2 diabetes mellitus. Endocr Pract 2008;14:1000-1005.
98 Rastrelli G, Corona G, Vignozzi L, Maseroli E, Silverii A, Monami M, Mannucci E, Forti G, Maggi M. Serum PSA as a predictor of testosterone deficiency. J Sex Med 2013;10:2518-2528.
99 Oskui PM, French WJ, Herring MJ, Mayeda GS, Burstein S, Kloner RA. Testosterone and the cardiovascular system: a comprehensive review of the clinical literature. J Am Heart Assoc 2013;2:e000272.
100 Bhatia V, Chaudhuri A, Tomar R, Dhindsa S, Ghanim H, Dandona P. Low testosterone and high C-reactive protein concentrations predict low hematocrit in type 2 diabetes. Diabetes Care 2006;29:2289-2294.
101 Maggio M, Basaria S, Ble A, Lauretani F, Bandinelli S, Ceda GP, Valenti G, Ling SM, Ferrucci L. Correlation between testosterone and the inflammatory marker soluble interleukin-6 receptor in older men. J Clin Endocrinol Metab 2006;91:345-347.
102 Muraleedharan V, Marsh H, Kapoor D, Channer KS, Jones TH. Testosterone deficiency is associated with increased risk of mortality and testosterone replacement improves survival in men with type 2 diabetes. Eur J Endocrinol 2013;169:725-733.
103 Vigen R, O'Donnell CI, Baron AE, Grunwald GK, Maddox TM, Bradley SM, Barqawi A, Woning G, Wierman ME, Plomondon ME, Rumsfeld JS, Ho PM. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA 2013;310:1829-1836.
104 Basaria S, Davda MN, Travison TG, Ulloor J, Singh R, Bhasin S. Risk factors associated with cardiovascular events during testosterone administration in older men with mobility limitation. J Gerontol A Biol Sci Med Sci 2013;68:153-160.
105 Morimoto S, Fernandez-Mejia C, Romero-Navarro G, Morales-Peza N, Diaz-Sanchez V. Testosterone effect on insulin content, messenger ribonucleic acid levels, promoter activity, and secretion in the rat. Endocrinology 2001;142:1442-1447.
106 Grillo ML, Jacobus AP, Scalco R, Amaral F, Rodrigues DO, Loss ES, Wassermann GF. Testosterone rapidly stimulates insulin release from isolated pancreatic islets through a non-genomic dependent mechanism. Horm Metab Res 2005;37:662-665.
107 Muthusamy T, Murugesan P, Balasubramanian K. Sex steroids deficiency impairs glucose transporter 4 expression and its translocation through defective Akt phosphorylation in target tissues of adult male rat. Metabolism 2009;58:1581-1592.
108 Muthusamy T, Dhevika S, Murugesan P, Balasubramanian K. Testosterone deficiency impairs glucose oxidation through defective insulin and its receptor gene expression in target tissues of adult male rats. Life Sci 2007;81:534-542.
109 Rana K, Davey RA, Zajac JD. Human androgen deficiency: insights gained from androgen receptor knockout mouse models. Asian J Androl 2014;16:169-177.
110 Sato T, Matsumoto T, Kawano H, Watanabe T, Uematsu Y, Sekine K, Fukuda T, Aihara K, Krust A, Yamada T, Nakamichi Y, Yamamoto Y, Nakamura T, Yoshimura K, Yoshizawa T, Metzger D, Chambon P, Kato S. Brain masculinization requires androgen receptor function. Proc Natl Acad Sci U S A 2004;101:1673-1678.
111 Holdcraft RW, Braun RE. Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 2004;131:459-467.
112 Yeh S, Tsai MY, Xu Q, Mu XM, Lardy H, Huang KE, Lin H, Yeh SD, Altuwaijri S, Zhou X, Xing L, Boyce BF, Hung MC, Zhang S, Gan L, Chang C. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci U S A 2002;99:13498-13503.
113 De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, Devos A, Tan K, Atanassova N, Claessens F, Lecureuil C, Heyns W, Carmeliet P, Guillou F, Sharpe RM, Verhoeven G. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci U S A 2004;101:1327-1332.
114 Notini AJ, Davey RA, McManus JF, Bate KL, Zajac JD. Genomic actions of the androgen receptor are required for normal male sexual differentiation in a mouse model. J Mol Endocrinol 2005;35:547-555.
115 MacLean HE, Chiu WS, Ma C, McManus JF, Davey RA, Cameron R, Notini AJ, Zajac JD. A floxed allele of the androgen receptor gene causes hyperandrogenization in male mice. Physiol Genomics 2008;33:133-137.
116 Rana K, Fam BC, Clarke MV, Pang TP, Zajac JD, MacLean HE. Increased adiposity in DNA binding-dependent androgen receptor knockout male mice associated with decreased voluntary activity and not insulin resistance. Am J Physiol Endocrinol Metab 2011;301:E767-778.
117 Lin HY, Xu Q, Yeh S, Wang RS, Sparks JD, Chang C. Insulin and leptin resistance with hyperleptinemia in mice lacking androgen receptor. Diabetes 2005;54:1717-1725.
118 Fan W, Yanase T, Nomura M, Okabe T, Goto K, Sato T, Kawano H, Kato S, Nawata H. Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes 2005;54:1000-1008.
119 Yu IC, Lin HY, Liu NC, Wang RS, Sparks JD, Yeh S, Chang C. Hyperleptinemia without obesity in male mice lacking androgen receptor in adipose tissue. Endocrinology 2008;149:2361-2368.
120 McInnes KJ, Smith LB, Hunger NI, Saunders PT, Andrew R, Walker BR. Deletion of the androgen receptor in adipose tissue in male mice elevates retinol binding protein 4 and reveals independent effects on visceral fat mass and on glucose homeostasis. Diabetes 2012;61:1072-1081.
121 Yu IC, Lin HY, Liu NC, Sparks JD, Yeh S, Fang LY, Chen L, Chang C. Neuronal androgen receptor regulates insulin sensitivity via suppression of hypothalamic NF-kappaB-mediated PTP1B expression. Diabetes 2013;62:411-423.
122 Le May C, Chu K, Hu M, Ortega CS, Simpson ER, Korach KS, Tsai MJ, Mauvais-Jarvis F. Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A 2006;103:9232-9237.
123 Tiano JP, Delghingaro-Augusto V, Le May C, Liu S, Kaw MK, Khuder SS, Latour MG, Bhatt SA, Korach KS, Najjar SM, Prentki M, Mauvais-Jarvis F. Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents beta cell failure in rodent models of type 2 diabetes. J Clin Invest 2011;121:3331-3342.
124 Tiano JP, Mauvais-Jarvis F. Molecular mechanisms of estrogen receptors' suppression of lipogenesis in pancreatic beta-cells. Endocrinology 2012;153:2997-3005.
125 Phillips GB. Evidence for hyperestrogenemia as the link between diabetes mellitus and myocardial infarction. Am J Med 1984;76:1041-1048.
126 Small M, MacRury S, Beastall GH, MacCuish AC. Oestradiol levels in diabetic men with and without a previous myocardial infarction. Q J Med 1987;64:617-623.
127 Abate N, Haffner SM, Garg A, Peshock RM, Grundy SM. Sex steroid hormones, upper body obesity, and insulin resistance. J Clin Endocrinol Metab 2002;87:4522-4527.
128 Chearskul S, Charoenlarp K, Thongtang V, Nitiyanant W. Study of plasma hormones and lipids in healthy elderly Thais compared to patients with chronic diseases: diabetes mellitus, essential hypertension and coronary heart disease. J Med Assoc Thai 2000;83:266-277.
129 Yeap BB, Knuiman MW, Divitini ML, Handelsman DJ, Beilby JP, Beilin J, McQuillan B, Hung J. Differential associations of testosterone, dihydrotestosterone and oestradiol with physical, metabolic and health-related factors in community-dwelling men aged 17-97 years from the Busselton Health Survey. Clin Endocrinol (Oxf) 2014;81:100-108.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18091-
dc.description.abstract背景
許多研究已經證實男性睪固酮缺乏與第二型糖尿病之間有密切的關係。臨床上可以觀察到兩者常有共病的關係,例如睪固酮低下或攝護腺癌患者接受雄激素剝奪治療。睪固酮缺乏與第二型糖尿病都對男性的健康有顯著的負面影響:它們都會造成勃起功能障礙,也都被證明是心血管疾病和死亡的獨立危險因子。然而目前對於他們共病的機轉仍然沒有完全了解。目前的證據顯示,兩者可能互為因果,或者一些其他的因素,例如肥胖或性激素結合球蛋白,也能在兩者的關係中扮演重要的角色。
過去相關的臨床研究,主要研究的對象是已經診斷為第二型糖尿病的患者,其中大部分正在接受糖尿病的治療。糖尿病前期是一種血清葡萄糖濃度已經上升,卻未達到糖尿病的診斷標準的狀態。在許多研究中,它已被認為是心血管疾病和腎臟疾病的風險因子,這讓我們也想研究糖尿病前期的男性是否也有較高的睪固酮低下的風險,釐清這個問題有助於了解:(一)澄清睪固酮缺乏在第二型糖尿病的發展中的角色; (二)辨識適合睪固酮替代療法的潛在對象,並進行下研究針對這些患者給予睪固酮補充是否可以減少其演進至第二型糖尿病的機會,或預防心血管疾病。
另一方面,文獻上極少討論治療第二型糖尿病是否可逆轉睪固酮缺乏的狀況。根據統計,約有四分之一的糖尿病患者是屬於未診斷與未治療的,這個族群的血清睪固酮濃度很少被報導過,研究這群病人的血清睪固酮濃度有助於進一步闡明睪固酮缺乏與胰島素抵抗之間的因果關係。
最後,用於研究睪固酮缺乏與葡萄糖耐受不良之間的關係的動物模型尚未被建立。雖然大鼠或小鼠是最廣泛被應用於各個醫學研究領域的動物模型,但是以往關於睪固酮缺乏之大小鼠的代謝特徵的研究結果是相互矛盾的。因此,我們的研究也評估閹割雄性大鼠是否適合作為研究睪固酮缺乏與葡萄糖耐受不良和代謝症候群相關研究的動物模型。
研究方法
臨床研究:不同階段第二型糖尿病男性患者睪固酮缺乏的盛行率及危險因子

這是一個橫斷面的研究。我們從臺灣大學附設醫院健康管理中心的資料庫收集資料,收集1,306位於2009年接受性激素檢測的男性。所有研究對象均完成一份自填的問卷,用來收集他們的基本資料和病史,所有研究對象均經內科醫師看診,且做一次詳細的身體檢查。每個研究對象均接受兩次血液採集:第一個樣本是禁食一夜後在早上8點和10點之間收集,用來測定空腹血糖、男性賀爾蒙和其他血清生化資料;第二個樣本是收集午餐後兩小時的血液,用來測量的餐後血糖值。總睪固酮與性激素結合球蛋白的濃度由化學發光微粒子免疫分析進行測定,並利用Vermeulen公式計算出游離睪固酮。總睪固酮低下的定義為總睪固酮水準小於300毫微克/分升,和游離睪固酮低下的定義為小於6毫微克/分升。糖尿病的標準為:(一)病人有之前已診斷出糖尿病(已知糖尿病患者),或(二)血糖變數達到糖尿病標準(新診斷糖尿病患者):空腹血糖大於等於126毫克/分升,餐後2小時的血糖大於等於200毫克/分升,或糖化血紅蛋白大於等於6.5% (Association 2012)。糖尿病前期的診斷標準需滿足以下條件:(一)空腹血糖100-125毫克/分升,(二)餐後2小時的血糖140-199毫克/分升,或(三)糖化血紅蛋白5.7% - 6.4%。藉由上述資料,我們將所有1,306按血糖及過去疾病史將其分類為正常血糖耐受性、糖尿病前期、新診斷糖尿病、已知糖尿病等各組,我們比較各組的血清睪固酮濃度及睪固酮低下之盛行率,並使用邏輯回歸分析,校正年齡、身高體重指數、腰圍、代謝症候群等可能的干擾因子。
基礎研究:評估去勢大鼠是否可以用於睪固酮缺乏與葡萄糖耐受不良相關的研究
本實驗採用成年雄性Sprague Dawley(SD)大鼠(週齡10-12週;體重300到350公克)。將大鼠隨機分組(每組約6-8隻):假手術對照組、去勢組、去勢後注射低劑量睪固酮組 (每週注射丙酸睪固酮,每公斤0.5毫克)、中劑量組 (每週注射,每公斤2毫克)和高劑量組 (每週注射,每公斤8毫克)。所有的大鼠餵食標準飲食。每隻大鼠的葡萄糖耐受性試驗共進行兩次,分別在第8週和16週。首先大鼠隔夜禁食16個小時,試驗從上午8時開始葡萄糖耐受性試驗,在時間0分鐘以及在15,30,60,90,和120分鐘分別採血進行測量。繪製每個時間點的血糖濃度圖,以及計算各組大鼠血糖濃度曲線下的面積(AUC)。另外在0和15分鐘採集兩個血液樣本,作為空腹和葡萄糖誘導之後的胰島素濃度分析。大鼠在第16週做完腹腔葡萄糖耐受性試驗後立即犧牲,切除胰臟和部分的內臟脂肪,將胰臟附近的脂肪去除後秤重,將胰臟進一步分為三個部分:頭段、中段、尾段。所有的組織(胰腺和內臟脂肪)進行石蠟包埋,且切下5 µm厚的切片用蘇木精和伊紅染色。部分的胰臟利用胰島素的抗體去染β細胞,這些切片用來進行脂肪細胞的尺寸的測量、胰臟形態檢查、β-測量細胞量。
結果
臨床研究:不同階段第二型糖尿病男性患者睪固酮缺乏的盛行率及危險因子
1306位的男性受試者中,有577(44.1%)位是血糖正常、543(41.5%)位是糖尿病前期、186(14.4%)位是糖尿病。糖尿病前期的男性,在調整年齡後總睪固酮低下的勝算比為1.87(95%信賴區間[CI]:1.38-2.54),而糖尿病患者的勝算比為2.38(95%信賴區間:1.57-3.60)。糖尿病前期之男性的勝算比,在進一步校正身體質量指數、腰圍、代謝症候群組成的因子和代謝症候群的多變數分析下仍然顯著,在調整代謝症候群之後,其總睪固酮低下的勝算比為1.49(95%信賴區間:1.08-2.06),幾乎等於糖尿病患者的勝算比1.50。
 在診斷為糖尿病的186位患者中,有81位為新診斷的糖尿病患者,105位為已知糖尿病患者。已知糖尿病患者的年齡較大,有較高的舒張壓和更高的空腹血糖濃度。兩組的總睪固酮的中間值為(358 [ 155 ] ng/dl vs 363 [ 154 ] ng/dl,P = 0.68),游離睪固酮的中間值為(7.2 [ 2.5 ] ng/dl vs 7.4 [ 2.4 ] ng/dl,P = 0.84),性激素結合球蛋白的中間值為(27.3 [ 22.3 ] nmol�L和28.7 [ 14.9 ] nmol�L,P = 0.46),兩組間沒有顯著的差異。在新診斷和已知第2型糖尿病組,其總睪固酮低下的患病率分別為28.4%和26.7%,游離睪固酮低下的患病率分別為21%和19%。新診斷和已知的第2型糖尿病總睪固酮低下的危險因子類似,包括糖化血紅蛋白≥7%、性激素結合球蛋白<20 nmol / L、BMI≥27公斤/米2、腰圍≥90釐米、三酸甘油酯≥150毫克/分升、尿酸≥7毫克/分升,與代謝症候群。相較於PSA小於1毫微克/毫升,PSA≥2.5毫微克/毫升為保護因子。
基礎研究:評估去勢大鼠是否可以用於睪固酮缺乏與葡萄糖耐受不良相關的研究
睪丸切除術導致血清中睪固酮幾乎消失,大鼠在去勢兩周後,血清睪固酮都低於10毫微克/分升,與假手術對照組相比,低或高劑量睪固酮的補充組,在第8和16週,其大鼠有顯著較低或高睪固酮濃度。初始體重各組之間是相似的,但之後去勢大鼠相較於假手術對照組相比,體重明顯變輕。對去勢大鼠補充睪固酮後體重增加,超過去勢大鼠,但低於假手術對照組。去勢大鼠和補充睪固酮組的脂肪細胞大小顯著低於假手術對照組。第8周時,葡萄糖耐受性試驗的各組血糖曲線下面積表現無顯著差異。到第16周,去勢大鼠的血糖曲線下面積比較發現,去勢及去勢後補充低劑量睪固酮組的血糖曲線下面積顯著大於假手術對照組及補充中或高劑量的睪固酮組。在第8週與16週,無論是空腹或葡萄糖誘導的胰島素濃度皆與血清裡的睪固酮的趨勢相關,去勢大鼠比起假手術對照組有顯著較低的空腹和葡萄糖誘導的胰島素水準。無論是假手術對照組,去勢睪固酮或補充睪固酮狀態,皆不影響胰腺形態。
結論
糖尿病前期會增加其總睪固酮低下的風險。此風險在調整身體質量指數後、腰圍、代謝症候群的組成因子或代謝症候群後仍然顯著。調整代謝症候群後,糖尿病前期的男性族群,其總睪固酮低下的風險與糖尿病患者的風險幾乎相等,我們的研究顯示,糖尿病前期的男性也應要有常規的睪固酮檢測。新診斷第二型糖尿病的男性患者,其血清睪固酮濃度與睪固酮低下的盛行率,與已知第二型糖尿病的患者相似。在已診斷糖尿病的患者,糖化血色素與血清睪固酮呈現負相關。新診斷和已知第二型糖尿病男性患者總睪固酮低下之危險因子包括較高的糖化血色素、較低的性激素結合球蛋白、肥胖、高尿酸血症、高血糖症與代謝症候群;另外,上升的攝護腺特異抗原會降低睪固酮缺乏的風險。
基礎研究方面,我們的研究顯示,在經過十六週由去勢所引發睪固酮缺乏的狀態下,雄性大鼠的體重會降低,會有空腹血糖異常與葡萄糖耐受不良的情況,這些血糖的變化起因於胰島素分泌減少所導致。反觀人類男性在缺乏雄激素的影響下,會導致肥胖,且因為胰島素敏感性降低而導致葡萄糖耐受性不良。當雄性大鼠被應用於睪固酮和代謝之間的研究時,應該將這些物種間的生理差異列入考慮。
zh_TW
dc.description.abstractBackground
The relationship between testosterone deficiency and type 2 diabetes mellitus has been well established in men. The connection is frequently observed in various clinical scenarios, such as late-onset hypogonadism and prostate cancer patients receiving androgen deprivation therapy. Both conditions have a significant negative impact on men’s health: they both cause lower urinary tract symptoms and erectile dysfunction; moreover, both of them are proved as an independent risk factor for cardiovascular disease and mortality. Nevertheless, the underlying mechanism of their coexistence remains not fully understood. Current evidence supports that testosterone deficiency can be either a cause or a consequence of insulin resistance. Besides, some other factors, such as obesity or sex hormone binding globulin, can also play a role within this relationship.
Previous related clinical studies were mainly based on subjects with overt type 2 diabetes, most of whom were receiving anti-diabetes treatment. Prediabetes is a state of increased serum glucose concentration, while it does not reach the criteria of overt diabetes mellitus. In many studies, it has been considered as a risk factor for cardiovascular disease and nephropathy. It raised the question of whether it is also associated testosterone deficiency. The purpose of defining the serum testosterone concentration of prediabetic subjects includes: 1) to clarify the role of testosterone deficiency in the development of type 2 diabetes; 2) to identify the potential subjects for testosterone replacement therapy.
On the other hand, it has been less addressed whether the treatment of type 2 diabetes can reverse the condition of testosterone deficiency. And the epidemiologic characteristics of untreated, newly-diagnosed type 2 diabetic men has been rarely addressed. To investigate the serum testosterone concentration of the untreated, newly-diagnosed type 2 diabetic men may help to further clarify whether testosterone deficiency is a cause or a consequence of insulin resistance.
Lastly, the optimal animal model for the study of the relationship between testosterone deficiency and glucose intolerance has not yet been established. While rats or mice are most widely used animal model in every field of medical research, previous studies evaluating the metabolic characteristics of rats or mice of testosterone deficiency were conflicting. We therefore aimed to evaluate the suitability of castrated male rats as an animal model for the related studies regarding testosterone deficiency, glucose intolerance, and metabolic syndrome.
Method
Clinical Studies: The prevalence and risk factors of testosterone deficiency in men at different stages of type 2 diabetes
This is a cross-sectional study. We obtained the data from the database of Health Management Center, National Taiwan University Hospital. In 2009, a total of 1,306 men receiving sex hormone measurement as part of their medical examination constituted the study subjects of the current study. The study protocol was approved by the institutional review board (IRB) of National Taiwan University Hospital (201207058RIC). All participants completed a self-administered questionnaire to collect their basic demographic data and medical histories. All subjects were then interviewed by an internal medicine physician, and a detailed physical examination was performed. Two blood samples were collected from each subject: the first sample was collected after an overnight fast between 8 am and 10 am, and was used to measure fasting blood glucose, sex hormones, and other biochemical data; the second blood sample was collected two hours after a standard lunch and was used to measure the postprandial glucose. Total testosterone and SHBG were measured by chemiluminescent microparticle immunoassay. Free testosterone was calculated by the formula proposed by Vermeulen. Low total testosterone was defined by total testosterone <300 ng/dL [16-18], and low free testosterone was defined by free testosterone <6 ng/dL. Prediabetes was diagnosed if any of the following criteria was met: 1) fasting glucose 100-125 mg/dL (IFG), 2) two-hour postprandial glucose 140-199 mg/dL (IPG), or 3) HbA1c 5.7%-6.4%. Diabetes was diagnosed if the patient had a prior history of diabetes or if the glycemic variables reached the criteria of diabetes: fasting glucose ≥126 mg/dL, two-hour postprandial glucose ≥200 mg/dL, or HbA1c ≥6.5%. Continuous data are presented as the mean ± standard deviation (SD), and categorical data are presented as count and percentage (%).Logistic regression was performed to obtain the odds ratios for TD in men with prediabetes and diabetes compared with those with normoglycemia. Five statistical models were used for multivariate analyses: Model 1, adjusted for age; Model 2, adjusted for age and body mass index (BMI); Model 3, adjusted for age and waist circumference; Model 4, adjusted for age and the number of MetS components; Model 5, adjusted for age and MetS. Multiple linear regression was performed to assess the association between total and free testosterone and prediabetes or diabetes.
Basic Studies: Evaluating castrated male rats as an animal model of glucose intolerance
Male Sprague-Dawley rats (10-12 weeks) were randomly divided into five groups (n=6-8 in each): sham-operated, castrated, and castrated with low- (intramuscular injection of testosterone propionate 0.5 mg/kg/week), intermediate- (2 mg/kg/week), and high-dose (8 mg/kg/week) of testosterone replacement. Each animal received intraperitoneal glucose tolerance test (IPGTT) twice on week 8 and 16 respectively; the area under the curve (AUC) of glucose concentrations were calculated to represent the glucose tolerance. Fasting and glucose-induced insulin concentrations were measured at 0 and 15 minutes during IPGTT respectively. After the rats were euthanized on week 16, visceral fat and pancreas were prepared for morphologic measurements.
Results
Clinical Studies: The prevalence and risk factors of testosterone deficiency in men at different stages of type 2 diabetes
Normoglycemia, prediabetes, and diabetes were diagnosed in 577 (44.2%), 543 (41.6%), and 186 (14.2%) men, respectively. Prediabetes was associated with an increased risk of subnormal total testosterone compared to normoglycemic individuals (age-adjusted OR=1.87; 95%CI=1.38-2.54). The risk remained significant in all multivariate analyses. After adjusting for MetS, the OR in prediabetic men equals that of diabetic patients (1.49 versus 1.50). IFG, IPG, and HbA1c 5.7%-6.4% were all associated with an increased risk of testosterone deficiency, with different levels of significance in multivariate analyses. However, neither prediabetes nor diabetes was associated with subnormal free testosterone in multivariate analyses. Men with previously known T2DM were older and had higher diastolic pressure and greater fasting glucose. There was no significant difference in total (358.0 [155.0] ng/dL vs 363.0 [154.0] ng/dL, P=0.68) and free (7.2 [2.5] ng/dL vs 7.4[2.4] ng/dL, P=0.84) testosterone and SHBG (27.3 [22.3] nmol/L vs 28.7 [14.9] nmol/L, P=0.46). The prevalence of low total and free testosterone were 28.4% and 21.0% in men with newly diagnosed T2DM, and were 26.7% and 19.0% in those with previously known T2DM. In men with previously known T2DM, better glycemic control (HbA1c<7%) was associated with a higher level of total testosterone and a lower risk of low total testosterone. Men with newly diagnosed and previously known T2DM shared similar risk factors of low total testosterone, including high HbA1c (≥7%), low SHBG (<20 nmol/L), obesity, hyperuricemia, hypertriglycemia, and metabolic syndrome. Elevated prostate-specific antigen (PSA) was a protective factor of low total testosterone. However, none of these factors was associated with low free testosterone.
Basic Studies: Evaluating castrated male rats as an animal model of glucose intolerance
Castration decreased the body weight and the adipocyte size, which were restored by testosterone replacement. Compared to controls, the castrated rats had a significantly greater AUC glucose and lower fasting and glucose-induced insulin concentrations on week 16. Testosterone replacement generally restored the insulin secretion and glucose tolerance in a dose-dependent fashion. The pancreatic islet morphology and the β-cell mass were not significantly different among groups.
Conclusion
Men with prediabetes are at an increased risk of subnormal total testosterone. The risk is reduced, but remains significant after adjustment for BMI, waist circumference, the number of MetS components, or MetS. After adjustment for MetS, the risk for TD in men with prediabetes is almost equal to that of men with diabetes. The substantially increased risk suggests that testosterone should be measured routinely in men with prediabetes. The prevalence and the risk factors of testosterone deficiency are similar between the newly diagnosed and previously known type 2 diabetic men. In men with previously known T2DM, the HbA1c is inversely associated with the serum testosterone. Men with newly diagnosed and previously known T2DM have common risk factors for low total testosterone, including high HbA1c, low SHBG, obesity, hyperuricemia, hypertriglycemia, and metabolic syndrome. Elevated PSA is associated with a lower risk of testosterone deficiency in type 2 diabetic men.
Castration-induced androgen deficiency in male rats reduces body weight and impairs glucose tolerance in part by attenuating fasting and glucose-induced insulin secretion. This is in contrast to the effect of androgen deficiency in humans, which frequently leads to obesity and impaired glucose tolerance through decreased insulin sensitivity. The interspecies difference should be carefully considered whenever male rats are applied in the research associated with the interaction between testosterone and metabolism.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:50:53Z (GMT). No. of bitstreams: 1
ntu-104-D99421006-1.pdf: 1701891 bytes, checksum: fae29f4ba1f3c2886e5dab468197b703 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄

中文摘要 1
英文摘要 6

博士論文內容

第一章 背景介紹
第一節 流行病學研究 11
第二節 動物模式研究 15
第二章 研究方法與材料
第一節 流行病學研究 18
第二節 動物模式研究 20
第三章 結果
第一節 流行病學研究 22
第二節 動物模式研究 24
第四章 討論
第一節 流行病學研究 25
第二節 動物模式研究 32
第五章 結論
第一節 流行病學研究 37
第二節 動物模式研究 37
第六章 展望 38
第七章 英文簡述 40

參考文獻 51
圖表 64
附錄:博士班修業期間所發表之論文清冊 84
dc.language.isozh-TW
dc.title探討男性睪固酮缺乏與第二型糖尿病之關係zh_TW
dc.titleThe Association of Testosterone Deficiency with Type 2 Diabetes Mellitus in Menen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee楊偉勛(Wei-Shiung Yang),黃一勝(I-Sheng Hwang),陳冠州(Kuan-Chou Chen)
dc.subject.keyword睪固酮缺乏,糖尿病前期,第二型糖尿病,胰島素抗性,大鼠模式,zh_TW
dc.subject.keywordtestosterone deficiency,prediabetes,type 2 diabetes mellitus,insulin resistance,rat model,en
dc.relation.page86
dc.rights.note未授權
dc.date.accepted2015-07-02
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved