請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17999
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖運炫(Yunn-Shiuan Liao) | |
dc.contributor.author | Shih-Jen Chen | en |
dc.contributor.author | 陳世臻 | zh_TW |
dc.date.accessioned | 2021-06-08T00:48:09Z | - |
dc.date.copyright | 2020-08-20 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-14 | |
dc.identifier.citation | [1] 劉宗昇, 'CNC銑削智能化顫振控制系統之研究,' 碩士論文, 國立臺灣大學, 2017. [2] C. Andrew and S. Tobias, 'A critical comparison of two current theories of machine tool chatter,' International Journal of Machine Tool Design and Research, vol. 1, no. 4, pp. 325-335, 1961. [3] M. Das and S. Tobias, 'The relation between the static and the dynamic cutting of metals,' International Journal of Machine Tool Design and Research, vol. 7, no. 2, pp. 63-89, 1967. [4] H. Merritt, 'Theory of self-excited machine-tool chatter: contribution to machine-tool chatter research,' Journal of engineering for industry, vol. 87, no. 4, pp. 447-454, 1965. [5] J. Tlusty and F. Ismail, 'Basic non-linearity in machining chatter,' CIRP Annals, vol. 30, no. 1, pp. 299-304, 1981. [6] J. Tlusty and F. Ismail, 'Special aspects of chatter in milling,' Journal of Vibration, Acoustics, Stress, and Reliability in Design, vol. 105, no. 1, pp. 24-32, 1983. [7] Y. Altintaş and E. Budak, 'Analytical prediction of stability lobes in milling,' CIRP annals, vol. 44, no. 1, pp. 357-362, 1995. [8] M. A. Davies, J. R. Pratt, B. Dutterer, and T. J. Burns, 'Stability prediction for low radial immersion milling,' Journal of Manufacturing Science and Engineering, vol. 124, no. 2, pp. 217-225, 2002. [9] T. Insperger, G. Stépán, P. Bayly, and B. Mann, 'Multiple chatter frequencies in milling processes,' Journal of sound and vibration, vol. 262, no. 2, pp. 333-345, 2003. [10] Y. Altintas and M. Weck, 'Chatter stability of metal cutting and grinding,' CIRP annals, vol. 53, no. 2, pp. 619-642, 2004. [11] Y. Altintas, Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. 2012. [12] C. Zheng and J.-J. J. Wang, 'Stability prediction in radial immersion for milling with symmetric structure,' International Journal of Machine Tools and Manufacture, vol. 75, pp. 72-81, 2013. [13] C. Zheng, J.-J. J. Wang, and C. Sung, 'Analytical prediction of the critical depth of cut and worst spindle speeds for chatter in end milling,' Journal of Manufacturing Science and Engineering, vol. 136, no. 1, 2014. [14] R. Faassen, N. Van de Wouw, J. Oosterling, and H. Nijmeijer, 'Prediction of regenerative chatter by modelling and analysis of high-speed milling,' International Journal of Machine Tools and Manufacture, vol. 43, no. 14, pp. 1437-1446, 2003. [15] J. Gradišek et al., 'On stability prediction for milling,' International Journal of Machine Tools and Manufacture, vol. 45, no. 7-8, pp. 769-781, 2005. [16] G. Quintana and J. Ciurana, 'Chatter in machining processes: A review,' International Journal of Machine Tools and Manufacture, vol. 51, no. 5, pp. 363-376, 2011. [17] E. Kuljanic, M. Sortino, and G. Totis, 'Multisensor approaches for chatter detection in milling,' Journal of Sound and Vibration, vol. 312, no. 4-5, pp. 672-693, 2008. [18] E. Kuljanic, G. Totis, and M. Sortino, 'Development of an intelligent multisensor chatter detection system in milling,' Mechanical Systems and Signal Processing, vol. 23, no. 5, pp. 1704-1718, 2009. [19] 吳宏亮, '遠端監控系統應用於工具機切削動態異常診控之應用研究,' 碩士論文, 中原大學, 2007. [20] 張成綱, 'CNC工具機之切削異常線上監控系統改善研究,' 碩士論文, 中原大學, 2010. [21] Z. Yao, D. Mei, and Z. Chen, 'On-line chatter detection and identification based on wavelet and support vector machine,' Journal of Materials Processing Technology, vol. 210, no. 5, pp. 713-719, 2010. [22] N.-C. Tsai, D.-C. Chen, and R.-M. Lee, 'Chatter prevention for milling process by acoustic signal feedback,' The International Journal of Advanced Manufacturing Technology, vol. 47, no. 9-12, pp. 1013-1021, 2010. [23] G. Jia, B. Wu, Y. Hu, F. Xie, and A. Liu, 'A synthetic criterion for early recognition of cutting chatter,' Science China Technological Sciences, vol. 56, no. 11, pp. 2870-2876, 2013. [24] T. Choi and Y. C. Shin, 'On-line chatter detection using wavelet-based parameter estimation,' Journal of manufacturing science and engineering, vol. 125, no. 1, pp. 21-28, 2003. [25] Y. Altintas and P. K. Chan, 'In-process detection and suppression of chatter in milling,' International Journal of Machine Tools and Manufacture, vol. 32, no. 3, pp. 329-347, 1992. [26] J. Munoa et al., 'Chatter suppression techniques in metal cutting,' CIRP Annals, vol. 65, no. 2, pp. 785-808, 2016. [27] S. Smith and J. Tlusty, 'Current trends in high-speed machining,' Journal of Manufacturing Science and Engineering, vol. 119, no. 4B, pp. 664-666, 1997. [28] E. Al-Regib, J. Ni, and S.-H. Lee, 'Programming spindle speed variation for machine tool chatter suppression,' International Journal of Machine Tools and Manufacture, vol. 43, no. 12, pp. 1229-1240, 2003. [29] S. Smith and J. Tlusty, 'Update on high-speed milling dynamics,' Journal of Engineering for Industry, vol. 112, no. 2, pp. 142-149, 1990. [30] S. Smith and J. Tlusty, 'Stabilizing chatter by automatic spindle speed regulation,' CIRP annals, vol. 41, no. 1, pp. 433-436, 1992. [31] Y. Liao and Y. Young, 'A new on-line spindle speed regulation strategy for chatter control,' International Journal of Machine Tools and Manufacture, vol. 36, no. 5, pp. 651-660, 1996. [32] 孟尚賢, '銑削顫振之控制-主軸轉速調整方法之研究,' 碩士論文, 國立臺灣大學, 2002. [33] 郭耀文, 'CNC立式銑削再生式顫振預測之研究,' 碩士論文, 國立臺灣大學, 2015. [34] A. Sarhan, R. Sayed, A. Nassr, and R. El-Zahry, 'Interrelationships between cutting force variation and tool wear in end-milling,' Journal of Materials Processing Technology, vol. 109, no. 3, pp. 229-235, 2001. [35] J. Feng, Z. Sun, Z. Jiang, and L. Yang, 'Identification of chatter in milling of Ti-6Al-4V titanium alloy thin-walled workpieces based on cutting force signals and surface topography,' The International Journal of Advanced Manufacturing Technology, vol. 82, no. 9-12, pp. 1909-1920, 2016. [36] E. S. Page, 'Continuous inspection schemes,' Biometrika, vol. 41, no. 1/2, pp. 100-115, 1954. [37] D. Siegmund, Sequential analysis: tests and confidence intervals. Springer Science Business Media, 2013. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17999 | - |
dc.description.abstract | 銑削製程因其能切削複雜的幾何形狀,以及其能達到的精度與加工效率,至今用於機械製造仍廣泛且有難以取代的特性。然而可能因為選用了不適當的加工條件,而產生了切削加工時的顫振。而其中最常見的一種為再生式顫振,再生式顫振引發會會產生破壞工件表面、減少加工精度、損害刀具與工具機壽命、降低生產效率等負面影響。由在實務上,通常會選擇較保守的加工條件,但卻降低生產效率,所以再生式顫振常常造成使用者的困擾。因此有必要建立監控的模組來改善再生式顫振。 由於再生式顫振特性為振動成長快速,因此本文從前人提出的p階代表頻率理論著手,利用線上量測切削中的訊號並進行頻域分析,觀察再生式顫振特性,改寫了p階代表頻率公式提出p階權重數值公式,再結合CUSUM方法,自動判斷合理的閥值,進而改善了其中閥值太低會造成誤判,閥值太高會延長偵測時間,且不同刀具閥值也有不同的問題。目標係達到自動判斷合理的閥值,且在顫振尚未成長完成前,提前的偵測出發生顫振以及顫振頻率,進而判斷是否為再生式顫振。若為再生式顫振,則進行即時的主軸轉速控制,達到即時抑制的效果。 本文也利用電腦程式的方式實作出監控模組,且實際進行的線上的切削與抑制,由即時量測機台振動,進行線上的頻域分析,驗證線上的顫振預測與抑制的可能性。結果表明在不同刀具直徑與銑削條件下,仍能有線上預測顫振的效果,且利用偵測到的顫振頻率計算適當的主軸轉速,在機器更改轉速動作完成後能有效的抑制顫振到穩定切削的狀態。 | zh_TW |
dc.description.abstract | Because of its ability to cut complex geometric shapes, and reach good accuracy and efficiency, milling process is still widely used in mechanical manufacturing and is difficult to replace. However, the chatter vibration during cutting may be generated due to the selection of inappropriate processing conditions. The most common one is regenerative chatter, which may cause damage to the surface of the workpiece, reduce machining accuracy, damage the life of tools and machine tools, and reduce production efficiency. In practice, more conservative processing conditions are usually selected. Because of this conditions, production efficiency is reduced, and regenerative chatter often causes some troubles. Therefore, it is necessary to establish a monitoring module to improve the regenerative flutter. Since the characteristic of regenerative flutter is the rapid growth of vibration, this article starts with a p-order representative frequency theory proposed by the previous researchers. They use online measurement of the cutting signal and frequency domain analysis to observe the characteristics of regenerative flutter, and rewrite the p-order formula of representative frequency and find out a p-order weighting function. It combined with CUSUM method, which can automatically judge the reasonable threshold and improve the threshold. When the threshold is too low, it will cause misjudgment, and when it is too high, it will prolong the detection time. Different tool thresholds cause Different problems. The target system reaches a reasonable threshold for automatic judgment. Before the flutter growth is completed, the occurrence of flutter and flutter frequency is detected in advance. This system can recognize whether it is regenerative flutter. If regenerative chatter is recognized, real-time spindle speed control will start to achieve the effect of real-time suppression. This article also uses computer program to implement the monitoring module, The actual online cutting and suppression are carried out by real-time measurement of machine vibration and online frequency domain analysis to verify the possibility of online chatter prediction and suppression. The results show that under different tool diameters and milling conditions, the effect of chatter vibration can still be predicted online, and a proper spindle speed can be calculated using the chatter frequency detected by the system. This method can effectively suppress chatter vibration after the machine changes the speed and make the progress reach a stable cutting state. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:48:09Z (GMT). No. of bitstreams: 1 U0001-1308202018064000.pdf: 8024682 bytes, checksum: 1fd6e3cc086a15d9cdda6907811463fd (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 誌謝 I 摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XII 符號說明 XIII 第1章 序論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.2.1 再生式顫振與切削穩定性圖 3 1.2.2 線上監控再生式顫振 6 1.2.3 再生式顫振的抑制對策 8 1.2.4 再生式顫振的預測與即時抑制 11 1.3 研究目的與方法 12 1.4 本文架構 13 第2章 再生式顫振的相關理論 14 2.1 銑床切削力模型 14 2.2 銑床的方向因子 16 2.3 銑床再生式閉迴路模型 19 2.4 再生式顫振頻率與加工條件之關係 23 2.4.1 軸向切深引發之顫振 24 2.4.2 徑向切深引發之顫振 25 第3章 線上再生式顫振的預測策略 27 3.1 線上再生式顫振預測策略 27 3.1.1 傅利葉轉換與短時傅立葉轉換 27 3.1.2 再生式顫振的頻率特性 29 3.1.3 p階代表頻率 34 3.1.4 p階權重數值 39 3.1.5 再生式顫振預測方法 41 3.2 再生式顫振抑制策略 47 3.2.1 簡化的閉迴路模型與特徵方程式 47 3.2.2 系統振動頻率與相位差之關係 51 3.2.3 主軸調整轉速方法 54 3.3 機邊線上顫振預測及顫振抑制模組 55 3.3.1 機邊線上顫振預測及抑制流程 55 3.3.2 線上顫振預測及抑制模組程式設計 57 第4章 實驗設備與方法 59 4.1 實驗目的 59 4.2 實驗設備與材料 59 4.2.1 加工設備與材料 59 4.2.2 量測設備 63 4.3 實驗設計與方法 66 第5章 實驗結果與分析 68 5.1 線上預測顫振與抑制顫振模組的切削驗證 68 5.1.1 不同切削轉速下銑測試 68 5.1.2 不同切削條件上銑測試 75 5.1.3 較大直徑銑刀不同切削轉速測試 83 5.1.4 較小直徑銑刀不同切削轉速測試 91 5.2 偵測方法與顫振抑制討論 99 5.2.1 偵測方法 99 5.2.2 抑制實驗結果 100 第6章 結論與未來展望 102 6.1 結論 102 6.2 未來展望 103 參考文獻 104 | |
dc.language.iso | zh-TW | |
dc.title | CNC銑削再生式顫振預測之研究 | zh_TW |
dc.title | Prediction of Regenerative Chatter in CNC Milling Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡曜陽(Yao-Yang Tsai),李貫銘(Kuan-Ming Li) | |
dc.subject.keyword | 銑削加工,再生式顫振,顫振預測,累積和管制圖, | zh_TW |
dc.subject.keyword | milling,regenerative chatter,chatter prediction,CUSUM, | en |
dc.relation.page | 106 | |
dc.identifier.doi | 10.6342/NTU202003308 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1308202018064000.pdf 目前未授權公開取用 | 7.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。