Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18026
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉興華(Shing-Hwa Liu)
dc.contributor.authorHuang-Jen Chenen
dc.contributor.author陳煌仁zh_TW
dc.date.accessioned2021-06-08T00:48:53Z-
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-07-15
dc.identifier.citation1. Abraham K, Andres S, Palavinskas R, Berg K, Appel KE, Lampen A. 2011. Toxicology and risk assessment of acrolein in food. Mol Nutr Food Res. 55: 1277-1290.
2. Bein K, Leikauf GD. Acrolein - a pulmonary hazard. 2011. Mol Nutr Food Res. 55: 1342-1360.
3. Kehrer JP, Biswal SS. The molecular effects of acrolein. 2000. Toxicol Sci. 57: 6-15.
4. Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, Joshi-Barve S. Molecular mechanisms of acrolein toxicity: relevance to human disease. 2015. Toxicol Sci. 143:242-255.
5. Stevens JF, Maier CS. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. 2008. Mol Nutr Food Res. 52: 7-25.
6. Rom O, Kaisari S, Aizenbud D, Reznick AZ. The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes. 2013. Free Radic Biol Med. 65:190-200.
7. Kehrer JP, Biswal SS. The molecular effects of acrolein. 2000. Toxicol Sci. 57: 6-15.
8. Zanou N, Gailly P. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. 2013. Cell Mol Life Sci. 70: 4117-4130.
9. Mounier R, Théret M, Lantier L, Foretz M, Viollet B. Expanding roles for AMPK in skeletal muscle plasticity. 2015. Trends Endocrinol Metab. [Epub ahead of print].
10. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. 2013. Physiol Rev. 93: 23-67.
11. Jang YN, Baik EJ. JAK-STAT pathway and myogenic differentiation. 2013. JAKSTAT. 2: e23282.
12. Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. 2002. J Bone Joint Surg Am. 84-A: 822-832.
13. Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS, Liu SH. Arsenic inhibits myogenic differentiation and muscle regeneration. 2010. Environ Health Perspect. 118: 949-956.
14. Kumar N, Dey CS. Metformin enhances insulin signalling in insulin-dependent and-independent pathways in insulin resistant muscle cells. 2002. Br J Pharmacol. 137: 329-336.
15. Chiu CY, Yen YP, Tsai KS, Yang RS, Liu SH. Low-dose benzo(a)pyrene and its epoxide metabolite inhibit myogenic differentiation in human skeletal muscle-derived progenitor cells. 2014. Toxicol Sci. 138: 344-353.
16. Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ. Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. 1999. J Neurosci. 19: 3248-3257.
17. Huang CF, Yang CY, Chan DC, Wang CC, Huang KH, Wu CC, Tsai KS, Yang RS, Liu SH. Arsenic Exposure and Glucose Intolerance/Insulin Resistance in Estrogen-Deficient Female Mice. 2015. Environ Health Perspect. [Epub ahead of print].
18. Kawai H, Nishino H, Kusaka K, Naruo T, Tamaki Y, Iwasa M. Experimental glycerol myopathy: a histological study. 1990. Acta Neuropathol. 80: 192-197.
19. Demonbreun AR, Rossi AE, Alvarez MG, Swanson KE, Deveaux HK, Earley JU, Hadhazy M, Vohra R, Walter GA, Pytel P, McNally EM. Dysferlin and myoferlin regulate transverse tubule formation and glycerol sensitivity. 2014. Am J Pathol. 184: 248-259.
20. Zatyka M, Ricketts C, da Silva Xavier G, Minton J, Fenton S, Hofmann-Thiel S, Rutter GA, Barrett TG. Sodium-potassium ATPase 1 subunit is a molecular partner of Wolframin, an endoplasmic reticulum protein involved in ER stress. 2008. Hum Mol Genet. 17: 190-200.
21. Jheng HF, Tsai PJ, Guo SM, Kuo LH, Chang CS, Su IJ, Chang CR, Tsai YS. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. 2012. Mol Cell Biol. 32: 309-319.
22. Haga Y, Ishii K, Suzuki T. N-glycosylation is critical for the stability and intracellular trafficking of glucose transporter GLUT4. 2011. J Biol Chem. 286: 31320-31327.
23. Agarwal P, Srivastava R, Srivastava AK, Ali S, Datta M. miR-135a targets IRS2 and regulates insulin signaling and glucose uptake in the diabetic gastrocnemius skeletal muscle. 2013. Biochim Biophys Acta. 1832: 1294-1303.
24. Wang LT, Chen BL, Wu CT, Huang KH, Chiang CK, Hwa Liu S. Protective role of AMP-activated protein kinase-evoked autophagy on an in vitro model of ischemia/reperfusion-induced renal tubular cell injury. 2013. PLoS One. 8: e79814.
25. Thomas MP, Mills J, Engelbrecht AM. Phosphatidylinositol-3-kinase (PI3K) activity decreases in C2C12 myotubes during acute simulated ischemia at a cost to their survival. 2012. Life Sci. 91: 44-53.
26. Iwata M, Suzuki S, Hayakawa K, Inoue T, Naruse K. Uniaxial cyclic stretch increases glucose uptake into C2C12 myotubes through a signaling pathway independent of insulin-like growth factor I. 2009. Horm Metab Res. 41: 16-22.
27. Haga Y, Ishii K, Suzuki T. N-glycosylation is critical for the stability and intracellular trafficking of glucose transporter GLUT4. 2011. J Biol Chem. 286: 31320-31327.
28. LeBrasseur NK, Walsh K, Arany Z. Metabolic benefits of resistance training and fast glycolytic skeletal muscle. 2011. Am J Physiol Endocrinol Metab. 300: E3-10.
29. Kanzaki M, Pessin JE. Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. 2001. J Biol Chem. 276: 42436-42444.
30. Nedachi T, Kanzaki M. Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes. 2006. Am J Physiol Endocrinol Metab. 291: E817-828.
31. Hakuno F, Yamauchi Y, Kaneko G, Yoneyama Y, Nakae J, Chida K, Kadowaki T, Yamanouchi K, Nishihara M, Takahashi S. Constitutive expression of insulin receptor substrate (IRS)-1 inhibits myogenic differentiation through nuclear exclusion of Foxo1 in L6 myoblasts. 2011. PLoS One. 6: e25655.
32. Fuentes EN, Björnsson BT, Valdés JA, Einarsdottir IE, Lorca B, Alvarez M, Molina A. IGF-I/PI3K/Akt and IGF-I/MAPK/ERK pathways in vivo in skeletal muscle are regulated by nutrition and contribute to somatic growth in the fine flounder. 2011. Am J Physiol Regul Integr Comp Physiol. 300: R1532-1542.
33. Folker ES, Baylies MK. Nuclear positioning in muscle development and disease. 2013. Front Physiol. 4: 363.
34. Shiotsuki H, Yoshimi K, Shimo Y, Funayama M, Takamatsu Y, Ikeda K, Takahashi R, Kitazawa S, Hattori N. A rotarod test for evaluation of motor skill learning. 2010. J Neurosci Methods. 189: 180-185.
35. Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS, Khurana TS. Functional improvement of dystrophic muscle by myostatin blockade. 2002. Nature. 420: 418-421.
36. Yang B, Verbavatz JM, Song Y, Vetrivel L, Manley G, Kao WM, Ma T, Verkman AS. Skeletal muscle function and water permeability in aquaporin-4 deficient mice. 2000. Am J Physiol Cell Physiol. 278: C1108-1115.
37. Kowalski GM, Bruce CR. The regulation of glucose metabolism: implications and considerations for the assessment of glucose homeostasis in rodents. 2014. Am J Physiol Endocrinol Metab. 307: E859-871.
38. Karlsson HK, Zierath JR. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. 2007. Cell Biochem Biophys. 48: 103-113.
39. Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J. Evaluating the glucose tolerance test in mice. 2008. Am J Physiol Endocrinol Metab. 295: E1323-1332.
40. Burnes LA, Kolker SJ, Danielson JF, Walder RY, Sluka KA. Enhanced muscle fatigue occurs in male but not female ASIC3-/- mice. 2008. Am J Physiol Regul Integr Comp Physiol. 294: R1347-1355.
41. Park S, Scheffler TL, Gunawan AM, Shi H, Zeng C, Hannon KM, Grant AL, Gerrard DE. Chronic elevated calcium blocks AMPK-induced GLUT-4 expression in skeletal muscle. 2009. Am J Physiol Cell Physiol. 296: C106-115.
42. Rom O, Kaisari S, Aizenbud D, Reznick AZ. Cigarette smoke and muscle catabolism in C2 myotubes. 2013. Mech Ageing Dev. 134: 24-34.
43. Daimon M, Sugiyama K, Kameda W, Saitoh T, Oizumi T, Hirata A, Yamaguchi H, Ohnuma H, Igarashi M, Kato T. Increased urinary levels of pentosidine, pyrraline and acrolein adduct in type 2 diabetes. 2003. Endocr J. 50: 61-67.
44. Alwis KU, deCastro BR, Morrow JC, Blount BC. Acrolein Exposure in U.S. Tobacco Smokers and Non-Tobacco Users: NHANES 2005-2006. 2015. Environ Health Perspect. [Epub ahead of print].
45. Chan WR, Sidheswaran M, Sullivan DP, Cohn S1, Fisk WJ. Cooking-related PM2.5 and acrolein measured in grocery stores and comparison with other retail types. 2015. Indoor Air. [Epub ahead of print].
46. Klip A, Sun Y, Chiu TT, Foley KP. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. 2014. Am J Physiol Cell Physiol. 306: C879-886.
47. Long YC, Cheng Z, Copps KD, White MF. Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways. 2011. Mol Cell Biol. 31: 430-431.
48. Barros RP, Machado UF, Warner M, Gustafsson JA. Muscle GLUT4 regulation by estrogen receptors ERbeta and ERalpha. 2006. Proc Natl Acad Sci U S A. 103: 1605-1608.
49. Zou C, Wang Y, Shen Z. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. 2005. J Biochem Biophys Methods. 64: 207-215.
50. Jensen J, Rustad PI, Kolnes AJ, Lai YC. The Role of Skeletal Muscle Glycogen Breakdown for Regulation of Insulin Sensitivity by Exercise. 2011. Front Physiol. 2: 112.
51. Kim YB, Peroni OD, Aschenbach WG, et al. Muscle-Specific Deletion of the Glut4 Glucose Transporter Alters Multiple Regulatory Steps in Glycogen Metabolism. 2005. Mol Cell Biol. 25: 9713–9723.
52. Milnerowicz H, Sliwinska-Mosson M, Rabczyński J, Nowak M, Milnerowicz S. Dysfunction of the pancreas in healthy smoking persons and patients with chronic pancreatitis. 2007. Pancreas. 34: 46-54.
53. Coogan PF, White LF, Jerrett M, Brook RD, Su JG, Seto E, Burnett R, Palmer JR, Rosenberg L. Air pollution and incidence of hypertension and diabetes mellitus in black women living in Los Angeles. 2012. Circulation. 125: 767-772.
54. Cho J, Choi YJ, Suh M, Sohn J, Kim H, Cho SK, Ha KH, Kim C, Shin DC. Air pollution as a risk factor for depressive episode in patients with cardiovascular disease, diabetes mellitus, or asthma. 2014. J Affect Disord. 157: 45-51.
55. Lovell MA, Xie C, Markesbery WR. Acrolein, a product of lipid peroxidation, inhibits glucose and glutamate uptake in primary neuronal cultures. 2000. Free Radic Biol Med. 29: 714-720.
56. Aoi W, Naito Y, Yoshikawa T. Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage. 2013. Free Radic Biol Med. 65: 1265-1272.
57. O'Toole TE, Abplanalp W, Li X, Cooper N, Conklin DJ, Haberzettl P, Bhatnagar A. Acrolein decreases endothelial cell migration and insulin sensitivity through induction of let-7a. 2014. Toxicol Sci. 140: 271-282.
58. Thompson PA, Seyedi F, Lang NP, MacLeod SL, Wogan GN, Anderson KE, Tang YM, Coles B, Kadlubar FF. Comparison of DNA adduct levels associated with exogenous and endogenous exposures in human pancreas in relation to metabolic genotype. 1999. Mutat Res.424: 263-274.
59. Schoenberg MH, Büchler M, Pietrzyk C, Uhl W, Birk D, Eisele S, Marzinzig M, Beger HG. Lipid peroxidation and glutathione metabolism in chronic pancreatitis. 1995. Pancreas. 10: 36-43.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18026-
dc.description.abstract環境汙染物丙烯醛(acrolein)為液狀小分子化合物,具有不飽和羰基鍵,易與親核性分子結合。而環境中丙烯醛暴露主要來自物質不完全燃燒、油炸食物與抽菸等,其中又以抽菸為大宗。除了經由環境接觸丙烯醛外,丙烯醛也會透過氧化壓力和脂肪過氧化於人體內生成。暴露過量丙烯醛可能與阿茲海默症、腎衰竭與糖尿病成因相關,過往研究發現糖尿病患者與重度吸菸者其尿液中丙烯醛共價鍵結物皆顯著增加,且腎臟疾病病患常併發骨骼肌功能下降,而骨骼肌為人體主要代謝醣類的組織。已有文獻指出丙烯醛會造成骨骼肌肌管細胞萎縮,但對丙烯醛於骨骼肌分化/再生及醣類代謝機制仍待釐清。因此,本研究利用細胞與動物模式探討丙烯醛在骨骼肌肌肉生成(myogenesis)和醣類代謝上之角色。首先經由hematoxylin and eosin (H E)染色發現丙烯醛(0.125-1 μM)具劑量關係阻滯肌纖維母細胞(C2C12 myoblast)分化,同時抑制調節肌細胞能量之肌酸激酶活性。以西方墨點法分析,發現丙烯醛(1 μM)顯著減少骨骼肌分化指標蛋白(myosin heavy chain, myogenin and phospho-Akt)表現和抑制骨骼肌醣類代謝相關蛋白表現。丙烯醛亦造成細胞內肝醣含量增加與葡萄糖攝入減低。過度表現持續性活化態Akt於肌細胞內能恢復丙烯醛抑制之肌酸激酶活性、骨骼肌分化指標蛋白表現及葡萄糖運輸蛋白(glucose transporter 4)表現。動物模式方面,經由管餵小鼠丙烯醛四週(2.5 and 5 mg/kg)後,造成小鼠明顯體重下降且血糖躍升、胰島素驟降,其口服葡萄糖耐受性試驗丙烯醛暴露組呈現高峰延滯分布。藉由滾輪跑步裝置偵測小鼠肌肉強度,丙烯醛(5 mg/kg)造成小鼠肌肉強度下降。當小鼠進行甘油注射致骨骼肌受損試驗(experimental glycerol myopathy model)並再生五天後,丙烯醛(2.5 and 5 mg/kg)導致小鼠肌肉強度下降且比目魚肌重量顯著減少、其骨骼肌復原情形明顯受丙烯醛(2.5 and 5 mg/kg)阻滯。綜合上述,本研究發現丙烯醛抑制肌纖維母細胞分化與骨骼肌再生,並影響骨骼肌醣類代謝,導致小鼠血液葡萄糖濃度增高,其詳細機制在未來仍待探討。zh_TW
dc.description.abstractAcrolein is a small molecule and extremely electrophilic aldehyde from foods, environment and tobacco. The endogenous sources of acrolein are related to metabolism of the anticancer drug cyclophosphamide and lipid peroxidation. Acrolein provokes its harmful influences through oxidative stress or inflammation during degradation of threonine and spermidine. High level acrolein was an environmental risk in daily unsaturated aldehyde consumption that contributed to the pathogenesis of Alzheimer’s disease, renal failure and diabetes. Dysfunction of skeletal muscle occurs in renal failure and diabetes patients that is due to oxidative stress and chronic inflammation. Besides, the urinary levels of acrolein adduct were both increased in type 2 diabetes and smoking habit. However, the effects of acrolein on myogenesis and glucose homeostasis in skeletal muscle still remain unclear. A non-cytotoxic dose of acrolein (1μM) repressed myogenic differentiation on C2C12 myoblasts, and then inhibited myotube formation by hematoxylin and eosin (H E) staining and creatinine kinase activity. Myogenic protein expressions (myosin heavy chain, myogenin and phosphorylation of Akt) were also decreased with acrolein treatment. Furthermore, glucose utilization plays an essential role of myogenesis and GLUT4 expresses predominant in skeletal muscle which responded to glucose uptake. Acrolein (1 μM) impaired glucose homeostasis by inhibition of protein expressions of glucose metabolic signalling on skeletal myotubes in vitro. Over-expression of constitutive activation of Akt on differentiation of C2C12 myoblasts reversed the expression of inhibitory myogenic makers and GLUT4 induced by acrolein. Moreover, acrolein (2.5 and 5 mg/kg/day) significantly retarded skeletal muscle regeneration in murine soleus muscles and exercise performance (rotarod) after glycerol injured soleus muscle. Exposure of ICR mice to acrolein prominently increased blood glucose, impaired glucose tolerance and decreased plasma insulin. Taken together, these results suggest that acrolein exposure is capable of impairing the myogenesis and glucose metabolism in vitro and in vivo. The further mechanism(s) will be investigated in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:48:53Z (GMT). No. of bitstreams: 1
ntu-104-R02447001-1.pdf: 3118744 bytes, checksum: fbe6d6a98a6b2ca62539a26dc3c0b041 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
口試委員會審定書 i
誌謝 iv
中文摘要 vi
Abstract viii
Abbreviation Summary x
Part 1: Introduction 1
1.1 Sources and exposure routes of acrolein 1
1.2 Metabolism and toxicity of acrolein 2
1.3 The major energy consumption in skeletal muscle 3
Part 2: Aims 6
Part 3: Materials and Methods 7
3.1 Cell culture 7
3.2 Myogenic differentiation and acrolein (ACR) treatment 7
3.3 Estimation of cell viability 7
3.4 Protein extraction and Western blot analysis 8
3.5 Measurement of creatine kinase activity 9
3.6 Determination of glycogen content 9
3.7 Rotarod 10
3.8 Oral glucose tolerance test (OGTT) 10
3.9 Transient transfection 11
3.10 Animals 11
3.11 Muscle injured model 12
3.12 Membrane protein isolation 12
3.13 Glucose transport assay 13
3.14 Measurement of plasma insulin level 13
3.15 Statistics 14
Part 4: Results 15
4.1 Acrolein retards myogenic differentiation in C2C12 myoblastic cells 15
4.2 Phosphorylation of Akt is down-regulated by acrolein during myogenesis. …………………………………………………………………………..15
4.3 Acrolein effects on glucose transporter and glucose metabolic signalling in C2C12 myotubes. 16
4.4 Constitutive expression of Akt rescues the inhibitory effect of acrolein on GLUT4 in C2C12 myotubes. 17
4.5 Acrolein interferes skeletal muscle regeneration and function in vivo. 17
4.6 The influences of acrolein on the levels of blood glucose, plasma insulin and OGTT in male mice. 18
4.7 Acrolein impairs glycogen synthesis and glucose uptake, and increases the protein expression of 4-HNE in C2C12 myotubes. 19
Part 5: Discussion 21
Part 6: Conclusion 26
Part 7: References 27
Part 8: Figures and figure legends 36
Figure 1. Inhibitory effect of acrolein on myogenic differentiation in C2C12 cells. …………………………………………………………………………..36
Figure 2. Effects of acrolein on creatine kinase activity and protein expressions of myogenesis markers in C2C12 myoblasts. 38
Figure 3. Transfection with a constitutively active form of Akt rescues the inhibitory effect of acrolein by enhanced myotube formation, the activity of creatine kinase and myogenesis. 40
Figure 4. Effects of acrolein on GLUT4 recruitment and biosynthesis in C2C12 myotubes. 42
Figure 5. Acrolein interferes with glucose metabolic signals in C2C12 myotubes. …………………………………………………………………………..43
Figure 6. Overexpression of c.a. Akt ameliorates the inhibitory effect of acrolein on glucose transporter in myotubes. 44
Figure 7. Effects of acrolein on the levels of body weight, plasma insulin and blood glucose in 5-week-old male mice. 45
Figure 8. Effects of acrolein on the weight of soleus muscle and the latency on the rotarod after glycerol injury were treated with acrolein (2.5 or 5 mg/kg) in mice for 4 weeks. 46
Figure 9. Inhibitory effects of muscle regeneration after glycerol injury were exposed to 2.5 or 5 mg/kg acrolein in 5-week-old mice for 4 weeks. 47
Figure 10. Effects of acrolein on OGTT in male ICR mice with or without acrolein for 4 weeks. 48
Figure 11. Effects of acrolein on glucose uptake, glycogen content and protein expression of 4-HNE in differentiated myotubes. 49
dc.language.isoen
dc.title探討丙烯醛影響骨骼肌分化/再生及醣類代謝之機制zh_TW
dc.titleAcrolein Impairs Skeletal Muscle Myogenesis and Glucose Metabolismen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許美鈴(Meei-Ling Sheu),姜至剛(Chih-Kang Chiang),楊榮森(Rong-Sen Yang)
dc.subject.keyword丙烯醛,骨骼肌,肌肉生成,醣類代謝,肌纖維母細胞,zh_TW
dc.subject.keywordacrolein,skeletal muscle,myogenesis,glucose metabolism,myoblast,Akt,glucose transporter,en
dc.relation.page49
dc.rights.note未授權
dc.date.accepted2015-07-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved