請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18003
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永芳 | |
dc.contributor.author | Jhong-Yao Wang | en |
dc.contributor.author | 王仲堯 | zh_TW |
dc.date.accessioned | 2021-06-08T00:48:15Z | - |
dc.date.copyright | 2015-08-10 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-21 | |
dc.identifier.citation | Chapter1
1. J. Nelson, The Physics of Solar Cells, Imperial College Press, 2003. 2. http://en.wikipedia.org/wiki/Timeline_of_solar_cells 3. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J Am Chem Soc 2009, 131 (17), 6050-+. 4. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, '6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell', Nanoscale, 3 (2011), 4088-93. 5. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, 'Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%', Sci Rep, 2 (2012), 591. 6. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 2012, 338, 643-647. 7. H. P. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. R. Hong, J. B. You, Y. S. Liu and Y. Yang, Science 2014, 345, 542-546. 8. J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, Energy & Environmental Science, 2013, 6, 1739-1743. 9. M. J. Carnie, C. Charbonneau, M. L. Davies, J. Troughton, T. M. Watson, K. Wojciechowski, H. Snaith and D. A. Worsley, Chem Commun, 2013, 49, 7893-7895. 10. K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate and H. J. Snaith, Energ Environ Sci, 2014, 7, 1142-1147. Chapter 2 1. http://solarwiki.ucdavis.edu/The_Science_of_Solar/Solar_Basics/B._Basics_of_the_Sun/V._Air_Mass 2. Nelson, Jenny. The Physics of Solar Cells. London: Imperial College Press, 2003. 3. http://commons.wikimedia.org/wiki/File:PnJunction-PV-E.PNG 4. http://pveducation.org/pvcdrom/solar-cell-operation/short-circuit-current 5. http://www.ni.com/white-paper/7230/en/ 6. M. Bashahu, A. Habyarimana, Renewable Energy 1995, 6, 129-138. 7. Naoki Koide, Ashraful Islam, Yasuo Chiba, Liyuan Han, J. Photochem. Photobiol., A 2006, 182, 296-305. 8. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007). Chapter 3 1. G.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, and E. Lifshin, Scanning electron microscopy and X-ray microanalysis, Plenum Press, New York and London (1981). 2. https://en.wikipedia.org/wiki/Evaporation_(deposition) 3. https://en.wikipedia.org/wiki/Quantum_efficiency 4. https://en.wikipedia.org/wiki/Atomic_force_microscopy 5. Natda Wetchakun, Burapat Incessungvorn, Khatcharin Wetchakun, and Sukon Phanichphant, 'Influence of Calcination Temperature on Anatase to Rutile Phase Transformation in Tio2 Nanoparticles Synthesized by the Modified Sol–Gel Method', Materials Letters, 82 (2012), 195-98. 6. Dorian A. H. Hanaor, and Charles C. Sorrell, 'Review of the Anatase to Rutile Phase Transformation', Journal of Materials Science, 46 (2010), 855-74. 7. H. D. Megaw, Nature 1945, 155, 484-485. 8. Z. Cheng and J. Lin, CrystEngComm 2010, 12, 2646. 9. D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess and A. M. Guloy, Science 1995, 267, 1473-1476. Chapter 4 Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006, 442 (7100), 282-6. 2. Deng, H.; Lin, L.; Ji, M.; Zhang, S.; Yang, M.; Fu, Q., Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science 2014, 39 (4), 627-655. 3. Al-Saleh, M. H.; Sundararaj, U., A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 2009, 47 (1), 2-22. 4. Mechrez, G.; Suckeveriene, R. Y.; Zelikman, E.; Rosen, J.; Ariel-Sternberg, N.; Cohen, R.; Narkis, M.; Segal, E., Highly-Tunable Polymer/Carbon Nanotubes Systems: Preserving Dispersion Architecture in Solid Composites via Rapid Microfiltration. ACS Macro Letters 2012, 1 (7), 848-852. 5. Ma, P.-C.; Siddiqui, N. A.; Marom, G.; Kim, J.-K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing 2010, 41 (10), 1345-1367. 6. Villmow, T.; Pegel, S.; John, A.; Rentenberger, R.; Pötschke, P., Liquid sensing: smart polymer/CNT composites. Materials Today 2011, 14 (7-8), 340-345. 7. Antunes, R. A.; de Oliveira, M. C. L.; Ett, G.; Ett, V., Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. Journal of Power Sources 2011, 196 (6), 2945-2961. 8. Dang, Z.-M.; Yuan, J.-K.; Zha, J.-W.; Zhou, T.; Li, S.-T.; Hu, G.-H., Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Progress in Materials Science 2012, 57 (4), 660-723. 9. H Yang, TJ Shin, L Yang, K Cho, CY Ryu, Z Bao, Effect of mesoscale crystalline structure on the field‐effect mobility of regioregular poly (3‐hexyl thiophene) in thin‐film transistors. Advanced Functional Materials 2005,15 (4), 671-676 10. Sirringhaus, H.; Tessler, N.; Friend, R. H, Integrated Optoelectronic Devices Based on Conjugated Polymers. Science 1998, 280, 1741-1744 11. Padinger F, Rittberger RS, Sariciftci NS, Effects of Postproduction Treatment on Plastic Solar Cells. Advanced Functional Materials, 2003,13,85-88. 12. Kymakis, E.; Koudoumas, E.; Franghiadakis, I.; Amaratunga, G. A. J., Post-fabrication annealing effects in polymer-nanotube photovoltaic cells. Journal of Physics D: Applied Physics 2006, 39 (6), 1058-1062. 13. F. D. Giacomo, S. Razza, F. Matteocci, A. D'Epifanio, S. Licoccia, T.M. Brown, A.D. Carlo, High efficiency CH 3 NH 3 PbI (3− x) Cl x perovskite solar cells with poly (3-hexylthiophene) hole transport layer . J. Power Sources 251, 2014 ,152-156. 14. Musumeci, A. W.; Silva, G. G.; Liu, J.-W.; Martens, W. N.; Waclawik, E. R., Structure and conductivity of multi-walled carbon nanotube/poly(3-hexylthiophene) composite films. Polymer 2007, 48 (6), 1667-1678. 15. Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y., Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). Journal of Applied Physics 2005, 98 (4), 043704. 16. Lu, L.; Luo, Z.; Xu, T.; Yu, L., Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano letters 2013, 13 (1), 59-64. 17. Ng, A.; Yiu, W. K.; Foo, Y.; Shen, Q.; Bejaoui, A.; Zhao, Y.; Gokkaya, H. C.; Djurisic, A. B.; Zapien, J. A.; Chan, W. K.; Surya, C., Enhanced performance of PTB7:PC(7)(1)BM solar cells via different morphologies of gold nanoparticles. ACS Appl Mater Interfaces 2014, 6 (23), 20676-84. 18. X. Yang, C.-C. Chueh, C.-Z. Li, H.-L. Yip, P. Yin, H. Chen, W.-C. Chen, and A. K-Y. Jen, High-efficiency polymer solar cells achieved by doping plasmonic metallic nanoparticles into dual charge selecting interfacial layers to enhance light trapping, Advanced Energy Materials 3 , 2013, 666 – 673. 19. Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F., First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C 2013, 117 (27), 13902-13913. 20. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131, 2009,6050. 21. H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345 (2014) 542 – 546. 22. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2012, 2, 591. 23. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano letters 2013, 13 (4), 1764-9. 24. A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency, Nano letters.2014,14, 2591-2596 . 25. Zhu, Z.; Ma, J.; Wang, Z.; Mu, C.; Fan, Z.; Du, L.; Bai, Y.; Fan, L.; Yan, H.; Phillips, D. L.; Yang, S., Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc 2014, 136 (10), 3760-3. 26. Son, D.-Y.; Im, J.-H.; Kim, H.-S.; Park, N.-G., 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. The Journal of Physical Chemistry C 2014, 118 (30), 16567-16573. 27. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I., Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics 2013, 7 (6), 486-491. 28. Zhang, Y.; Liu, W.; Tan, F.; Gu, Y., The essential role of the poly(3-hexylthiophene) hole transport layer in perovskite solar cells. Journal of Power Sources 2015, 274, 1224-1230. 29. Shih, Y. C.; Wang, L. Y.; Hsieh, H. C.; Lin, K. F., Enhancing the photocurrent of perovskite solar cells via modification of the TiO2/CH3NH3PbI3heterojunction interface with amino acid. J. Mater. Chem. A 2015, 3 (17), 9133-9136. 30. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J., Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials 2014, 24 (1), 151-157. 31. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science 2012,338, 643−647. 32. Chi, L.; Swainson, I.; Cranswick, L.; Her, J.-H.; Stephens, P.; Knop, O., The ordered phase of methylammonium lead chloride CH3ND3PbCl3. Journal of Solid State Chemistry 2005, 178 (5), 1376-1385. 33. F. D. Clacomo, S. Razza, F. Matteocci, A. D. Epifanio, S. Licoccia, T. M. Brown, and A. D. Carlo, High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly (3-hexylthiophene) hole transport layer. Journal of Power Sources 2014, 251, 152 – 156 . 34. Brown, P. J.; Thomas, D. S.; Köhler, A.; Wilson, J. S.; Kim, J.-S.; Ramsdale, C. M.; Sirringhaus, H.; Friend, R. H., Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Physical Review B 2003, 67 (6). 35. Wu, M.-C.; Lin, Y.-Y.; Chen, S.; Liao, H.-C.; Wu, Y.-J.; Chen, C.-W.; Chen, Y.-F.; Su, W.-F., Enhancing light absorption and carrier transport of P3HT by doping multi-wall carbon nanotubes. Chemical Physics Letters 2009, 468 (1-3), 64-68. 36. Dennler, G.; Scharber, M. C.; Brabec, C. J., Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv Mater 2009, 21 (13), 1323-1338. 37. Chen, L.-M.; Hong, Z.; Li, G.; Yang, Y., Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells. Adv Mater 2009, 21 (14-15), 1434-1449. 38. R. J. Kline, M. D. McGehee, E.N. Kadnikova, J. Liu, J.M. J. Fréchet, and M.F. Toney, Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight, Macromolecules 2005 ,3312-3319. 39. Jimison, L. H.; Toney, M. F.; McCulloch, I.; Heeney, M.; Salleo, A., Charge-Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly(3-hexylthiophene). Adv Mater 2009, 21 (16), 1568-1572 40. A. W. Musumeci, G. G. Silva, J.-W. Liu, W. N. Martens, and E. R. Waclawik, Structure and conductivity of multi-walled carbon nanotube/poly(3-hexylthiophene) composite films, Polymer 2007,48, 1667 – 1678. 41. Shrotriya, V.; Wu, E. H.-E.; Li, G.; Yao, Y.; Yang, Y., Efficient light harvesting in multiple-device stacked structure for polymer solar cells. Appl Phys Lett 2006, 88 (6), 064104. 42. Choulis, S. A.; Kim, Y.; Nelson, J.; Bradley, D. D. C.; Giles, M.; Shkunov, M.; McCulloch, I., High ambipolar and balanced carrier mobility in regioregular poly(3-hexylthiophene). Appl Phys Lett 2004, 85 (17), 3890. 43. Bo, X. Z.; Lee, C. Y.; Strano, M. S.; Goldfinger, M.; Nuckolls, C.; Blanchet, G. B., Carbon nanotubes-semiconductor networks for organic electronics: The pickup stick transistor. Appl Phys Lett 2005, 86 (18), 182102. 44. Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J., New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Adv Mater 2006, 18 (5), 572-576. 45. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano letters 2013, 13 (4), 1764-9. 46. Leijtens, T.; Lim, J.; Teuscher, J.; Park, T.; Snaith, H. J., Charge density dependent mobility of organic hole-transporters and mesoporous TiO(2) determined by transient mobility spectroscopy: implications to dye-sensitized and organic solar cells. Adv Mater 2013, 25 (23), 3227-33. 47. Zhang, W.; Saliba, M.; Stranks, S. D.; Sun, Y.; Shi, X.; Wiesner, U.; Snaith, H. J., Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. Nano letters 2013, 13 (9), 4505-10. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18003 | - |
dc.description.abstract | 高效率無機混參有機鈣鈦礦太陽能電池在近年來獲得相當大的注目,由於其擁有相當良好的光吸收強度及範圍,對於產生太陽能電池當中非常重要的光激子有相當大的幫助,目前短短的6年內(2009~2015),由實驗室發表的數據來看,鈣鈦礦太陽能電池效率已經從3.81%躍升至近20%,這說明鈣鈦礦太陽能電池,對於越來越需要綠色能源的地球來說,扮演著非常重要的腳色。
本篇主要的研究,是關於高效率鈣鈦礦太陽能電池的製備,在清洗乾淨的FTO基板上,旋轉塗佈上緻密的電子傳輸層(TiO2),以高溫攝氏600度燒結6小時,接著將基板移至手套箱內,在水值<0.1 ppm的環境下,旋轉塗佈上鈣鈦礦的前驅物溶液,將基板放置在加熱板上,經由熱退火的方式,將前驅物轉換成鈣鈦礦的薄膜層,接著再旋轉塗佈上電洞傳導層(P3HT),靜置一晚,待其薄膜層乾燥後,最後使用熱蒸鍍的方式,覆蓋金電極,如此便完成鈣鈦礦太陽能電池的製備。 而在電動傳輸層(P3HT)當中添加奈米金粒子,可利用表面電漿效應增加載子遷移率以及增加光散射進而提升主動層的吸收並且增加P3HT層之電導率,以致達到提升鈣鈦礦太陽能電池元件效率的目的,經由此方法改進之效率是所有鈣鈦礦太陽能電池具有相同結構之最高紀錄。 | zh_TW |
dc.description.abstract | In recent years, highly power conversion efficiency perovskite solar cell has attracted many scientists’s eyes. Because of the help of good absorbtion range and intensity, the perovskite solar cell can produce more excitons than usual active layer materials. The PCE is almost reach 20% from 3.81% in a short six years. It shows the perovskite solar cell has a great potential to deal with the world’s energy problems.
This research is mainly about the fabrication of perovskite solar cell, first we spin coating the electron transport material TiO2 on the cleaned FTO substrate, then, sintering the substrate at 600℃ for 6 hours to form a compact TiO2 layer. After it cools down, we spin coating the perovskite precursor on top of the compact TiO2 layer at glovebox (H2O <0.1ppm),than we spin coating the hole transport material P3HT after annealing the perovskite precursor, and last, depositing the gold by thermal evaporation. The most important achievement in this thesis is to introduce Au-NPs into the P3HT layer, to enhance the absorbtion of the perovskite layer by scattering as well as the conductivity of P3HT layer. Therefore, the power conversion efficiency of the perovskite based solar cells can be greatly increased. The obtained cell efficiency sets the highest record for the perovskite solar cells made with the same structure. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:48:15Z (GMT). No. of bitstreams: 1 ntu-104-R02245012-1.pdf: 1227351 bytes, checksum: 0906529b5ab4ff0ad8647e769fc8b448 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Chapter 1 Introduction 1。
REFERENCE 5。 Chapter 2 Theoretical background 7。 2.1 The principle of solar cell 7。 2.1.1 Solar radiation 7。 2.1.2 Photovoltic effect 8。 2.1.3 Short circuit current 9。 2.1.4 Open circuit voltage 10。 2.1.5 Filling factor(FF)&Efficiency 11。 2.1.6 Equivalent circuit of a solar cell 12。 2.1.7 Localized surface plasmon resonance on metal mamoparticles 13。 REFERENCE 16。 Chapter 3 Equipment and Material Design 17。 3.1 Equipment 17。 3.1.1 Scanning electron microscopy(SEM) 17。 3.1.2 Thermoal evaporation 18。 3.1.3 Incident Photon-to-Electron Conversion Efficiency 20。 3.1.4 Solar simulator 21。 3.1.5 Atomic force microscope(AFM) 22。 3.2 Material Design 23。 3.2.1 Compact TiO2 23。 3.2.2 P3HT 23。 3.2.3 Perovskite 24。 REFERENCE 25。 Chapter 4 Create Equations Using MathType 26。 4.1 Introduction 26。 4.2 Experiment 29。 4.2.1 Materials Preparation 29。 4.2.2 Solar cell fabrication 30。 4.2.3 Characterization 31。 4.3 Results and discussion 32。 REFERENCE ...45。 Chapter 5 Conclusion 55。 | |
dc.language.iso | en | |
dc.title | 高分子奈米複合材料用於增益鈣鈦礦太陽能電池效率之研究 | zh_TW |
dc.title | Polymer Nanocomposites as Hole Transport Layer for High Performance Perovskite Solar Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許芳琪,沈志霖 | |
dc.subject.keyword | 鈣鈦礦太陽能電池,電洞傳導層,奈米金粒子,散射, | zh_TW |
dc.subject.keyword | perovskite solar cell,hole transport material,Au-NPs,scattering, | en |
dc.relation.page | 55 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-07-21 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理所 | zh_TW |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。