請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18069完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉深淵(Shen-Iuan Liu) | |
| dc.contributor.author | Che-Wei Yeh | en |
| dc.contributor.author | 葉哲維 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:50:11Z | - |
| dc.date.copyright | 2015-08-11 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-07 | |
| dc.identifier.citation | [1] C. F. Liang and K.J. Hsiao, “An Injection-Locked Ring PLL with Self-Aligned Injection Window,” in ISSCC Dig. Tech. Papers, pp. 90–91, Feb. 2011.
[2] W. Deng, D. Yang, T. Ueno, T. Sirburanon, S. Kondo, K. Okada, and A. Matsuzawa, “A 0.0066mm2 780μW Fully Synthesizable PLL with a Current-Output DAC and an Interpolative Phase-Coupled Oscillator Using Edge-Injection Technique”, in ISSCC Dig. Tech. Papers, pp. 266-267, Feb. 2014. [3] S. Ye, L. Jansson, and I. Galton, “A Multiple-Crystal Interface PLL with VCO Realignment to Reduce Phase Noise,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1795–1803, Dec. 2002. [4] Y.C. Huang and S. I. Liu, “A 2.4-GHz Subharmonically Injection-Locked PLL With Self-Calibrated Injection Timing,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 417–428, Feb. 2013. [5] D. Park and S. Cho, “A 14.2mW 2.55-to-3GHz Cascaded PLL with Reference Injection, 800MHz Delta-Sigma Modulator and 255fsrms Integrated Jitter in 0.13µm CMOS,” in ISSCC Dig. Tech. Papers, pp. 344-345, Feb. 2012. [6] I. T. Lee, Y. J. Chen, S. I. Liu, C. P. Jou, F. L. Hsueh, and H. H. Hsieh, “A Divider-Less Sub-Harmonically Injection-Locked PLL with Self-Adjusted Injection Timing,” in ISSCC Dig. Tech. Papers, pp. 414–415, Feb. 2013. [7] W. Deng, A. Musa, T. Siriburanon, M. Miyahara, K. Okada, and A. Matsuzawa, “A 0.022mm2 970μW Dual-Loop Injection-Locked PLL with -243dB FOM Using Synthesizable All-Digital PVT Calibration Circuits,” in ISSCC Dig. Tech. Papers, pp. 248–249, Feb. 2013. [8] P. Park, J. Park, H. Park, and S. Cho, “An All-Digital Clock Generator Using a Fractionally Injection-Locked Oscillator in 65nm CMOS,” in ISSCC Dig. Tech. Papers, pp. 336-337, Feb. 2012. [9] M. Song, Y. H. Kwak, S. Ahn, H. Park, and C. Kim, “10–315-MHz Cascaded Hybrid Phase-Locked Loop for Pixel Clock Generation,” IEEE Trans. on Very Large Scale Integr. Syst., vol. 21, no. 11, pp. 2080-2093, Nov. 2013. PAPER II Start [10] E. Alon, J. Kim, S. Pamarti, K Chang, and M. Horowitz, “Replica Compensated Linear Regulators for Supply-Regulated Phase-Locked Loops,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 413–424, Feb. 2006. [11] T. Wu, K. Mayaram, and U. Moon, “An On-Chip Calibration Technique for Reducing Supply Voltage Sensitivity in Ring Oscillators,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 775–783, Apr. 2007. [12] S. Y. Kao and S. I. Liu, “A Digitally-Calibrated Phase-Locked Loop With Supply Sensitivity Suppression,” IEEE Trans. on Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 4, pp. 592-602, Apr. 2011. [13] Y. C. Huang, C. F. Liang, H. S. Huang, and P. Y. Wang, “A 2.4GHz ADPLL with Digital-Regulated Supply-Noise-Insensitive and Temperature-Self-Compensated Ring DCO,” in ISSCC Dig. Tech. Papers, pp. 270-271, Feb. 2014. [14] A. Elshazly, R. Inti, W. Yin, B. Young, and P. K. Hanumolu, “A 0.4-to-3GHz Digital PLL with Supply-Noise Cancellation Using Deterministic Background Calibration,” in ISSCC Dig. Tech. Papers, pp. 92-93, Feb. 2011. [15] J. Liu, T. K. Jang, Y. Lee, J. Shin, S. Lee, T. Kim, J. Park, and H. Park, “A 0.012 mm2 3.1 mW Bang-Bang Digital Fractional-N PLL with a Power-Supply-Noise Cancellation Technique and a Walking-One-Phase-Selection Fractional Frequency Divider,” in ISSCC Dig. Tech. Papers, pp. 268-269, Feb. 2014. [16] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Companies, Inc., 2002. [17] J. Crossley, E. Naviasky, and E. Alon, “An Energy-Efficient Ring-Oscillator Digital PLL,” in Proc. IEEE Custom Integr. Circuits Conf. (CICC), Sep. 2010. [18] T. Miki, Y. Nakamura, M. Nakaya, S. Asai,Y. Akasaka, and Y. Horiba, “An 80-MHz 8-bit CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 21, no. 6, pp. 983–988, Dec. 1986. [19] T.-K. Jang, X. Nan, F. Liu, J. Shin, H. Ryu, J. Kim, T. Kim, J. Park, and H. Park, “A 0.026mm2 5.3mW 32-to-2000MHz Digital Fractional-N Phase Locked-Loop Using a Phase-Interpolating Phase-to-Digital Converter,” in ISSCC Dig. Tech. Papers, pp. 254-255, Feb. 2013. [20] J.-P. Hong, S.-J. Kim, J. Liu, N. Xing, T.-K. Jang, J. Park, J. Kim, T. Kim, and H. Park, “A 0.004mm2 250μW ΔΣ TDC with Time-Difference Accumulator and a 0.012mm2 2.5mW Bang-Bang Digital PLL Using PRNG for Low-Power SoC Applications,” in ISSCC Dig. Tech. Papers, pp. 240-241, Feb. 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18069 | - |
| dc.description.abstract | 這篇論文的主題主要分為兩個部分,第一部分實現了一個具有小面積與無除頻器之次諧波注入鎖相迴路。次諧波注入鎖定的技巧被用來壓抑振盪器之相位雜訊。藉由降低迴路濾波器的電容值並同時確保次諧波注入鎖相迴路的穩定性,我們提出了一個小面積的次諧波注入鎖相迴路。除此之外,我們也提出了一個注入時間點校正之技巧去對齊振盪器之最佳注入點。量測到的相位雜訊驗證了次諧波注入鎖相迴路在無除頻器時,有較佳的雜訊效能,相較於有除頻器的情況。方均根抖動量為0.64ps,總面積為0.0074mm2.
第二部分實現了一個背景校正供應電壓雜訊的全數位鎖相迴路。我們使用了供應雜訊電流消去的做法來改善因為振盪器的供應電壓有雜訊存在所造成方均根抖動量變差的情況。我們提出了一個數位校正的方式去精準校正全數位鎖相迴路在不同製程、電壓、溫度引起的變異。在振盪器的供應電壓注入峰對峰值為50 mV,頻率為10 kHz的弦波雜訊時,量測到的峰對峰值抖動量從原本的41.87 ps降低至29.11 ps。量測到的方均根抖動量從原本的 4.43 ps 降低到 4.03 ps。經由供應電壓雜訊所引起的突波從原本的 -13.88 dB降低到 -25.41 dB。在未注入供應電壓雜訊時,量測到的峰對峰值和方均根抖動量分別為 29 ps 和 3.4ps。此全數位鎖相迴路的功耗和面積分別為2.915 mW 以及0.0216mm2. | zh_TW |
| dc.description.abstract | This thesis consists of two parts. The first part implements an area-efficient divider-less sub-harmonically injection-locked PLL (SIPLL). Sub-harmonically injection-locked technique is employed to suppress VCO accumulation noise. Besides, an area-efficient SIPLL is present to reduce the capacitor in the loop filter, which also ensures the SIPLL to be stable. In addition, a self-adjusted injection timing method is also proposed. The measure phase noise validates the better performance without a divider compared with that with a divider. The RMS jitter is 0.64 ps. Moreover, the total area is 0.0074 mm2.
The second part implements a digital phase-locked loop (DPLL) with background supply noise cancellation. The DPLL employs supply noise current cancellation to mitigate jitter performance degradation due to supply noise on the oscillator supply voltage. A digital background cancellation is proposed to accurately cancel the supply noise under different process, and temperature conditions. In the presence of a 50 mVPP 10 kHz sinusoidal supply noise tone, the cancellation scheme reduces the peak-to-peak jitter from 41.87 ps to 29.11 ps. The rms jitter is reduced from 4.43 ps to 4.03 ps and the spurious supply noise spur is improved from -13.88 dB to -25.41 dB. In the absence of any supply noise, the peak-to-peak jitter and rms jitter are 29 ps and 3.4ps, respectively. The power consumption is 2.915mW and its active area is 0.0216mm2. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:50:11Z (GMT). No. of bitstreams: 1 ntu-104-R01943112-1.pdf: 4821210 bytes, checksum: 1b2b23844b38f7c0773d7527187d1c99 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 1. Introduction………………………………………………………… 1
1.1 Phase-Locked Loop…….……………………………………. 1 1.2 Low Phase Noise PLL……………………………………...... 3 1.3 Overview…………………………………………………….. 3 2. An Area-Efficient Divider-Less Sub-Harmonically Injection-Locked PLL…………………………………………………………………………………7 2.1 Design Principle………………………………7 2.2 System Architecture…………………………………10 2.2.1 System Description………………………10 2.2.2 Circuit Description………………………13 2.3 Linear Model Analysis ………………………………17 2.4 Simulation Result………………………………… 20 2.5 Experiment Result………………………………… 21 2.6 Performance Summary…………………………… 25 3. A 3.2 GHz Digital Phase-Locked Loop with Background Supply Noise Cancellation………………………………27 3.1 Supply Noise Cancellation…………………………27 3.2 DPLL Using Background Supply Noise Cancellation………………………………………………31 3.2.1 System Description…………… 31 3.2.2 Circuits Description……………………36 3.2.3 Analysis………………………………… 39 3.3 Simulation Result……………………………… 40 3.4 Experiment Result…………………………… 42 3.5 Performance Summary…………………… 53 4. Conclusion and Future Work………………………… 55 4.1 Conclusion…………………………………………………… 55 4.2 Future Work………………………………………………… 56 Bibliography ……………………………………………………………… 57 | |
| dc.language.iso | en | |
| dc.title | 應用於小面積與背景校正供應電壓雜訊之鎖相迴路 | zh_TW |
| dc.title | Applications of Phase-Locked Loops with Area-Efficiency and Background Supply Noise Cancellation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林宗賢(Tsung-Hsien Lin),李泰成(Tai-Cheng Lee),梁哲夫(Che-Fu Liang) | |
| dc.subject.keyword | 鎖相迴路,次諧波注入鎖定,相位雜訊,無除頻器,供應電壓雜訊,方均根抖動, | zh_TW |
| dc.subject.keyword | phase-locked loop,sub-harmonically injection-locked,phase noise,divider-less,supply-noise,jitter, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-07-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
