Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18043
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何佳安(Ja-an Annie Ho),蕭寧馨(Ning-Sing Shaw)
dc.contributor.authorYu-Ning Changen
dc.contributor.author張祐寧zh_TW
dc.date.accessioned2021-06-08T00:49:25Z-
dc.date.copyright2020-09-17
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation第7章 參考文獻
1. Inada, M.; Nishimura, Y.; Ishikawa, K.; Nakamatsu, K.; Wada, Y.; Uehara, T.; Fukuda, K.; Anami, S.; Doi, H.; Kanamori, S., Comparing the 7th and 8th editions of the American Joint Committee on Cancer/Union for International Cancer Control TNM staging system for esophageal squamous cell carcinoma treated by definitive radiotherapy. Esophagus 2019, 16 (4), 371-376.
2. Rice, T. W.; Ishwaran, H.; Ferguson, M. K.; Blackstone, E. H.; Goldstraw, P., Cancer of the Esophagus and Esophagogastric Junction: An Eighth Edition Staging Primer. J Thorac Oncol 2017, 12 (1), 36-42.
3. Layke, J. C.; Lopez, P. P., Esophageal Cancer: A Review and Update. American Academy of Family Physicians 2006, 73 (12), 2187-94.
4. Siegel, R.; Naishadham, D.; Jemal, A., Cancer statistics, 2012. CA Cancer J Clin 2012, 62 (1), 10-29.
5. Sakata, K.; Hoshiyama, Y.; Morioka, S.; Hashimoto, T.; Takeshita, T.; Tamakoshi, A.; Group, J. S., Smoking, Alcohol Drinking and Esophageal Cancer: Findings from the JACC Study. J Epidemiol 2005, 15 Suppl 2, S212-9.
6. Pakzad, R.; Mohammadian-Hafshejani, A.; Khosravi, B.; Soltani, S.; Pakzad, I.; Mohammadian, M.; Salehiniya, H.; Momenimovahed, Z., The incidence and mortality of esophageal cancer and their relationship to development in Asia. Ann Transl Med 2016, 4 (2), 29.
7. <105癌症登記報告>. 2016.
8. Mao, W. M.; Zheng, W. H.; Ling, Z. Q., Epidemiologic Risk Factors for Esophageal Cancer Development. Asian Pac J Cancer Prev 2011, 12 (10), 2461-6.
9. Gao, Y. T.; McLaughlin, J. K.; Blot, W. J.; Ji, B. T.; Benichou, J.; Dai, Q.; Fraumeni, J. F., Jr., Risk factors for esophageal cancer in Shanghai, China. I. Role of cigarette smoking and alcohol drinking. Int J Cancer 1994, 58 (2), 192-6.
10. Codipilly, D. C.; Qin, Y.; Dawsey, S. M.; Kisiel, J.; Topazian, M.; Ahlquist, D.; Iyer, P. G., Screening for esophageal squamous cell carcinoma: recent advances. Gastrointest Endosc 2018, 88 (3), 413-426.
11. Mroczko, B.; Kozlowski, M.; Groblewska, M.; Lukaszewicz, M.; Niklinski, J.; Jelski, W.; Laudanski, J.; Chyczewski, L.; Szmitkowski, M., The diagnostic value of the measurement of matrix metalloproteinase 9 (MMP-9), squamous cell cancer antigen (SCC) and carcinoembryonic antigen (CEA) in the sera of esophageal cancer patients. Clin Chim Acta 2008, 389 (1-2), 61-6.
12. Takeshita, N.; Hoshino, I.; Mori, M.; Akutsu, Y.; Hanari, N.; Yoneyama, Y.; Ikeda, N.; Isozaki, Y.; Maruyama, T.; Akanuma, N.; Komatsu, A.; Jitsukawa, M.; Matsubara, H., Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer 2013, 108 (3), 644-52.
13. Napier, K. J.; Scheerer, M.; Misra, S., Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol 2014, 6 (5), 112-20.
14. Lingor, P., Regulation of Cell Death and Survival by RNA Interference – The Roles of miRNA and siRNA. In Apoptosome, 2010; pp 95-117.
15. Julius Brennecke, D. R. H., Alexander Stark, Robert B. Russell, and Stephen M. Cohen, bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila. 2003.
16. Humeau, Y.; Shaban, H.; Bissiere, S.; Luthi, A., Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 2003, 426 (6968), 841-5.
17. Dong, H.; Lei, J.; Ding, L.; Wen, Y.; Ju, H.; Zhang, X., MicroRNA: function, detection, and bioanalysis. Chem Rev 2013, 113 (8), 6207-33.
18. Garzon, R.; Calin, G. A.; Croce, C. M., MicroRNAs in Cancer. Annu Rev Med 2009, 60, 167-79.
19. Iorio, M. V.; Croce, C. M., MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012, 4 (3), 143-59.
20. Kloosterman, W. P.; Plasterk, R. H., The diverse functions of microRNAs in animal development and disease. Dev Cell 2006, 11 (4), 441-50.
21. Lu, J.; Getz, G.; Miska, E. A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B. L.; Mak, R. H.; Ferrando, A. A.; Downing, J. R.; Jacks, T.; Horvitz, H. R.; Golub, T. R., MicroRNA expression profiles classify human cancers. Nature 2005, 435 (7043), 834-8.
22. Mitchell, P. S.; Parkin, R. K.; Kroh, E. M.; Fritz, B. R.; Wyman, S. K.; Pogosova-Agadjanyan, E. L.; Peterson, A.; Noteboom, J.; O'Briant, K. C.; Allen, A.; Lin, D. W.; Urban, N.; Drescher, C. W.; Knudsen, B. S.; Stirewalt, D. L.; Gentleman, R.; Vessella, R. L.; Nelson, P. S.; Martin, D. B.; Tewari, M., Circulating microRNAs as stable blood-based markers for cancer detection. P Natl Acad Sci USA 2008, 105 (30), 10513-10518.
23. Zhang, C.; Wang, C.; Chen, X.; Yang, C.; Li, K.; Wang, J.; Dai, J.; Hu, Z.; Zhou, X.; Chen, L.; Zhang, Y.; Li, Y.; Qiu, H.; Xing, J.; Liang, Z.; Ren, B.; Yang, C.; Zen, K.; Zhang, C. Y., Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem 2010, 56 (12), 1871-9.
24. Hui, B.; Chen, X.; Hui, L.; Xi, R.; Zhang, X., Serum miRNA expression in patients with esophageal squamous cell carcinoma. Oncol Lett 2015, 10 (5), 3008-3012.
25. Yao, C.; Liu, H. N.; Wu, H.; Chen, Y. J.; Li, Y.; Fang, Y.; Shen, X. Z.; Liu, T. T., Diagnostic and Prognostic Value of Circulating MicroRNAs for Esophageal Squamous Cell Carcinoma: a Systematic Review and Meta-analysis. J Cancer 2018, 9 (16), 2876-2884.
26. Guo, S. L.; Ye, H.; Teng, Y.; Wang, Y. L.; Yang, G.; Li, X. B.; Zhang, C.; Yang, X.; Yang, Z. Z.; Yang, X., Akt-p53-miR-365-cyclin D1/cdc25A axis contributes to gastric tumorigenesis induced by PTEN deficiency. Nat Commun 2013, 4, 2544.
27. Lv, K. T.; Liu, Z.; Feng, J.; Zhao, W.; Hao, T.; Ding, W. Y.; Chu, J. P.; Gao, L. J., MiR-22-3p Regulates Cell Proliferation and Inhibits Cell Apoptosis through Targeting the eIF4EBP3 Gene in Human Cervical Squamous Carcinoma Cells. Int J Med Sci 2018, 15 (2), 142-152.
28. Wang, J.; Li, Y.; Ding, M.; Zhang, H.; Xu, X.; Tang, J., Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer (Review). Int J Oncol 2017, 50 (2), 345-355.
29. Zhang, X.; Li, Y.; Wang, D.; Wei, X., miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1. Biol Res 2017, 50 (1), 27.
30. He, R. Q.; Pang, Y. Y.; Zhang, R.; Liang, H. W.; Li, C. Y.; Ma, J.; Feng, Z. B.; Peng, Z. G.; Chen, G., Down-regulation of MiR-365 as a novel indicator to assess the progression and metastasis of hepatocellular carcinoma. Int J Clin Exp Patho 2017, 10 (9), 9164-9176.
31. Huang, W. C.; Jang, T. H.; Tung, S. L.; Yen, T. C.; Chan, S. H.; Wang, L. H., A novel miR-365-3p/EHF/keratin 16 axis promotes oral squamous cell carcinoma metastasis, cancer stemness and drug resistance via enhancing beta5-integrin/c-met signaling pathway. J Exp Clin Cancer Res 2019, 38 (1), 89.
32. Kodahl, A. R.; Lyng, M. B.; Binder, H.; Cold, S.; Gravgaard, K.; Knoop, A. S.; Ditzel, H. J., Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: a case control study. Mol Oncol 2014, 8 (5), 874-83.
33. Link, A.; Kupcinskas, J., MicroRNAs as non-invasive diagnostic biomarkers for gastric cancer: Current insights and future perspectives. World J Gastroenterol 2018, 24 (30), 3313-3329.
34. Lyu, J.; Zhao, L.; Wang, F.; Ji, J.; Cao, Z.; Xu, H.; Shi, X.; Zhu, Y.; Zhang, C.; Guo, F.; Yang, B.; Sun, Y., Discovery and Validation of Serum MicroRNAs as Early Diagnostic Biomarkers for Prostate Cancer in Chinese Population. Biomed Res Int 2019, 2019, 9306803.
35. Sun, T.; Kong, X.; Du, Y.; Li, Z., Aberrant MicroRNAs in Pancreatic Cancer: Researches and Clinical Implications. Gastroenterol Res Pract 2014, 2014, 386561.
36. Yuan, F.; Liu, J.; Pang, H.; Tian, Y.; Yuan, K.; Li, Y.; Wang, J.; Bian, S.; Zheng, Y.; Dong, D.; Li, Y.; Li, M.; Jiang, C.; Hu, S.; Li, Q., MicroRNA-365 suppressed cell proliferation and migration via targeting PAX6 in glioblastoma. Am J Transl Res 2019, 11 (1), 361-369.
37. Goto, T.; Fujiya, M.; Konishi, H.; Sasajima, J.; Fujibayashi, S.; Hayashi, A.; Utsumi, T.; Sato, H.; Iwama, T.; Ijiri, M.; Sakatani, A.; Tanaka, K.; Nomura, Y.; Ueno, N.; Kashima, S.; Moriichi, K.; Mizukami, Y.; Kohgo, Y.; Okumura, T., An elevated expression of serum exosomal microRNA-191, - 21, -451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer 2018, 18 (1), 116.
38. Guo, R.; Gu, J.; Zhang, Z.; Wang, Y.; Gu, C., MiR-451 Promotes Cell Pro liferation and Metastasis in Pancreatic Cancer through Targeting CAB39. Biomed Res Int 2017, 2017, 2381482.
39. Li, Y. Y.; Wang, J. J.; Dai, X. R.; Zhou, Z. B.; Liu, J.; Zhang, Y.; Li, Y.; Hou, Y. Y.; Pang, L.; Wang, X. H.; Wang, C. H.; Hao, Z. F.; Zhang, Y. Q.; Jiang, J. X.; Cheng, H. W.; Yu, D. N., miR-451 regulates FoxO3 nuclear accumulation through Ywhaz in human colorectal cancer. Am J Transl Res 2015, 7 (12), 2775-2785.
40. Liu, X.; Zhang, X.; Xiang, J.; Lv, Y.; Shi, J., miR-451: potential role as tumor suppressor of human hepatoma cell growth and invasion. Int J Oncol 2014, 45 (2), 739-45.
41. Markou, A.; Sourvinou, I.; Vorkas, P. A.; Yousef, G. M.; Lianidou, E., Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer 2013, 81 (3), 388-396.
42. Mihelich, B. L.; Maranville, J. C.; Nolley, R.; Peehl, D. M.; Nonn, L., Elevated serum microRNA levels associate with absence of high-grade prostate cancer in a retrospective cohort. PLoS One 2015, 10 (4), e0124245.
43. Pan, X.; Wang, R.; Wang, Z. X., The potential role of miR-451 in cancer diagnosis, prognosis, and therapy. Mol Cancer Ther 2013, 12 (7), 1153-62.
44. Redova, M.; Poprach, A.; Nekvindova, J.; Iliev, R.; Radova, L.; Lakomy, R.; Svoboda, M.; Vyzula, R.; Slaby, O., Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med 2012, 10, 55.
45. Sethi, N.; Wright, A.; Wood, H.; Rabbitts, P., MicroRNAs and head and neck cancer: reviewing the first decade of research. Eur J Cancer 2014, 50 (15), 2619-35.
46. Ouyang, T.; Liu, Z.; Han, Z.; Ge, Q., MicroRNA Detection Specificity: Recent Advances and Future Perspective. Anal Chem 2019, 91 (5), 3179-3186.
47. Chen, J.; Tang, L.; Chu, X.; Jiang, J., Enzyme-free, signal-amplified nucleic acid circuits for biosensing and bioimaging analysis. Analyst 2017, 142 (17), 3048-3061.
48. Zhang, D. Y.; Turberfield, A. J.; Yurke, B.; Winfree, E., Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA. Science 2007, 318 (5853), 1121-5.
49. Guo, Y.; Wei, B.; Xiao, S.; Yao, D.; Li, H.; Xu, H.; Song, T.; Li, X.; Liang, H., Recent advances in molecular machines based on toehold-mediated strand displacement reaction. Quantitative Biology 2017, 5 (1), 25-41.
50. Shi, K.; Dou, B.; Yang, C.; Chai, Y.; Yuan, R.; Xiang, Y., DNA-fueled molecular machine enables enzyme-free target recycling amplification for electronic detection of microRNA from cancer cells with highly minimized background noise. Anal Chem 2015, 87 (16), 8578-83.
51. Chu, Y.; Wu, R.; Fan, G.-C.; Deng, A.-P.; Zhu, J.-J., Enzyme-Free Photoelectrochemical Biosensor Based on the Co-Sensitization Effect Coupled with Dual Cascade Toehold-Mediated Strand Displacement Amplification for the Sensitive Detection of MicroRNA-21. ACS Sustainable Chemistry Engineering 2018, 6 (9), 11633-11641.
52. Li, S. K.; Liu, Z. T.; Li, J. Y.; Chen, A. Y.; Chai, Y. Q.; Yuan, R.; Zhuo, Y., Enzyme-free Target Recycling and Double-Output Amplification System for Electrochemiluminescent Assay of Mucin 1 with MoS2 Nanoflowers as Co-reaction Accelerator. ACS Appl Mater Interfaces 2018, 10 (17), 14483-14490.
53. Ramnani, P.; Saucedo, N. M.; Mulchandani, A., Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 2016, 143, 85-98.
54. Campuzano, S., Biosensors Based on Sandwich Assays. Anal Bioanal Chem 2018, 410 (29), 7563-7564.
55. Cao, H. T.; Pham, X. T. T.; Ha, V. L.; Le, V. H., Effectiveness of hairpin probe in increasing the limit of detection for gold nanowire based-biosensor. Advances in Natural Sciences: Nanoscience and Nanotechnology 2014, 5 (4).
56. Wu, Y.; Lai, R. Y., Tunable Signal-Off and Signal-On Electrochemical Cisplatin Sensor. Anal Chem 2017, 89 (18), 9984-9989.
57. Yang, W.; Lai, R. Y., A dual-signalling electrochemical DNA sensor based on target hybridization-induced change in DNA probe flexibility. Chem Commun (Camb) 2012, 48 (69), 8703-5.
58. Yang, C.; Dou, B.; Shi, K.; Chai, Y.; Xiang, Y.; Yuan, R., Multiplexed and amplified electronic sensor for the detection of microRNAs from cancer cells. Anal Chem 2014, 86 (23), 11913-8.
59. Avino, A.; Cubero, E.; Gonzalez, C.; Eritja, R.; Orozco, M., Antiparallel triple helices. Structural characteristics and stabilization by 8-amino derivatives. J Am Chem Soc 2003, 125 (51), 16127-38.
60. Liu, Q.; Luo, T.; Li, J.; Mei, J.; Gao, Q., Triplex real-time PCR melting curve analysis for detecting Mycobacterium tuberculosis mutations associated with resistance to second-line drugs in a single reaction. J Antimicrob Chemother 2013, 68 (5), 1097-103.
61. Li, X. L.; Hu, Y. J.; Wang, H.; Yu, B. Q.; Yue, H. L., Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromolecules 2012, 13 (3), 873-80.
62. Idili, A.; Vallee-Belisle, A.; Ricci, F., Programmable pH-triggered DNA nanoswitches. J Am Chem Soc 2014, 136 (16), 5836-9.
63. Hu, Y.; Cecconello, A.; Idili, A.; Ricci, F.; Willner, I., Triplex DNA Nanostructures: From Basic Properties to Applications. Angew Chem Int Ed Engl 2017, 56 (48), 15210-15233.
64. Idili, A.; Amodio, A.; Vidonis, M.; Feinberg-Somerson, J.; Castronovo, M.; Ricci, F., Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity. Anal Chem 2014, 86 (18), 9013-9.
65. Wang, X.; Jiang, A.; Hou, T.; Li, F., A versatile label-free and signal-on electrochemical biosensing platform based on triplex-forming oligonucleotide probe. Anal Chim Acta 2015, 890, 91-7.
66. Yang, Y.; Huang, Y.; Li, C., A reusable electrochemical sensor for one-step biosensing in complex media using triplex-forming oligonucleotide coupled DNA nanostructure. Anal Chim Acta 2019, 1055, 90-97.
67. Shaohui Wang, M. A. B., and Eric T. Kool*, Stabilities of Nucleotide Loops Bridging the Pyrimidine Strands in DNA Pyrimidine-Purine-Pyrimidine Triplexes: Special Stability of the CTTTG Loop. 1994.
68. Li, X.; Wang, X.; Song, T.; Lu, W.; Chen, Z.; Shi, X., A Novel Computational Method to Reduce Leaky Reaction in DNA Strand Displacement. J Anal Methods Chem 2015, 2015, 675827.
69. Olson, X.; Kotani, S.; Padilla, J. E.; Hallstrom, N.; Goltry, S.; Lee, J.; Yurke, B.; Hughes, W. L.; Graugnard, E., Availability: A Metric for Nucleic Acid Strand Displacement Systems. ACS Synth Biol 2017, 6 (1), 84-93.
70. Wang, B.; Zhou, X.; Yao, D.; Sun, X.; He, M.; Wang, X.; Yin, X.; Liang, H., Contribution of gold nanoparticles to the catalytic DNA strand displacement in leakage reduction and signal amplification. Chem Commun (Camb) 2017, 53 (79), 10950-10953.
71. Rumney, S.; Kool, E. T., Structural Optimization of Non-Nucleotide Loop Replacements for Duplex and Triplex DNAs. J Am Chem Soc 1995, 117, 5635-5646.
72. Mark A. Booher, S. W., and Eric T. Kool, Base Pairing and Steric Interactions between Pyrimidine Strand Bridging Loops and the Purine Strand in DNA Pyrimidine* *Purine*Pyrimidine Triplexes. Biochemistry 1994, (33), 4645-4651.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18043-
dc.description.abstract食道癌具有隱形殺手之稱,近十年來蟬聯國人十大癌症死因之一。早期食道癌並無任何症狀,且診斷方式多以侵入式為主,導致國人檢查之意願大幅降低,也因此錯過黃金治療期。根據研究顯示,血液中的miR-365、miR-22可作為早期食道癌之生物標記。由此,我們利用循環鏈置換放大策略 (Circular Strand Displacement Amplification, CSDA)結合三螺旋DNA奈米開關 (Triplex DNA nanoswitch),開發不須酵素參與且恆溫之電化學核酸感測平台,作為一種非侵入式之早期食道癌診斷工具。miR-365及miR-22具有啟動循環鏈置換放大反應之功能,我們透過膠體電泳分析發現在1小時即有足夠大量的單股觸發子 (Triplex reporter, TR) 被生成釋出,達到有效循環放大之成效。此外,我們透過反向平行三螺旋核酸結構 (Antiparallel triplex) 之設計,能有效降低非專ㄧ性的雜訊,藉此提升反應之訊噪比。接著,被釋出之兩種TR分別可與修飾在電極表面之核酸探針 (Capture probe, CP) 形成60% TAT及80% TAT之平行三螺旋核酸結構 (Parallel triplex)。由miR-365主導之60% TAT三螺旋核酸只能於酸性環境下穩定生成,而miR-22所主導之80% TAT三螺旋核酸則可於酸性至中性環境下穩定形成。透過pH值調控可於3分鐘內使核酸探針折彎,與TR穩定形成三螺旋核酸結構,促使核酸探針末端修飾之甲基藍分子 (Methylene blue, MB) 靠近電極表面而產生更高的電化學訊號。本研究利用反應液pH的調控作為平台的開關,在平台上只需標定一種電化學活性分子,透過不同的pH值調控Triplex nanoswitch構型改變便能雙重偵測不同的目標待測物。經計算後miR-365、miR-22之偵測極限可分別下達6.2 pM及1.14 pM。此電化學偵檢平台具有快速、低成本、高靈敏性且具雙重偵測特性之優勢。我們相信其具有潛力被應用於食道癌或其他臨床疾病之檢測。zh_TW
dc.description.abstractEsophageal cancer has been considered as the silent killer and ranked among the top ten leading causes of cancer death for more than a decade. Previous studies showed that circulating miR-365 and miR-22 were found to be potential biomarkers for early Esophageal cancer detection. Herein, we established an electrochemical platform with enzyme-free amplification that can be used as a non-invasive diagnostic tool for early-stage Esophageal cancer. Our detection scheme was initiated with a miR-365 and miR-22-induced circular strand replacement amplification (CSDA). It was followed by the production of a large number of triplex reporters (TR) in one hour that was confirmed by gel electrophoresis. We also found that anti-parallel triplex configuration of our probe design was able to reduce the non-specific hybridization significantly. Subsequently two different releasing TR hybridized with methylene blue (MB)-sensitized CP (MB-CP) modified on the electrode to form 60% TAT parallel triplex and 80% TAT parallel triplex, respectively. The formation of 60% TAT triplex triggered by miR-365 was found to yield steadily in an acidic environment only; however, the 80% TAT triplex controlled by miR-22 was generated in both acidic or neutral conditions. After the re-configuration of MB-CP to form triplex structure within three minutes, enabling MB to face toward the electrode that turned the signal-switch on. This newly developed biosensing platform is capable of detecting dual targets via pH control, offering the advantages of simplicity, cost effectiveness, and rapid detection. It holds great promise in diagnosis of liquid biopsy samples collected from EC patients, and sheds new light on the development of point-of-care (POC) diagnostics.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:49:25Z (GMT). No. of bitstreams: 1
U0001-1308202016033900.pdf: 5497807 bytes, checksum: 3d1271196b05a2bcfa4e26376434724c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝辭.............................................................................................................................................i
中文摘要....................................................................................................................................ii
ABSTRACT............................................................................................................................ iii
縮寫表.......................................................................................................................................iv
目錄............................................................................................................................................v
圖目錄........................................................................................................................................x
表目錄.................................................................................................................................... xiii
第 1 章 緒論....................................................................................................................1
第 2 章 文獻回顧............................................................................................................3
2.1 食道癌 (Esophageal cancer)......................................................................................3
2.1.1 認識食道及食道癌..........................................................................................3
2.1.2 食道癌現況......................................................................................................5
2.1.3 食道癌之成因與症狀......................................................................................6
2.1.4 食道癌診斷與治療..........................................................................................6
2.2 微型核醣核酸 (MicroRNA)......................................................................................8
2.2.1 MicroRNA 簡介 ...............................................................................................8
2.2.2 生合成與作用機制...........................................................................................8
2.2.3 microRNA 與癌症............................................................................................9
2.2.4 microRNA 作為食道癌之生物指標..............................................................10
2.2.5 microRNA 傳統偵測方式..............................................................................12
2.3 等溫核酸放大技術 (Isothermal amplification) .............................................13
2.3.1 等溫核酸放大技術簡介................................................................................13
2.3.2 催化髮夾組裝反應 (Catalytic hairpin assembly, CHA)..............................14
2.3.3 循環鏈置換放大反應(Circular strand displacement amplification, CSDA) 15
2.4 核酸生物感測器 (Nucleic acid biosensor) ....................................................17
2.4.1 生化感測器簡介與應用..........................................................................17
2.4.2 電化學生化感測器..................................................................................18
2.5 三螺旋核酸 (Triplex DNA)......................................................................................21
2.5.1 三螺旋核酸結構............................................................................................21
2.5.2 三螺旋核酸特性............................................................................................22
2.5.3 三螺旋核酸應用於電化學生化感測器........................................................24
2.6 電化學分析法 (Electrochemical detection) ............................................................25
2.6.1 三電極系統....................................................................................................25
2.6.2 電化學分析法.................................................................................................26
第 3 章 研究設計..........................................................................................................29
第 4 章 實驗材料與方法..............................................................................................34
4.1 實驗儀器..........................................................................................................34
4.2 實驗材料...................................................................................................................35
4.2.1 核酸序列........................................................................................................35
4.2.2 藥品與試劑....................................................................................................38
4.2.3 緩衝溶液........................................................................................................39
4.3 循環鏈置換放大反應 (CSDA) ...............................................................................40
4.3.1 聚丙烯醯胺膠體電泳 (Polyacrylamide gel electrophoresis, PAGE)...........40
4.3.2 CSDA-1 系統之可行性及 Fuel strand (F) 長度優化...................................40
4.3.3 CSDA-1 系統之 probe 的 CG 位置之優化...................................................40
4.3.4 CSDA-1 系統中 antiparallel triplex 構型降低非專一性反應之探討..........41
4.3.5 CSDA-1 系統之反應緩衝溶液 MgCl2 濃度最佳化 .....................................41
4.3.6 CSDA-1 系統之反應溫度最佳化..................................................................41
4.3.7 CSDA-1 系統之反應時間最佳化..................................................................41
vii
4.3.8 CSDA-1 系統之 F/Te 比例最佳化 ...............................................................42
4.3.9 CSDA-2 系統之可行性測試..........................................................................42
4.3.10 CSDA-2 系統中 Triplex reporter (TR) 長度對產物釋放效率之探討 ......42
4.3.11 CSDA-1、CSDA-2 系統之專一性測試......................................................42
4.3.12 CSDA-1、CSDA-2 系統對於目標 miRNA 之放大能力測試...................43
4.3.13 Double-output 循環放大設計對於 CSDA-1、CSDA-2 系統之放大效能鑑
定..............................................................................................................................43
4.4 三螺旋核酸構型可行性之分析...............................................................................43
4.4.1 熔解曲線(melting curve)分析.......................................................................43
4.4.2 化合物黃連素 Berberine 之螢光測定..........................................................44
4.4.3 延長及雙股序列長度對 CSDA-1 產物形成 60% TAT 三螺旋核酸生成影
響之探討..................................................................................................................44
4.4.4 Link 長度對 60% TAT 三螺旋核酸生成影響之探討...................................44
4.4.5 TAT 比例之最佳化.........................................................................................45
4.4.6 CSDA-2 產物形成 80% TAT 三螺旋核酸之可行性測試 ............................45
4.4.7 延長及雙股序列長度對 80% TAT 三螺旋核酸生成影響之探討 ...............45
4.4.8 Triplex 長度最佳化........................................................................................45
4.5 電化學分析平台.......................................................................................................46
4.5.1 工作電極表面鑑定........................................................................................46
4.5.2 EC platform-1 之溶液 pH 值最佳化 .............................................................48
4.5.3 EC platform-1 之 Triplex repoeter (TR) 反應時間最佳化...........................48
4.5.4 EC platform-1 之頻率設定最佳化 ................................................................49
4.5.5 EC platform-1 之偵測溶液最適化 ................................................................49
4.5.6 EC platform-1 之阻隔劑 (blocking agent) 種類最適化..............................49
4.5.7 EC platform-1 之核酸探針(capture probe)濃度最佳化................................50
4.5.8 EC platform-1 之阻隔劑 (blocking agent) 濃度最佳化..............................50
4.5.9 不同 pH 對 EC platform-2 訊號影響之探討 ...............................................51
4.5.10 不同溶液對 EC platform-2 訊號影響之探討 ............................................51
4.5.11 Electrochemical platform-1、Electrochemical platform-2 靈敏性測試 .....51
第 5 章 實驗結果與討論..............................................................................................53
5.1 循環鏈置換放大反應(CSDA) ..................................................................................53
5.1.1 CSDA-1 系統之可行性及 Fuel strand (F) 長度優化...................................53
5.1.2 CSDA-1 系統之 probe 的 CG 位置之優化...................................................57
5.1.3 CSDA-1 系統中 antiparallel triplex 構型降低非專一性反應之探討..........59
5.1.4 CSDA-1 系統之反應緩衝溶液 MgCl2 濃度最佳化 .....................................62
5.1.5 CSDA-1 系統之反應溫度最佳化..................................................................62
5.1.6 CSDA-1 系統之反應時間最佳化..................................................................62
5.1.7 CSDA-1 系統之 F/Te 比例最佳化 ...............................................................63
5.1.8 CSDA-2 系統之可行性測試..........................................................................68
5.1.9 CSDA-2 系統中 Triplex reporter (TR) 長度對產物釋放效率之探討 ........70
5.1.10 CSDA-1、CSDA-2 系統之專一性測試.................................................73
5.1.11 CSDA-1、CSDA-2 系統對於目標 miRNA 之放大能力測試..............77
5.1.12 Double-output 循環放大設計對於 CSDA-1、CSDA-2 系統之放大效能鑑
定..............................................................................................................................77
5.2 三螺旋核酸構型可行性之分析......................................................................80
5.2.1 延長及雙股序列長度對 CSDA-1 產物形成 60% TAT 三螺旋核酸生成影
響之探討..................................................................................................................80
5.2.2 Link 長度對 60% TAT 三螺旋核酸生成影響之探討...................................85
5.2.3 TAT 比例之最佳化.........................................................................................91
5.2.4 CSDA-2 產物形成 80% TAT 三螺旋核酸之可行性測試 ............................95
5.2.5 延長及雙股序列長度對 80% TAT 三螺旋核酸生成影響之探討 ..............97
5.2.6 Triplex 長度最佳化......................................................................................100
5.3 電化學分析平台.....................................................................................................102
5.3.1 工作電極表面鑑定......................................................................................102
5.3.2 EC platform-1 之溶液 pH 值最佳化 ...........................................................103
5.3.3 EC platform-1 之 Triplex reporter (TR) 反應時間最佳化 .........................105
5.3.4 EC platform-1 之頻率設定最佳化 ..............................................................105
5.3.5 EC platform-1 之偵測溶液最適化 ..............................................................106
5.3.6 EC platform-1 之阻隔劑 (blocking agent) 種類最適化............................107
5.3.7 EC platform-1 之核酸探針 (Capture probe) 濃度最佳化.........................108
5.3.8 EC platform-1 之阻隔劑 (blocking agent) 濃度最佳化............................108
5.3.9 不同 pH 對 EC platform-2 訊號影響之探討 .............................................109
5.3.10 不同溶液對 EC platform-2 訊號影響之探討 ..........................................110
5.3.11 EC platform-1、EC platform-2 靈敏性測試 ............................................. 111
第 6 章 結論................................................................................................................113
第 7 章 參考文獻........................................................................................................114
dc.language.isozh-TW
dc.title利用循環鏈置換策略結合三股螺旋 DNA 奈米開關開發對食道癌具特異性的微小核糖核酸之電化學感測平台zh_TW
dc.titleA Signal-on Electrochemical Biosensor for Esophageal Cancer-specific MicroRNAs Based on Triplex DNA Nanoswitch and Circular Strand Displacement Amplificationen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳立真(Li-chen Wu),徐士蘭(Shih-Lan Hsu),周芳如(Fang Ru Jou),邢怡銘(I-ming HSING)
dc.subject.keyword食道癌,微小核醣核酸,核酸等溫擴增技術,非酵素型核酸放大,循環鏈置換放大,三螺旋核酸,電化學感測器,zh_TW
dc.subject.keywordEsophageal cancer,microRNA,Enzyme-free nucleic acid amplification,isothermal amplification,Circular Strand Displacement Amplification,Triplex DNA nanoswitch,Electrochemical biosensor,en
dc.relation.page120
dc.identifier.doi10.6342/NTU202003281
dc.rights.note未授權
dc.date.accepted2020-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
U0001-1308202016033900.pdf
  未授權公開取用
5.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved