Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18002
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王致恬(Chih-Tien Wang)
dc.contributor.authorCheng-Chang Yangen
dc.contributor.author楊政璋zh_TW
dc.date.accessioned2021-06-08T00:48:13Z-
dc.date.copyright2015-10-12
dc.date.issued2015
dc.date.submitted2015-07-21
dc.identifier.citationAckman JB, Burbridge TJ, Crair MC (2012) Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490:219-225.
Acuna-Goycolea C, Brenowitz SD, Regehr WG (2008) Active dendritic conductances dynamically regulate GABA release from thalamic interneurons. Neuron 57:420-431.
Andersson SA, Olsson AH, Esguerra JL, Heimann E, Ladenvall C, Edlund A, Salehi A, Taneera J, Degerman E, Groop L, Ling C, Eliasson L (2012) Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Molecular and cellular endocrinology 364:36-45.
Andreasen NC, Arndt S, Swayze V, 2nd, Cizadlo T, Flaum M, O'Leary D, Ehrhardt JC, Yuh WT (1994) Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266:294-298.
Bai J, Chapman ER (2004) The C2 domains of synaptotagmin--partners in exocytosis. Trends in biochemical sciences 29:143-151.
Bai J, Earles CA, Lewis JL, Chapman ER (2000) Membrane-embedded synaptotagmin penetrates cis or trans target membranes and clusters via a novel mechanism. The Journal of biological chemistry 275:25427-25435.
Bai J, Tucker WC, Chapman ER (2004) PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat Struct Mol Biol 11:36-44.
Bansal A, Singer JH, Hwang BJ, Xu W, Beaudet A, Feller MB (2000) Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 20:7672-7681.
Berton F, Iborra C, Boudier JA, Seagar MJ, Marqueze B (1997) Developmental regulation of synaptotagmin I, II, III, and IV mRNAs in the rat CNS. The Journal of neuroscience : the official journal of the Society for Neuroscience 17:1206-1216.
Blankenship AG, Feller MB (2010) Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nature reviews Neuroscience 11:18-29.
Bodnarenko SR, Jeyarasasingam G, Chalupa LM (1995) Development and regulation of dendritic stratification in retinal ganglion cells by glutamate-mediated afferent activity. The Journal of neuroscience : the official journal of the Society for Neuroscience 15:7037-7045.
Brose N, Petrenko AG, Sudhof TC, Jahn R (1992) Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256:1021-1025.
Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D (1996) Cell fate determination in the vertebrate retina. Proceedings of the National Academy of Sciences of the United States of America 93:589-595.
Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nature reviews Molecular cell biology 3:498-508.
Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Annual review of biochemistry 77:615-641.
Chapman ER, Desai RC, Davis AF, Tornehl CK (1998) Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin. The Journal of biological chemistry 273:32966-32972.
Chen W, Kato T, Zhu XH, Ogawa S, Tank DW, Ugurbil K (1998) Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. Neuroreport 9:3669-3674.
Chiang CW, Chen YC, Lu JC, Hsiao YT, Chang CW, Huang PC, Chang YT, Chang PY, Wang CT (2012) Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains. PLoS One 7:e47465.
Coombs JL, Van Der List D, Chalupa LM (2007) Morphological properties of mouse retinal ganglion cells during postnatal development. The Journal of comparative neurology 503:803-814.
Craxton M (2010) A manual collection of Syt, Esyt, Rph3a, Rph3al, Doc2, and Dblc2 genes from 46 metazoan genomes--an open access resource for neuroscience and evolutionary biology. BMC genomics 11:37.
Dean C, Liu H, Dunning FM, Chang PY, Jackson MB, Chapman ER (2009) Synaptotagmin-IV modulates synaptic function and long-term potentiation by regulating BDNF release. Nature neuroscience 12:767-776.
Dehorter N, Vinay L, Hammond C, Ben-Ari Y (2012) Timing of developmental sequences in different brain structures: physiological and pathological implications. The European journal of neuroscience 35:1846-1856.
Desai RC, Vyas B, Earles CA, Littleton JT, Kowalchyck JA, Martin TF, Chapman ER (2000) The C2B domain of synaptotagmin is a Ca(2+)-sensing module essential for exocytosis. The Journal of cell biology 150:1125-1136.
Dorris MC, Pare M, Munoz DP (1997) Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. The Journal of neuroscience : the official journal of the Society for Neuroscience 17:8566-8579.
Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272:1182-1187.
Ferguson GD, Thomas DM, Elferink LA, Herschman HR (1999) Synthesis degradation, and subcellular localization of synaptotagmin IV, a neuronal immediate early gene product. Journal of neurochemistry 72:1821-1831.
Ferguson GD, Vician L, Herschman HR (2001) Synaptotagmin IV: biochemistry, genetics, behavior, and possible links to human psychiatric disease. Molecular neurobiology 23:173-185.
Ford KJ, Felix AL, Feller MB (2012) Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves. The Journal of neuroscience : the official journal of the Society for Neuroscience 32:850-863.
Ford KJ, Feller MB (2012) Assembly and disassembly of a retinal cholinergic network. Visual neuroscience 29:61-71.
Fox MA, Sanes JR (2007) Synaptotagmin I and II are present in distinct subsets of central synapses. The Journal of comparative neurology 503:280-296.
Fukuda M, Kanno E, Ogata Y, Saegusa C, Kim T, Loh YP, Yamamoto A (2003) Nerve growth factor-dependent sorting of synaptotagmin IV protein to mature dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells. The Journal of biological chemistry 278:3220-3226.
Fukuda M, Kojima T, Mikoshiba K (1996) Phospholipid composition dependence of Ca2+-dependent phospholipid binding to the C2A domain of synaptotagmin IV. The Journal of biological chemistry 271:8430-8434.
Galli L, Maffei L (1988) Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242:90-91.
Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54:559-566.
Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Sudhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717-727.
Gonzalez-Islas C, Wenner P (2006) Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength. Neuron 49:563-575.
Grozdanov V, Muller A, Sengottuvel V, Leibinger M, Fischer D (2010) A method for preparing primary retinal cell cultures for evaluating the neuroprotective and neuritogenic effect of factors on axotomized mature CNS neurons. Current protocols in neuroscience / editorial board, Jacqueline N Crawley [et al] Chapter 3:Unit3 22.
Grunder T, Kohler K, Guenther E (2000a) Distribution and developmental regulation of AMPA receptor subunit proteins in rat retina. Investigative ophthalmology visual science 41:3600-3606.
Grunder T, Kohler K, Kaletta A, Guenther E (2000b) The distribution and developmental regulation of NMDA receptor subunit proteins in the outer and inner retina of the rat. Journal of neurobiology 44:333-342.
Gut A, Kiraly CE, Fukuda M, Mikoshiba K, Wollheim CB, Lang J (2001) Expression and localisation of synaptotagmin isoforms in endocrine beta-cells: their function in insulin exocytosis. Journal of cell science 114:1709-1716.
Hack I, Koulen P, Peichl L, Brandstatter JH (2002) Development of glutamatergic synapses in the rat retina: the postnatal expression of ionotropic glutamate receptor subunits. Visual neuroscience 19:1-13.
Hack I, Peichl L, Brandstatter JH (1999) An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America 96:14130-14135.
Heidelberger R, Wang MM, Sherry DM (2003) Differential distribution of synaptotagmin immunoreactivity among synapses in the goldfish, salamander, and mouse retina. Visual neuroscience 20:37-49.
Hildebrand GD, Fielder AR (2011) Anatomy and Physiology of the Retina. In: Pediatric retina, pp 39-65: Springer.
Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annual review of neuroscience 17:31-108.
Hu X, Huang J, Feng L, Fukudome S, Hamajima Y, Lin J (2010) Sonic hedgehog (SHH) promotes the differentiation of mouse cochlear neural progenitors via the Math1-Brn3.1 signaling pathway in vitro. Journal of neuroscience research 88:927-935.
Huang PC, Hsiao YT, Kao SY, Chen CF, Chen YC, Chiang CW, Lee CF, Lu JC, Chern Y, Wang CT (2014) Adenosine A(2A) receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina. PLoS One 9:e95090.
Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Annual review of neuroscience 31:479-509.
Ibata K, Fukuda M, Hamada T, Kabayama H, Mikoshiba K (2000) Synaptotagmin IV is present at the Golgi and distal parts of neurites. Journal of neurochemistry 74:518-526.
Jeremic A, Jeftinija K, Stevanovic J, Glavaski A, Jeftinija S (2001) ATP stimulates calcium-dependent glutamate release from cultured astrocytes. Journal of neurochemistry 77:664-675.
Jessell TM, Sanes JR (2000) Development. The decade of the developing brain. Curr Opin Neurobiol 10:599-611.
Ke B, Oh E, Thurmond DC (2007) Doc2beta is a novel Munc18c-interacting partner and positive effector of syntaxin 4-mediated exocytosis. The Journal of biological chemistry 282:21786-21797.
Kirkby LA, Sack GS, Firl A, Feller MB (2013) A role for correlated spontaneous activity in the assembly of neural circuits. Neuron 80:1129-1144.
Klyachko VA, Jackson MB (2002) Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418:89-92.
Korkut C, Li Y, Koles K, Brewer C, Ashley J, Yoshihara M, Budnik V (2013) Regulation of postsynaptic retrograde signaling by presynaptic exosome release. Neuron 77:1039-1046.
Kreft M, Krizaj D, Grilc S, Zorec R (2003) Properties of exocytotic response in vertebrate photoreceptors. Journal of neurophysiology 90:218-225.
Lee HK, Yang Y, Su Z, Hyeon C, Lee TS, Lee HW, Kweon DH, Shin YK, Yoon TY (2010) Dynamic Ca2+-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science 328:760-763.
Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y, Buzsaki G (2002) Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296:2049-2052.
Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annual review of neuroscience 25:409-432.
Li C, Ullrich B, Zhang JZ, Anderson RG, Brose N, Sudhof TC (1995) Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375:594-599.
Li JY, Jahn R, Dahlstrom A (1994) Synaptotagmin I is present mainly in autonomic and sensory neurons of the rat peripheral nervous system. Neuroscience 63:837-850.
Lin RC, Scheller RH (2000) Mechanisms of synaptic vesicle exocytosis. Annual review of cell and developmental biology 16:19-49.
Liu H, Dean C, Arthur CP, Dong M, Chapman ER (2009) Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I. The Journal of neuroscience : the official journal of the Society for Neuroscience 29:7395-7403.
London A, Benhar I, Schwartz M (2013) The retina as a window to the brain-from eye research to CNS disorders. Nature reviews Neurology 9:44-53.
Machado HB, Liu W, Vician LJ, Herschman HR (2004) Synaptotagmin IV overexpression inhibits depolarization-induced exocytosis in PC12 cells. Journal of neuroscience research 76:334-341.
Mackler JM, Drummond JA, Loewen CA, Robinson IM, Reist NE (2002) The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418:340-344.
Marquardt T, Gruss P (2002) Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci 25:32-38.
Martin KR, Levkovitch-Verbin H, Valenta D, Baumrind L, Pease ME, Quigley HA (2002) Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat. Investigative ophthalmology visual science 43:2236-2243.
McLaughlin T, Torborg CL, Feller MB, O'Leary DD (2003) Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40:1147-1160.
Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15:805-819.
Monterrat C, Boal F, Grise F, Hemar A, Lang J (2006) Synaptotagmin 8 is expressed both as a calcium-insensitive soluble and membrane protein in neurons, neuroendocrine and endocrine cells. Biochimica et biophysica acta 1763:73-81.
Moody WJ, Bosma MM (2005) Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiological reviews 85:883-941.
Mori M, Heuss C, Gahwiler BH, Gerber U (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. The Journal of physiology 535:115-123.
Mumm JS, Williams PR, Godinho L, Koerber A, Pittman AJ, Roeser T, Chien CB, Baier H, Wong RO (2006) In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron 52:609-621.
Nishiki T, Augustine GJ (2004) Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 24:6127-6132.
O'Donovan MJ (1999) The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr Opin Neurobiol 9:94-104.
Orita S, Sasaki T, Komuro R, Sakaguchi G, Maeda M, Igarashi H, Takai Y (1996) Doc2 enhances Ca2+-dependent exocytosis from PC12 cells. The Journal of biological chemistry 271:7257-7260.
Pan L, Deng M, Xie X, Gan L (2008) ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development 135:1981-1990.
Pang ZP, Shin OH, Meyer AC, Rosenmund C, Sudhof TC (2006) A gain-of-function mutation in synaptotagmin-1 reveals a critical role of Ca2+-dependent soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex binding in synaptic exocytosis. The Journal of neuroscience : the official journal of the Society for Neuroscience 26:12556-12565.
Pang ZP, Sudhof TC (2010) Cell biology of Ca2+-triggered exocytosis. Current opinion in cell biology 22:496-505.
Patterson PH (2007) Neuroscience. Maternal effects on schizophrenia risk. Science 318:576-577.
Penn AA, Riquelme PA, Feller MB, Shatz CJ (1998) Competition in retinogeniculate patterning driven by spontaneous activity. Science 279:2108-2112.
Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1-26.
Pressler RT, Regehr WG (2013) Metabotropic glutamate receptors drive global persistent inhibition in the visual thalamus. The Journal of neuroscience : the official journal of the Society for Neuroscience 33:2494-2506.
Redmond L, Kashani AH, Ghosh A (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34:999-1010.
Robinson IM, Ranjan R, Schwarz TL (2002) Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain. Nature 418:336-340.
Schiavo G, Osborne SL, Sgouros JG (1998) Synaptotagmins: more isoforms than functions? Biochemical and biophysical research communications 248:1-8.
Seagar M, Leveque C, Charvin N, Marqueze B, Martin-Moutot N, Boudier JA, Boudier JL, Shoji-Kasai Y, Sato K, Takahashi M (1999) Interactions between proteins implicated in exocytosis and voltage-gated calcium channels. Philosophical transactions of the Royal Society of London Series B, Biological sciences 354:289-297.
Seeburg PH (1993) The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 16:359-365.
Shin OH, Rizo J, Sudhof TC (2002) Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells. Nature neuroscience 5:649-656.
Soda T, Nakashima R, Watanabe D, Nakajima K, Pastan I, Nakanishi S (2003) Segregation and coactivation of developing neocortical layer 1 neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 23:6272-6279.
Sorensen JB, Fernandez-Chacon R, Sudhof TC, Neher E (2003) Examining synaptotagmin 1 function in dense core vesicle exocytosis under direct control of Ca2+. The Journal of general physiology 122:265-276.
Spitzer NC (2006) Electrical activity in early neuronal development. Nature 444:707-712.
Stafford BK, Sher A, Litke AM, Feldheim DA (2009) Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections. Neuron 64:200-212.
Stellwagen D, Shatz CJ (2002) An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33:357-367.
Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347-353.
Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain research 342:37-44.
Ting JT, Kelley BG, Sullivan JM (2006) Synaptotagmin IV does not alter excitatory fast synaptic transmission or fusion pore kinetics in mammalian CNS neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 26:372-380.
Torborg CL, Feller MB (2005) Spontaneous patterned retinal activity and the refinement of retinal projections. Progress in neurobiology 76:213-235.
Torborg CL, Hansen KA, Feller MB (2005) High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nature neuroscience 8:72-78.
Trejo LJ, Cicerone CM (1984) Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat. Brain research 300:49-62.
Tsuboi T, Rutter GA (2003) Multiple forms of 'kiss-and-run' exocytosis revealed by evanescent wave microscopy. Current biology : CB 13:563-567.
Ullian EM, Barkis WB, Chen S, Diamond JS, Barres BA (2004) Invulnerability of retinal ganglion cells to NMDA excitotoxicity. Molecular and cellular neurosciences 26:544-557.
Vician L, Lim IK, Ferguson G, Tocco G, Baudry M, Herschman HR (1995) Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Proceedings of the National Academy of Sciences of the United States of America 92:2164-2168.
Walch-Solimena C, Takei K, Marek KL, Midyett K, Sudhof TC, De Camilli P, Jahn R (1993) Synaptotagmin: a membrane constituent of neuropeptide-containing large dense-core vesicles. The Journal of neuroscience : the official journal of the Society for Neuroscience 13:3895-3903.
Wang CT, Bai J, Chang PY, Chapman ER, Jackson MB (2006) Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation. The Journal of physiology 570:295-307.
Wang CT, Lu JC, Bai J, Chang PY, Martin TF, Chapman ER, Jackson MB (2003) Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424:943-947.
Wang J, Bello O, Auclair SM, Wang J, Coleman J, Pincet F, Krishnakumar SS, Sindelar CV, Rothman JE (2014a) Calcium sensitive ring-like oligomers formed by synaptotagmin. Proceedings of the National Academy of Sciences of the United States of America 111:13966-13971.
Wang XH, Wu Y, Yang XF, Miao Y, Zhang CQ, Dong LD, Yang XL, Wang Z (2014b) Cannabinoid CB1 receptor signaling dichotomously modulates inhibitory and excitatory synaptic transmission in rat inner retina. Brain structure function.
Wang Z, Chapman ER (2010) Rat and Drosophila synaptotagmin 4 have opposite effects during SNARE-catalyzed membrane fusion. The Journal of biological chemistry 285:30759-30766.
Watanabe D, Inokawa H, Hashimoto K, Suzuki N, Kano M, Shigemoto R, Hirano T, Toyama K, Kaneko S, Yokoi M, Moriyoshi K, Suzuki M, Kobayashi K, Nagatsu T, Kreitman RJ, Pastan I, Nakanishi S (1998) Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell 95:17-27.
Weishaupt JH, Klocker N, Bahr M (2005) Axotomy-induced early down-regulation of POU-IV class transcription factors Brn-3a and Brn-3b in retinal ganglion cells. Journal of molecular neuroscience : MN 26:17-25.
Wightman RM, Haynes CL (2004) Synaptic vesicles really do kiss and run. Nature neuroscience 7:321-322.
Wong RO (1999) Retinal waves and visual system development. Annual review of neuroscience 22:29-47.
Wong RO, Ghosh A (2002) Activity-dependent regulation of dendritic growth and patterning. Nature reviews Neuroscience 3:803-812.
Wu Y, He Y, Bai J, Ji SR, Tucker WC, Chapman ER, Sui SF (2003) Visualization of synaptotagmin I oligomers assembled onto lipid monolayers. Proceedings of the National Academy of Sciences of the United States of America 100:2082-2087.
Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC (2011) An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron 70:1115-1127.
Yoshihara M, Adolfsen B, Galle KT, Littleton JT (2005) Retrograde signaling by Syt 4 induces presynaptic release and synapse-specific growth. Science 310:858-863.
Zhang J, Ackman JB, Xu HP, Crair MC (2012) Visual map development depends on the temporal pattern of binocular activity in mice. Nature neuroscience 15:298-307.
Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004) Synaptotagmin IV regulates glial glutamate release. Proceedings of the National Academy of Sciences of the United States of America 101:9441-9446.
Zhang Z, Wu Y, Wang Z, Dunning FM, Rehfuss J, Ramanan D, Chapman ER, Jackson MB (2011) Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells. Molecular biology of the cell 22:2324-2336.
Zheng J, Lee S, Zhou ZJ (2006) A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves. Nature neuroscience 9:363-371.
Zhou ZJ, Zhao D (2000) Coordinated transitions in neurotransmitter systems for the initiation and propagation of spontaneous retinal waves. The Journal of neuroscience : the official journal of the Society for Neuroscience 20:6570-6577.
Zhu D, Zhou W, Liang T, Yang F, Zhang RY, Wu ZX, Xu T (2007) Synaptotagmin I and IX function redundantly in controlling fusion pore of large dense core vesicles. Biochemical and biophysical research communications 361:922-927.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/18002-
dc.description.abstract在脊椎動物發育中的視覺系統內,存在著一種模式化、規律性的放電現象被稱為「視網膜波」,它主要發生於視覺開始之前並且具有獨特的波動狀時空性質,使得正確的視覺網絡能夠形成。目前已經知道視網膜波的產生機制是由一群突觸前神經元-星狀無軸突細胞-週期性的釋放神經傳導物質例如:乙醯膽鹼和γ-氨基丁酸至突觸後神經元-視網膜節細胞,造成其膜電位、鈣離子濃度及下游PKA活性週期性的振盪,最終導致基因表現,造成雙眼連結網路的分離以及視野的區隔。倘若以藥物抑制了視網膜波的產生,則會使得視神經與大腦中樞的連結嚴重受損,因此,了解調控視網膜的產生將有助於研究視覺發育。
星狀無軸突細胞主要藉由鈣離子調控的胞吐作用釋放神經傳導物質,而參與該作用的蛋白質包含了SNARE蛋白以及Synaptotagmin (Syt)。目前在Syt家族裡面有17種亞型蛋白質,其中的Syt I被認為在鈣離子調控的胞吐作用中擔任鈣離子感應者的角色,而先前的研究已經證實Syt I在星狀無軸突細胞中利用其上的兩個C2鈣離子結合區域-C2A及C2B-調控視網膜波的時空特性,另一方面,在視網膜節細胞及視神經中也分別發現了Syt I的轉錄產物及蛋白質的存在,然而,是否視網膜節細胞中的Syt I也能利用鈣離子調控的胞吐作用影響視網膜波的時空性質仍需更進一步的研究。
在本研究中,我們利用大鼠出生一周內的視網膜作為研究材料,在這期間是視網膜波造成視覺發育的關鍵時期。藉由免疫螢光染色發現Syt I表現在內網狀層及視網膜節細胞層中,而在單顆的視網膜節細胞內更發現它位於突觸囊泡及緻密核心囊泡上,這說明了Syt I位於視網膜節細胞中可能可以調控神經傳導物質的釋放。為了瞭解Syt I在視網節細胞中所扮演的角色,我們使Syt I及其鈣離子感應能力降低的突變株(Syt I-C2A*及Syt I-C2B*)專一性的表現在視網膜節細胞中,再利用鈣離子顯像技術紀錄發生於視網膜節細胞層的視網膜波產生的鈣離子變化。結果發現,與控制組相比,當大量表現Syt I時,視網膜波產生的頻率顯著增加,而只有大量表現Syt I-C2A*時才會使得視網膜波產生的頻率顯著下降。此外,就視網膜波在細胞之間傳遞的同步性而言,與Syt I-C2A*相比,大量表現Syt I時大幅降低了同步性質。因此這些結果說明了視網膜節細胞內的Syt I具有調控視網膜波的時空性質的功能,意謂著其可能具有調控分泌反向訊息的功能,進而影響星狀無軸突細胞改變釋放神經傳導物質的機制以及視網膜波的時空模式,而利用藥物實驗,我們發現這個反向的調控訊號是視網膜節細胞釋放的麩胺酸。綜合以上的結果,我們的研究首度指出視網膜節細胞不僅身為視網膜中的唯一的輸出神經元,也同時扮演著藉由其內的Syt I釋放麩胺酸來調控視網膜波產生的角色。
zh_TW
dc.description.abstractDuring a critical period of the developing vertebrate visual system, patterned spontaneous activity, i.e., retinal waves, is required to sculpture and refine vertebrate visual circuits prior to the onset of vision. Retinal waves confer the wave-like spatiotemporal patterns and are mediated by cholinergic neurotransmission during the first week of postnatal development in rodent. At this stage, cholinergic interneurons, presynaptic starburst amacrine cells (SACs), undergo Ca2+-regulated exocytosis to release excitatory neurotransmitters, acetylcholine (ACh) and γ-amino butyric acid (GABA), onto neighboring SACs and postsynaptic retinal ganglion cells (RGCs). A previous study showed that in the developing SACs, a Ca2+ sensor protein, Synaptotagmin I (Syt I), can regulate the temporal patterns of retinal waves via Ca2+ binding to its Ca2+-binding domains, C2A and C2B. However, Syt I’s expression is also found in postnatal RGCs and optic nerves (mainly composed of RGC axons). Thus, whether Syt I in RGCs is involved in regulating retinal waves remains unknown. To address this question, we explored the functional role of Syt I in RGCs from postnatal P0 to P9 in rats, by combining molecular perturbation, immunofluorescence staining, live Ca2+ imaging, and pharmacological manipulation.
We found that Syt I was expressed in both inner plexiform layer (IPL) and GCL of the developing rat retina during stage-II retinal waves. The expression of Syt I in dissociated RGCs localized to secretory vesicles, implying that Syt I may regulate the secretion of neurotransmitter in RGCs. To further study the relationship between Syt I in RGCs and retinal waves, we manipulated Syt I molecules by overexpressing Syt I and its weakened Ca2+-binding mutants, Syt I-D230S (Syt I-C2A*) and Syt I-D363N (Syt I-C2B*), in RGCs. We used ex vivo transfection with the Brn3b promoter-driven gene expression to target molecular perturbation exclusively to RGCs. By measuring Ca2+ transients, we found that overexpression of Syt I in RGCs altered spatiotemporal properties of retinal waves, including increasing wave frequency, reducing wave size, and decreasing spatial correlation. By contrast, overexpression of both Syt I-C2A* and Syt I-C2B* in RGCs decreased wave frequency compared to Syt I, but only Syt I-C2A* had significant reduction compared to Ctrl. Moreover, wave spatial correlation was significantly different between Syt I and Syt I-C2A* in the cell pairs located at near positions. Based on these results, we suggest that Ca2+ binding to the C2-domains of Syt I in RGCs, mainly C2A domain, may provide a new form of retrograde plasticity during the development of neural circuits. Finally, pharmacological experiments revealed that Syt I’s up-regulation of wave frequency via RGCs is mediated by glutamate secreted from RGCs. Thus, we conclude that during cholinergic waves, glutamate is secreted from RGCs through Syt I’s action, mainly via Ca2+ binding to the C2A domain, thus increasing the excitability of SACs and enhancing wave frequency. Our results provide the evidence contrary to the conventional idea that RGCs only send the “output” signals from retinas to central brain.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:48:13Z (GMT). No. of bitstreams: 1
ntu-104-R02b43010-1.pdf: 11439484 bytes, checksum: 62076ad0261ac50a0de180bef518146a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 I
致謝 II
中文摘要 IV
Abstract VI
Abbreviations IX
Contents XIII
Chapter I
Introduction 1
1.1 Nervous system development 1
1.2 Organization of the visual system 2
1.3 Physiology and anatomy of retinas 3
1.4 Patterned spontaneous activity in the developing neural circuits 4
1.5 Retinal waves in visual system development 5
1.6 Calcium-regulated exocytosis 6
1.7 Glutamate in the vertebrate retina 8
1.8 Synaptotagmin family 9
1.9 Synaptotagmin I 10
1.10 Synaptotagmin IV 12
1.11 Objectives of the study 14
Chapter II
Materials and Methods 17
2.1 Subcloning and site-directed mutagenesis 17
2.2 Animals 19
2.3 Whole-mount retinal preparation 20
2.4 Primary retinal explant culture 21
2.5 Ex vivo electroporation 22
2.6 Antibodies 22
2.7 Western analysis 23
2.8 Immunofluorescence staining 25
2.9 Isolation of retinal ganglion cells and immunofluorescence staining 28
2.10 Live calcium imaging 30
2.11 Pharmacology 32
2.12 Data analysis of spontaneous calcium transients 32
2.13 Statistical analysis 34
Chapter III
Results 36
3.1 Syt I was expressed in neonatal RGCs and IPL 36
3.2 Subcellular localization of Syt I in the developing rat RGCs 37
3.3 The Brn3b promoter can target gene expression specifically to RGCs bypassing SACs 38
3.4 Relative protein expression levels of Syt I after ex vivo retinal transfection 40
3.5 Ca2+ transient frequency was increased by overexpressing Syt I in RGCs, but reduced by overexpressing the Syt I mutants in RGCs with weakened Ca2+ binding to C2A or C2B domain 40
3.6 Ca2+ transient duration and amplitude were reduced by overexpressing Syt I in RGCs 44
3.7 The spatial correlation of Ca2+ transients was reduced by overexpressing Syt I in RGCs 45
3.8 The Syt I-mediated increase in wave frequency was abolished by ionotropic glutamate receptor antagonists 46
3.9 Syt IV was expressed in the RGCs of the developing rat retina 48
3.10 The spatiotemporal properties of retinal waves were not changed by overexpressing Syt IV in RGCs 49
Chapter IV
Discussion 53
4.1 Syt I localizes to neurotransmitter-laden vesicles in RGCs 54
4.2 Postsynaptic Syt I serves as a positive regulator of retinal waves 54
4.3 Significance of Syt I C2 domains in regulating retinal waves 56
4.4 The role of glutamate released from RGCs during stage II waves 58
4.5 Postsynaptic manipulation of Syt IV does not alter wave dynamics 61
Chapter V
Conclusion 63
References 65
List of Figures
Figure 1. An overview of the visual system 75
Figure 2. Neuronal networks in the mature retina form distinct layers 76
Figure 3. The spatial properties of retinal waves and the generation mechanisms of retinal waves at various developmental stages 78
Figure 4. Exocytotic mechanisms for secretory vesicles 80
Figure 5. The structure of Syt I 82
Figure 6. Syt I transcripts were consistently expressed in RGCs and Syt I protein was found in optic nerves from P2-P9 neonatal rats 84
Figure 7. Localization of Syt I in the retinal cross-sections of the developing rat retina 86
Figure 8. Syt I was expressed in the developing rat RGCs 88
Figure 9. Subcellular localization of Syt I in the developing rat RGCs 90
Figure 10. The Brn3b promoter can target gene expression specifically to RGCs bypassing SACs 92
Figure 11. The expression levels of Syt I after ex vivo retinal transfection 94
Figure 12. Recordings of spontaneous Ca2+ transients after ex vivo retinal transfection 96
Figure 13. The frequency of spontaneous Ca2+ transients was increased by overexpressing Syt I in RGCs 98
Figure 14. The duration and amplitude of spontaneous Ca2+ transients were reduced after overexpressing Syt I in RGCs 100
Figure 15. The spatial correlation of spontaneous Ca2+ transients in the developing rat retina 102
Figure 16. Spontaneous Ca2+ transients from different transfection groups were recorded in the absence or presence of ionotropic glutamate receptor (iGluR) antagonists 104
Figure 17. The Syt I-mediated increase in wave frequency was abolished by iGluR antagonists 106
Figure 18. Schematic of retinal activity regulated by glutamate during stage II retinal waves (i.e., P0-P10 in rats) 108
Figure 19. Syt IV was expressed in rat postnatal IPL and RGCs 110
Figure 20. The sample traces of fluorescence changes over time showed spontaneous Ca2+ transients after ex vivo retinal transfection of Syt IV or its C2A mutant 112
Figure 21. Overexpression of Syt IV-C2A*, but not Syt IV, reduced Ca2+ transient frequency in the developing rat retina 113
Figure 22. The duration and amplitude of spontaneous Ca2+ transients were not changed after overexpressing Syt IV or Syt IV-C2A* in RGCs 115
Figure 23. Pairwise correlation was not changed by overexpressing Syt IV or Syt IV-C2A* in RGCs 117
List of Tables
Table 1. The list of primers 118
Table 2. The list of primary antibodies used in this study 120
Table 3. The list of secondary antibodies used in this study 121
Table 4. Comparison of wave characteristics following transfection 122
Table 5. The values of correlation index for Ctrl, Syt I, Syt I-C2A*, Syt I-C2B*, Syt IV, and Syt IV-C2A* 123
Appendix I
Appendix 1. Syt IV was expressed in neonatal IPL 127
Appendix 2. Recordings of spontaneous Ca2+ transients after ex vivo retinal transfection 129
Appendix 3. The wave frequency was not altered by overexpressing Syt IV in SACs 130
Appendix 4. The duration and amplitude of spontaneous Ca2+ transients were not changed after overexpressing Syt IV in SACs 132
Appendix 5. The wave spatial correlation was not altered by overexpressing Syt IV in SACs 134
Appendix 6. SNAP 25 was expressed in the developing rat SACs during stage II retinal waves 135
Appendix Table 1. The values of correlation index for Ctrl and Syt IV 137
Appendix II
The 2014 annual meeting of the Society for Neuroscience (Washington, DC, U.S.A. 11/15-19/2014): Abstract, Dynamic poster, and Poster 139
2015 Institute of Molecular and Cellular Biology Poster Contest 145
dc.language.isoen
dc.titleSynaptotagmin I在發育中大鼠視網膜的神經節細胞內調控模式化自發性的放電現象zh_TW
dc.titleSynaptotagmin I in RGCs regulates the patterned spontaneous activity in the developing rat retinaen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧主欽(Juu-Chin Lu),徐立中(Li-Chung Hsu),陳示國(Shih-Kuo Chen)
dc.subject.keywordSynaptotagmin I,視網膜波,星狀無軸突細胞,視網膜節細胞,麩胺酸,鈣離子顯像技術,zh_TW
dc.subject.keywordSynaptotagmin I,retinal waves,starburst amacrine cells,retinal ganglion cells,glutamate,live Ca2+ imaging,en
dc.relation.page145
dc.rights.note未授權
dc.date.accepted2015-07-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
11.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved