Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17985
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥彬(Yen-Ping Kuo)
dc.contributor.authorYu-Ren Linen
dc.contributor.author林昱任zh_TW
dc.date.accessioned2021-06-08T00:47:46Z-
dc.date.copyright2015-09-24
dc.date.issued2015
dc.date.submitted2015-07-22
dc.identifier.citationAbreu JG, Ketpura NI, Reversade B, De Robertis EM (2002). Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nature cell biology 4(8):599-604.
Amar S, Chung KM (1994). Influence of hormonal variation on the periodontium in women. Periodontology 2000 6(79-87.
Ambalavanan N, Nicola T, Hagood J, Bulger A, Serra R, Murphy-Ullrich J et al. (2008). Transforming growth factor-beta signaling mediates hypoxia-induced pulmonary arterial remodeling and inhibition of alveolar development in newborn mouse lung. American journal of physiology Lung cellular and molecular physiology 295(1):L86-95.
Annes JP, Munger JS, Rifkin DB (2003). Making sense of latent TGFbeta activation. Journal of cell science 116(Pt 2):217-224.
Barclay S, Thomason JM, Idle JR, Seymour RA (1992). The incidence and severity of nifedipine-induced gingival overgrowth. Journal of clinical periodontology 19(5):311-314.
Barnhart ER, Physician’s Desk Reference, 51st Edn. Medical Economics Co., Oradell, NJ, 1997.

Bharti V, Bansal C (2013). Drug-induced gingival overgrowth: The nemesis of gingiva unravelled. Journal of Indian Society of Periodontology 17(2):182-187.
Bhattacharyya S, Chen SJ, Wu M, Warner-Blankenship M, Ning H, Lakos G et al. (2008). Smad-independent transforming growth factor-beta regulation of early growth response-1 and sustained expression in fibrosis: implications for scleroderma. The American journal of pathology 173(4):1085-1099.
Bonniaud P, Margetts PJ, Kolb M, Schroeder JA, Kapoun AM, Damm D et al. (2005). Progressive transforming growth factor beta1-induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor. American journal of respiratory and critical care medicine 171(8):889-898.
Bork P (1993). The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS letters 327(2):125-130.
Bourgier C, Haydont V, Milliat F, Francois A, Holler V, Lasser P et al. (2005). Inhibition of Rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression. Gut 54(3):336-343.
Bradham DM, Igarashi A, Potter RL, Grotendorst GR (1991). Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. The Journal of cell biology 114(6):1285-1294.
Brigstock DR, Steffen CL, Kim GY, Vegunta RK, Diehl JR, Harding PA (1997). Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated Mr 10,000 forms of connective tissue growth factor. The Journal of biological chemistry 272(32):20275-20282.
Brodin G, ten Dijke P, Funa K, Heldin CH, Landstrom M (1999). Increased smad expression and activation are associated with apoptosis in normal and malignant prostate after castration. Cancer research 59(11):2731-2738.
Carranza FA, Hogan EL. (2012). Gingival enlargement. In: Newman MG, Takei HH, Klokkevold PR, Carranza FA, editors. Carranza’s clinical periodontology. 11th ed. Philadelphia (PA): Saunders. p. 84–96.
Cheifetz S (1999). BMP receptors in limb and tooth formation. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists 10(2):182-198.
Chowdhury I, Chaqour B (2004). Regulation of connective tissue growth factor (CTGF/CCN2) gene transcription and mRNA stability in smooth muscle cells. Involvement of RhoA GTPase and p38 MAP kinase and sensitivity to actin dynamics. European journal of biochemistry / FEBS 271(22):4436-4450.
Dennler S, Goumans MJ, ten Dijke P (2002). Transforming growth factor beta signal transduction. Journal of leukocyte biology 71(5):731-740.
Dill RE, Iacopino AM (1997). Myofibroblasts in phenytoin-induced hyperplastic connective tissue in the rat and in human gingival overgrowth. Journal of periodontology 68(4):375-380.
Dretchen KL, Bowles AM, Raines A (1986). Protection by phenytoin and calcium channel blocking agents against the toxicity of diisopropylfluorophosphate. Toxicology and applied pharmacology 83(3):584-589.
Duncan MR, Frazier KS, Abramson S, Williams S, Klapper H, Huang X et al. (1999). Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 13(13):1774-1786.
Ehrlich HP, Desmouliere A, Diegelmann RF, Cohen IK, Compton CC, Garner WL et al. (1994). Morphological and immunochemical differences between keloid and hypertrophic scar. The American journal of pathology 145(1):105-113.
Fitchie JG, Comer RW, Hanes PJ, Reeves GW (1989). The reduction of phenytoin-induced gingival overgrowth in a severely disabled patient: a case report. Compendium 10(6):314, 317-320.
Fortunel NO, Hatzfeld A, Hatzfeld JA (2000). Transforming growth factor-beta: pleiotropic role in the regulation of hematopoiesis. Blood 96(6):2022-2036.
Francetti L, Maggiore E, Marchesi A, Ronchi G, Romeo E (1991). [Oral hygiene in subjects treated with diphenylhydantoin: effects of a professional program]. Prevenzione assistenza dentale 17(3):40-43.
Fujii D, Brissenden JE, Derynck R, Francke U (1986). Transforming growth factor beta gene maps to human chromosome 19 long arm and to mouse chromosome 7. Somatic cell and molecular genetics 12(3):281-288.
Gao R, Brigstock DR (2003). Low density lipoprotein receptor-related protein (LRP) is a heparin-dependent adhesion receptor for connective tissue growth factor (CTGF) in rat activated hepatic stellate cells. Hepatology research : the official journal of the Japan Society of Hepatology 27(3):214-220.
Gao R, Ball DK, Perbal B, Brigstock DR (2004). Connective tissue growth factor induces c-fos gene activation and cell proliferation through p44/42 MAP kinase in primary rat hepatic stellate cells. Journal of hepatology 40(3):431-438.
Gao R, Brigstock DR (2004). Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. The Journal of biological chemistry 279(10):8848-8855.
Goel A, Boland CR, Chauhan DP (2001). Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer letters 172(2):111-118.
Grainger DJ, Frow EK (2000). Thrombospondin 1 does not activate transforming growth factor beta1 in a chemically defined system or in smooth-muscle-cell cultures. The Biochemical journal 350 Pt 1(291-298.
Greenwood J, Walters CE, Pryce G, Kanuga N, Beraud E, Baker D et al. (2003). Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 17(8):905-907.
Grotendorst GR, Duncan MR (2005). Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 19(7):729-738.
Hardie WD, Le Cras TD, Jiang K, Tichelaar JW, Azhar M, Korfhagen TR (2004). Conditional expression of transforming growth factor-alpha in adult mouse lung causes pulmonary fibrosis. American journal of physiology Lung cellular and molecular physiology 286(4):L741-749.
Hassell TM, Hefti AF (1991). Drug-induced gingival overgrowth: old problem, new problem. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists 2(1):103-137.
Heldin CH, Miyazono K, ten Dijke P (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390(6659):465-471.
Higashiyama H, Yoshimoto D, Kaise T, Matsubara S, Fujiwara M, Kikkawa H et al. (2007). Inhibition of activin receptor-like kinase 5 attenuates bleomycin-induced pulmonary fibrosis. Experimental and molecular pathology 83(1):39-46.
Hong HH, Uzel MI, Duan C, Sheff MC, Trackman PC (1999). Regulation of lysyl oxidase, collagen, and connective tissue growth factor by TGF-beta1 and detection in human gingiva. Laboratory investigation; a journal of technical methods and pathology 79(12):1655-1667.
Howell DC, Goldsack NR, Marshall RP, McAnulty RJ, Starke R, Purdy G et al. (2001). Direct thrombin inhibition reduces lung collagen, accumulation, and connective tissue growth factor mRNA levels in bleomycin-induced pulmonary fibrosis. The American journal of pathology 159(4):1383-1395.
Huang L, Haylor JL, Fisher M, Hau Z, El Nahas AM, Griffin M et al. (2010). Do changes in transglutaminase activity alter latent transforming growth factor beta activation in experimental diabetic nephropathy? Nephrol Dial Transplant 25(12):3897-3910.
Huang MT, Ma W, Lu YP, Chang RL, Fisher C, Manchand PS et al. (1995). Effects of curcumin, demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion. Carcinogenesis 16(10):2493-2497.
Igarashi A, Okochi H, Bradham DM, Grotendorst GR (1993). Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Molecular biology of the cell 4(6):637-645.
Ilgenli T, Atilla G, Baylas H (1999). Effectiveness of periodontal therapy in patients with drug-induced gingival overgrowth. Long-term results. Journal of periodontology 70(9):967-972.
Kang HC, Nan JX, Park PH, Kim JY, Lee SH, Woo SW et al. (2002). Curcumin inhibits collagen synthesis and hepatic stellate cell activation in-vivo and in-vitro. The Journal of pharmacy and pharmacology 54(1):119-126.
Kantarci A, Cebeci I, Tuncer O, Carin M, Firatli E (1999). Clinical effects of periodontal therapy on the severity of cyclosporin A-induced gingival hyperplasia. Journal of periodontology 70(6):587-593.
Kantarci A, Black SA, Xydas CE, Murawel P, Uchida Y, Yucekal-Tuncer B et al. (2006). Epithelial and connective tissue cell CTGF/CCN2 expression in gingival fibrosis. The Journal of pathology 210(1):59-66.
Kantarci A, Augustin P, Firatli E, Sheff MC, Hasturk H, Graves DT et al. (2007). Apoptosis in gingival overgrowth tissues. Journal of dental research 86(9):888-892.
Kingsley DM (1994). The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes development 8(2):133-146.
Koli K, Myllarniemi M, Keski-Oja J, Kinnula VL (2008). Transforming growth factor-beta activation in the lung: focus on fibrosis and reactive oxygen species. Antioxidants redox signaling 10(2):333-342.
Leask A, Sa S, Holmes A, Shiwen X, Black CM, Abraham DJ (2001). The control of ccn2 (ctgf) gene expression in normal and scleroderma fibroblasts. Molecular pathology : MP 54(3):180-183.
Leask A, Abraham DJ (2003). The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochemistry and cell biology = Biochimie et biologie cellulaire 81(6):355-363.
Leask A, Abraham DJ (2004). TGF-beta signaling and the fibrotic response. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 18(7):816-827.
Leask A, Abraham DJ (2006). All in the CCN family: essential matricellular signaling modulators emerge from the bunker. Journal of cell science 119(Pt 23):4803-4810.
Lucas RM, Howell LP, Wall BA (1985). Nifedipine-induced gingival hyperplasia. A histochemical and ultrastructural study. Journal of periodontology 56(4):211-215.
Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006). Multiple biological activities of curcumin: a short review. Life sciences 78(18):2081-2087.
Masamune A, Suzuki N, Kikuta K, Satoh M, Satoh K, Shimosegawa T (2006). Curcumin blocks activation of pancreatic stellate cells. Journal of cellular biochemistry 97(5):1080-1093.
Massague J (1990). The transforming growth factor-beta family. Annual review of cell biology 6(597-641.
Messing RO, Carpenter CL, Greenberg DA (1985). Mechanism of calcium channel inhibition by phenytoin: comparison with classical calcium channel antagonists. The Journal of pharmacology and experimental therapeutics 235(2):407-411.
Modeer T, Dahllof G (1987). Development of phenytoin-induced gingival overgrowth in non-institutionalized epileptic children subjected to different plaque control programs. Acta odontologica Scandinavica 45(2):81-85.
Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A et al. (1999). Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. Journal of cellular physiology 181(1):153-159.
Murphy-Ullrich JE, Poczatek M (2000). Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 11(1-2):59-69.
Ricupero DA, Rishikof DC, Kuang PP, Poliks CF, Goldstein RH (1999). Regulation of connective tissue growth factor expression by prostaglandin E(2). The American journal of physiology 277(6 Pt 1):L1165-1171.
Rifkin DB (2005). Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. The Journal of biological chemistry 280(9):7409-7412.
Rullier A, Gillibert-Duplantier J, Costet P, Cubel G, Haurie V, Petibois C et al. (2008). Protease-activated receptor 1 knockout reduces experimentally induced liver fibrosis. American journal of physiology Gastrointestinal and liver physiology 294(1):G226-235.
Segarini PR, Nesbitt JE, Li D, Hays LG, Yates JR, 3rd, Carmichael DF (2001). The low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor is a receptor for connective tissue growth factor. The Journal of biological chemistry 276(44):40659-40667.
Sloan AJ, Couble ML, Bleicher F, Magloire H, Smith AJ, Farges JC (2001). Expression of TGF-beta receptors I and II in the human dental pulp by in situ hybridization. Advances in dental research 15(63-67.
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD et al. (1985). Measurement of protein using bicinchoninic acid. Analytical biochemistry 150(1):76-85.
Tai TF, Chan CP, Lin CC, Chen LI, Jeng JH, Chang MC (2008). Transforming growth factor beta2 regulates growth and differentiation of pulp cells via ALK5/Smad2/3. Journal of endodontics 34(4):427-432.
Thomas EA, Petrou S (2013). Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin. Epilepsia 54(7):1195-1202.
Thomason JM, Seymour RA, Ellis JS, Kelly PJ, Parry G, Dark J et al. (1996). Determinants of gingival overgrowth severity in organ transplant patients. An examination of the role of HLA phenotype. Journal of clinical periodontology 23(7):628-634.
Thompson K, Hamilton DW, Leask A (2010). ALK5 inhibition blocks TGFss-induced CCN2 expression in gingival fibroblasts. Journal of dental research 89(12):1450-1454.
Trackman PC, Kantarci A (2004). Connective tissue metabolism and gingival overgrowth. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists 15(3):165-175.
Tzortzaki EG, Antoniou KM, Zervou MI, Lambiri I, Koutsopoulos A, Tzanakis N et al. (2007). Effects of antifibrotic agents on TGF-beta1, CTGF and IFN-gamma expression in patients with idiopathic pulmonary fibrosis. Respiratory medicine 101(8):1821-1829.
Uzel MI, Kantarci A, Hong HH, Uygur C, Sheff MC, Firatli E et al. (2001). Connective tissue growth factor in drug-induced gingival overgrowth. Journal of periodontology 72(7):921-931.
Vicencio AG, Lee CG, Cho SJ, Eickelberg O, Chuu Y, Haddad GG et al. (2004). Conditional overexpression of bioactive transforming growth factor-beta1 in neonatal mouse lung: a new model for bronchopulmonary dysplasia? American journal of respiratory cell and molecular biology 31(6):650-656.
Wahab NA, Weston BS, Mason RM (2005). Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. Journal of the American Society of Nephrology : JASN 16(2):340-351.
Yaari Y, Selzer ME, Pincus JH (1986). Phenytoin: mechanisms of its anticonvulsant action. Annals of neurology 20(2):171-184.
Zheng S, Chen A (2004). Activation of PPARgamma is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro. The Biochemical journal 384(Pt 1):149-157.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17985-
dc.description.abstractPhenytoin為治療癲癇的常用藥物之一,但是常會造成病人產生牙齦腫大(Gingival overgrowth,GO)的不良影響,對於病患的口腔衛生清潔、語言、吞嚥等生活品質會造成嚴重影響,經由手術方式雖然可以獲得症狀緩解,但是再發生率卻很高。轉形生長因子-β1 (Transforming growth factor-β1,TGF-β1) 在牙齦過度增生的疾病發展進程中扮演重要角色。結締組織生長因子(Connective tissue growth factor,CTGF/ CCN2)表現被報告和GO的疾病嚴重程度呈正相關。但是Phenytoin誘導GO的機制並不十分清楚。本研究希望藉由研究Phenytoin對於人類牙齦纖維母細胞誘導的作用進而找出未來有效治療牙齦過度增生的藥物。我們發現人類牙齦纖維母細胞(Human gingival fibroblast,HGF)在Phenytoin的刺激下,具有隨濃度及時間誘導CCN2表現的特性。使用TGF-β1中和抗體、ALK5抑制劑SB431542、Smad3抑制劑可以有效降低Phenytoin誘導的CCN2蛋白表現。顯示Phenytoin的成纖維化特性可能經由TGF-β1訊息路徑調控。ELISA分析發現Phenytoin可使細胞培養液中活化態的TGF-β1表現量增加。前處理抗氧化劑N-acetyl-cystenine(ROS抑制劑)、Diphenylene iodonium (NOX抑制劑)、Plumbagin (NOX4抑制劑)、薑黃素(Curcumin)和茶多酚(EGCG)對牙齦纖維母細胞做前處理,會明顯抑制由Phenytoin所誘發活化態的TGF-β1表現量,然而使用Apocynin (NOX2抑制劑)進行前處理則無明顯抑制,表示TGF-β的活化可能受到過氧化物(Reactive oxygen species,ROS)的調控,ROS的來源可能是NOX4。進一步確認薑黃素的抑制效果隨濃度增加而增加,具有濃度依賴性。薑黃素可能成為預防或治療GO的潛力藥物。zh_TW
dc.description.abstractGingival overgrowth (GO) is a common complication of the usage of phenytoin. It causes severe adverse effects in life quality of patient in maintenance of oral hygiene, language and swallowing. Clinically, periodontal therapy offers removal of the inflammatory component of the GO through scaling and gingival curettage, followed by surgical interventions. However, the high recurrence rate of drug-induced gingival overgrowth requires gingivectomy must be repeated periodically. Transforming growth factor β (TGFβ) is a key regulator associated with the pathogenesis of GO. Connective tissue growth factor (CTGF/CCN2) is positively correlated with severity of GO. In this study, we found phenytoin induced CCN2 production in human gingival fibroblasts (HGF) in a time- and dose-dependent manner. Pretreatment with TGF-β1 neutralizing antibody, ALK5 inhibitor SB431542 and Smad3 inhibitor significantly reduced phenytoin-induced CCN2 protein production. Furthermore, we found phenytoin increased activated TGF-β1 levels in HGFs. Pretreatment of N-acetyl-cystenine(ROS inhibitor), Diphenylene iodonium (NOX inhibitor), Plumbagin (NOX4 inhibitor), cucurmin and EGCG on HGF significantly inhibits production of active form TGF-β1 induce by phenytoin, but not Apocynin (NOX2 inhibitor). These results suggested that the increased activated TGF-β levels is regulated by ROS and ROS came from NOX4. Furthermore, curcumin significantly inhibited phenytoin-induced CCN2 protein production in HGFs. Curcumin could be a potential medicine for prevention and therapy of GO.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:47:46Z (GMT). No. of bitstreams: 1
ntu-104-P99422002-1.pdf: 1360912 bytes, checksum: 698ac7dcd0b3be8c96620659f195e701 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝……………………………...…………………………………………………..I
中文摘要………………………...………...………………………………………..II
Abstract……………………..….…....………………………………………..…. III
目錄………………………..…….…………..……………………………………..IV
圖目錄…………………..……………………………………………………….…VII
導論
第一節 牙齦過度增生(Gingival Overgrowth)………..……………………….....1
1-1 牙齦過度增生………….……..…………………....……………………....…1
1-2 牙齦過度增生的流行病學…….……..………….……..………………..……4
1-3 牙齦過度增生的病理學…….……..………….………………..……..………4
1-4 牙齦過度增生的可能機轉…….……..………….…………………....………5
1-5 牙齦過度增生的治療…….……..…………………….…………....…………5
第二節 二苯妥因 (Phenytoin)………………………….……………..……..……6
2-1 Phenytoin的簡介…….……..………………..………………….….…….6
2-2 Phenytoin的作用機轉…….……..……………..………….....………..…6
2-3 Phenytoin與牙齦過度增生…….……..…………...…………….…..……6
第三節 轉型生長因子β (Transforming growth factor-β) …………....…………7
3-1 TGF-β的介紹…….……..………………………………….……....………7
3-2 TGF-β的訊息傳遞路徑…….………...………………………………….....9
3-3 TGF-β與纖維化(牙齦過度增生)…….……...……………….…………......9
第四節 結締組織生長因子 (Connective tissue growth factor )…….……..….10
4-1 CTGF的介紹…….……..………………………………....…………....…10
4-2 CTGF的訊息傳遞路徑…….……..………………………...………..….…11
4-3 CTGF與纖維化(牙齦過度增生)…….……...………...…….………..….…12
第五節 薑黃素(Curcumin) …….……..………...……….………………..………12
研究目的…….……..…………………………..…………….….……..…..……….14
實驗材料與方法…..………………………….…………………..…….…..……….15
第一節 細胞株與細胞培養…….……..………..……………………..……..…..15
第二節 藥物處理…….……..…………..…………………………….….….…..15
2-1 Phenytoin的處理..……………………………...…………….....……....…15
2-2 Inhibitor使用資料..………………………………....………….……...……16
第三節 西方點墨法…….……..………………….……………………......……17
3-1 蛋白質萃取..…………………………………..……………...…...…..….…17
3-2 蛋白質濃度測定..……………………………….………….……...…..….…17
3-3 膠體配置與電泳分析..……………………………….….…………..…....…18
3-4 蛋白質轉漬..………………………………………………………....…...…18
3-5 抗體的使用與顯影呈色..…………………………………….……….......…18
第四節 ELISA…….……..…………………………………………...........……19
4-1 檢測盤製備..……………………………………….………..…….....…...…19
4-2 操作流程(Sandwich ELISA) ..………………………….………..…...……19
4-3 統計分析..…………………………………….…………………..…….....…20
結果…….………………………………………………………………...…...…...…21
Phenytoin誘導人類牙齦纖維母細胞(HGF)產生CCN2…………….………......…..21
Phenytoin透過 Src 活化 JNK 及 Smad3誘導HGF細胞產生CCN2…......….......21
TGF-β、ALK5與Smad3抑制劑會抑制Phenytoin對HGF誘導產生的CCN2….....22
Phenytoin誘導HGF釋出active form TGF-β………………….………….........….22
薑黃素Curcumin可抑制Phenytoin誘導HGF細胞產生CCN2……….………….....23
Phenytoin誘導HGF釋出active form TGF-β有Reactive oxygen species的參與.23
Phenytoin誘導HGF經由active form TGF-β產生CCN2的訊息傳遞途徑……...…24
討論及未來展望……………………..…………………………………………...……25
結論…….……..……....………………………………………..….………….………26
圖與表……..………………………….......………………..……….………………..27
Reference List……..……………………………………………..………..……..…36
dc.language.isozh-TW
dc.titleCurcumin抑制Phenytoin對於人類牙齦纖維母細胞誘發CTGF/CCN2表現之研究zh_TW
dc.titleCurcumin inhibits Phenytoin-induced connective tissue growth factor (CTGF/CCN2) production in human gingival fibroblasten
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張正琪,張瑞青
dc.subject.keyword人類牙齦纖維母細胞,牙齦腫大,Phenytoin,TGF-β,結締組織生長因子,zh_TW
dc.subject.keywordGingival fibroblasts,Gingival overgrowth,Phenytoin,TGF-β,CTGF/CCN2,en
dc.relation.page43
dc.rights.note未授權
dc.date.accepted2015-07-23
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
1.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved