Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17915
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵
dc.contributor.authorChi-Yuan Changen
dc.contributor.author張繼元zh_TW
dc.date.accessioned2021-06-08T00:46:06Z-
dc.date.copyright2015-10-13
dc.date.issued2015
dc.date.submitted2015-07-30
dc.identifier.citation林健三、林健榮,「固體廢棄物處理」,高立圖書有限公司,台灣台北(2006)。
郭春寶, 「都市生活垃圾蒸煮處理」,國立中正大學機械工程學系研究報(2009)。
行政院環境保護署,環保統計資料庫「廢棄物管理年報」(2012)。
張家驥、洪臧燮、何瓊芳、謝哲隆、李元陞、陳奕宏、洪文宗、張慶源,
「新一代垃圾資源永續管理方案與評析」,永續產業發展雙月刊,48期,
pp. 51–59 (2010)。
Abu-Qudais, M., Abu-Qdais, H. A., 2000. Energy content of municipal solid waste in
Jordan and its potential utilization. Energ Convers Manage. 41, 983–991.
Alfaro, A., Rivera, A., Perez, A., Yanez, R., Garcia, J. C., Lopez, F., 2009. Integral
valorization of two legumes by autohydrolysis and organosolv delignification.
Bioresour Technol. 100, 440–445.
Avgerinos, G. C., Wang, D. I. C., 1983. Selective delignification for fermentation of
enhancement. Biotechnol Bioeng. 25, 67–83.
Beede, D. N., Bloom, D. E., 1995. The economics of MSW. The World Research
Observer. 10(2), 113–150.
Cardona Alzatea, C. A., Sanchez Toroa, O. J., 2006. Energy consumption analysis of
integrated flowsheets for production of fuel ethanol from lignocellulosic
biomass. Energy. 31, 2447–2459.
Cardona, C. A., Sánchez, Ó. J., 2007. Fuel ethanol production: process design
trends and integration opportunities. Bioresour Technol. 98, 2415–2457.
Chang, C. C., Yang, T. Z., Hung, Z. S., Chang, C. Y., Tseng, J. Y., Ho Chang, C. F.,
Lin, F., Ko, C. H., Chen, Y. H., Shie, J. L., Li, Y. S., Liu, K. W., Wang, S. G.,
2013. Biofiber derived fuel from municipal solid waste. To be published as an
extended abstract no. 12886, 106th Annual Conference, Air & Waste
Management Association, Chicago, IL, USA, June 25-28th, 2013.
Demirbas, A., 2002. Partly chemical analysis of liquid fraction of flash pyrolysis
products from biomass in the presence of sodium carbonate. Energ Convers
Manage. 43, 1801–1809.
Demirbas, A., 2011. Waste management, waste resource facilities and waste
conversion processes. Energ Convers Menage. 109, 59–70.
Eley, M. H., Guinn, G. R., Bagchi, J., 2010. Cellulosic material recovered from steam
classified municipal solid wastes as feedstock, for conversion to fuels and
chemicals. Appl Biochem Biotech. 51–52(1), 387–397.
Fengel, D., Wegener, G., 1984.Wood Chemistry, Ultrastructure, Reactions. Berlin,
New York.
Gray, K.A., Zhao, L., Emptage, M., 2006. Bioethanol. Curr Opin Chem Biol. 10,
141–146.
Hendricks, A. T., Zeeman, G., 2009. Pretreatments to enhance the digestibility of
lignocellulosic biomass. Bioresour Technol. 100,10–18.
Huang, Z. S., Chang, C. C., Ho Chang, C. F., Lin, Y. S., Ji, D. R., Chang, C. Y.,
Tseng, J. Y., Chiang, S. W., Shie, J. L., Chen, Y. H., Ko, C. H., Li, Y. S.,
2013. Autoclaving treatment of wasted disposable bamboo. Submitted to J.
Taiwan Inst. Chem. E.
Hung, Z. S., Chang, C.C., Ho Chang, C. F., Wang, Y. C., Chang, C. Y., Ji, D. R.,
Tseng, J. Y., Ko, C. H., Chen, Y. H., Shie, J. L., Li, Y. S., Wang, S. G., Liu,
K. W., Tseng, S. L., 2012. Autoclaving of waste plastic-free papers for
resource recovery and reutilization. Fresen. Environ. Bull. 21, 2486–2493.
Ko, C. H., Wang, Y. N., Chang, F. C., Chen, J. J., Chen, W. H., Hwang, W. S., 2012.
Potentials of lignocellulosic bioethanols produced from hardwood in Taiwan.
Energy. 44, 329–334.
Lynd, L. R., Weimer, P. J., Van Zyl, W. H., Pretorius, I. S., 2002. Microbial cellulose
utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev. 66,
506–577.
Malkoc, E., Nuhoglu, Y., 2006. Fixed bed studies for the sorption of chromium(VI)
ontotea factory waste. Chem Eng Sci. 61, 4363–4372.
Malkoc, E., Nuhoglu, Y., 2007. Potential of tea factory waste for chromium(VI)
removal from aqueous solutions: thermodynamic and kinetic studies. Sep Purif
Technol. 54, 291–298.
Ojeda, K., Sánchez, E., Kafarov, V., 2011. Sustainable ethanol production from
lignocellulosic biomass e application of energy analysis. Energy. 36, 2119–
2128.
Oiivares, M., Guzmfin, J. A., Natho, A., Saavedra, A., 1988. Kraft lignin utilization in
adhesives. Recovery of an electric arc furnace flue dust to obtain high grade.
Wood Sci Technol. 22, 157–165.
Papageorgiou, A., Barton, J. R., Karagiannidis, A., 2009. Assessment of the
greenhouse effect impact of technologies used for energy recovery from
municipal waste: A case for England. J Environ Manage. 90(10), 2999–3012.
Quintero, J. A., Montoya, M. I., Sanchez, O. J., Giraldo, O. H., Cardona, C. A., 2008.
Fuel ethanol production from sugarcane and corn: comparative analysis for a
Colombian case. Energy. 33, 385–399.
Saha, B. C., 2003. Hemicellulose bioconversion. J Ind Microbiol Biot. 30, 279–291.
Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgung, J. H.,
Posten, C., Kruse, O., Hankamer, B., 2008. Second generation biofuels:
high-efficiency microalgae for biodiesel production. Bioenergy Research. 1,
20–43.
Shleser, R., Hawaii. Dept. of Business, E.D., Tourism. 1994. Ethanol Production in Hawaii: Processes, Feedstocks, and Current Economic Feasibility of Fuel Grade Ethanol Production in Hawaii: Final Report. Hawaii State Department of Business, Economic Development & Tourism, Energy Division.
Singh, R. P., Tyagi, V. V., Allen, T., Ibrahim, M. H., Kothari, R., 2008. An overview
for exploring the possibilities of energy generation from municipal solid waste
(MSW) in Indian scenario. Renew Sust Energ Rev. 52, 1280–1287.
Singh, R. P., Tyagi, V. V., Allen, T., Ibrahim, M. H., Kothari, R., 2011. An overview
for exploring the possibilities of energy generation from municipal solid waste
(MSW) in Indian scenario. Renew Sust Energ Rev. 15, 4797– 4808.
Sun, Y., Cheng, J., 2002. Hydrolysis of lignocellulosic materials for ethanol
production: a review, Bioresour Technol. 83, 1–11.
Tran, H., Vakkilainnen, K, E., 2008. The kraft chemical recovery process.
http://www.tappi.org/content/events/08kros/manuscripts/1-1.pdf
Tamez Uddin, Md., Akhtarul Islam, Md., Mahmud, S., Rukanuzzaman, Md., 2009.
Adsorptive removal of methylene blue by tea waste. J Haz Mater. 164, 51–60.
Tilman, D., Hill, J., Lehman, C., 2006. Carbon-negative biofuels from low-input
high-diversity grassland biomass. Science. 314, 1598–1600.
USEPA, 2011. Municipal Solid Waste Generation, Recycling, and Disposal in the
United States: Facts and Figures for 2010. Available at:
http://www.epa.gov/wastes/nonhaz/municipal/pubs/msw_2010_rev_factsheet.pdf
Uzun, B. B., Apaydin-Varol, E., Ates, F., Ozbay, N., Pütün A. E., 2010. Synthetic
fuel production from tea waste: Characterisation of bio-oil and bio-char. Fuel.
89, 176–184.
Walter, A., Ensinas, A. V., 2010. Combined production of second-generation
biofuels and electricity from sugarcane residues. Energy. 35, 874–879.
Wang, Y. C., 2011. Autoclaving treatment of municipal solid waste for the recovery
of biomass and its reutilization. Graduate Institute of Environment
Engineering National Taiwan University Master Thesis.
Xu, G., Murakami, T., Suda, T., Matsuzawa, Y., Tania, H., 2009.Two-stage dual
fluidized bed gasification: its conception and application to biomass. Fuel
Process Technol. 90, 137–144.
Yagmur, E., Ozmak, M., Aktas, Z., 2008. A novel method for production of
activated carbon from waste tea by chemical activation with microwave
energy. Fuel. 87,3278–3285.
Ycharts, 2013. Australia Coal Price:82.75 USD/mt for Jun 2013. https://ycharts.com/indicators/australia_coal_price
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17915-
dc.description.abstract隨著環保意識的崛起,廢棄物再利用成為資源永續再利用的主流。本研究探討以蒸煮處理之都市固體廢棄物回收纖維(Municipal solid waste derived fiber, MSWF)、纖維酒精發酵廢棄物(Cellulosic ethanol fermentation waste, CEFW)及茶葉廢棄物(Tea waste, TW)製作回收紙張及紙板之研究。
都市固體廢棄物回收纖維以155oC蒸煮60分,纖維酒精發酵廢棄物以100:0、90:10、80:20 及50:50的比例混合至蒸煮處理之都市回收纖維及舊報紙(Old newspaper, ONP)。茶葉廢棄物則是以80:20 及50:50比例與舊報紙混合,來製作紙張(60 g/m2) 及紙板(200 g/m2)並分析抗張、破裂及撕裂強度。
本實驗使用硫酸鹽製漿黑液之環境友善膠合劑(BLBD)來提升紙張及紙板的物理性質,結果顯示不論纖維的種類,物理性質隨著平均纖維長度呈線性增加。與商用尿素甲醛樹脂相比,添加BLBD對紙張及紙板物理性質可分別提升50%及85%,若再經過熱壓處理,無法進一步提升紙張及紙板的物理性質。在CEFW和MSWF中添加BLBD,可提升紙張及紙板的抗張及破裂強度,表現出合理替代ONP纖維的潛力。
zh_TW
dc.description.abstractWith a rising environmental conscious, wastes reutilization schemes have become the mainstream of sustainable application of resources. This study investigates the feasibility of paper and paperboard products made by autoclaved treated municipal solid waste-derived fiber (MSWF), rice straw cellulosic ethanol fermentation waste (CEFW) and Tea waste (TW).
MSW were steamed under 155oC for 60 minutes. CEFW were mixed with steamed MSW and old newspaper (ONP) with ratios of 100:0, 90:10, 80:20 and 50:50, various size of TW with ratios of 80:20 and 50:50. Feasibility of paper (60 g/m2) and paperboard (200 g/m2) production were investigated by analysing their tensile strengths, bursting strengths and tearing strengths.
An environmental friendly from kraft black liquor derived binder (BLDB) was used to improve the physical properties of the paper and paperboard products. The values of these properties enhanced linearly with increasing average fiber lengths, regardless of the type of fiber used in the products. BLDB enhanced the physical properties by 50% for papers and 85% for paperboards, and compared with a commercial urea formaldehyde resin. Thermal pressing, however, did not improve the physical properties of the binder enhanced paper products. With the addition of the adhesive binder, CEFW and MSWF showed reasonable substitution potential for ONP fiber by providing suitable tensile and bursting strength in the paper and paperboard.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:46:06Z (GMT). No. of bitstreams: 1
ntu-104-R99625040-1.pdf: 1994377 bytes, checksum: 71125f8542227e304a937eb53fe8bb26 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
摘要. iii
ABSTRACT. iv
CONTENTS. v
LIST OF ABBREVIATIONS. viii
FIGURE INDEX ix
TABLE INDEX. x
1. INTRODUCTION 1
2. LITERATURE REVIEWS 5
2.1. Lignocellulose.. 5
2.2. Municipal solid waste (MSW).. 6
2.2.1. The environmental problems caused by municipal solid waste. 6
2.2.2. The advantages of treating MSW by autoclave 8
2.3. Cellulosic ethanol fermentation waste (CEFW) 11
2.3.1. Cellulosic ethanol.. 11
2.3.2. The application and treatment of CEFW 14
2.4. Tea waste (TW).. 14
3. MATERIALS AND METHODS. 17
3.1. MATERIALS. 17
3.1.1. Municipal solid waste-derived fiber (MSWF). 17
3.1.2. Cellulosic ethanol fermentation waste (CEFW) 18
3.1.3. Tea waste (TW).. 18
3.1.4. Old newspaper (ONP). 20
3.1.5. Kraft black liquor (BL) 20
3.1.6. Neutralization black liquor (NBL) 20
3.1.7. Formaldehyde condensation black liquor (MBL) 20
3.1.8. Urea formaldehyde (UF) 21
3.2. METHODS 21
3.2.1. Chemical constituents 21
3.2.2. Gel Permeation Chromatography (GPC). 21
3.2.3. Paper and paperboard products 22
3.2.4. The Physical Strengths of Paper and Paperboard 22
3.2.5. Pulp Morphology Analysis 22
4. RESULTS AND DISCUSSION. 24
4.1. Chemical constituents.. 24
4.1.1. Chemical constituents of MSWF 24
4.1.2. Chemical constituents of CEFW 24
4.1.3. Chemical constituents of TW 25
4.2. The molecular weight of black liquor 25
4.3. Morfi Analysis 26
4.3.1. The Morfi Analysis of ONP.. 26
4.3.2. The Morfi Analysis of CEFW 26
4.3.3. The Morfi Analysis of MSWF 26
4.3.4. The Morfi Analysis of TW 27
4.4. The Physical Properties of Paper and Paperboard. 29
4.4.1. The influence of different manufacturing processes on paper and paperboard properties. 29
4.4.2. The influence of materials on the physical properties. 33
4.4.2.1. The influence of ONP/CEFW on the physical properties 33
4.4.2.2. The influence of MSWF/CEFW on the physical properties.. 36
4.4.2.3. The influence of ONP/MSWF on the physical properties. 39
4.4.2.4. The influence of ONP/TW on the physical properties 41
4.4.3. The influence of adhesives on the physical properties 45
4.4.3.1. The influence of BL on the physical properties 45
4.4.3.2. The influence of NBL on the physical properties.. 47
4.4.3.3. The influence of MBL on the physical properties. 48
4.4.3.4. The influence of UF on the physical properties. 55
4.4.4. Relationship between fiber length and paperboard properties 61
5. CONCLUSION 64
6. REFERENCES 66
dc.language.isoen
dc.title以都市回收纖維、纖維酒精發酵廢棄物及環境友善膠合劑製作紙張與紙板性質研究zh_TW
dc.titleProperties of Paper and Paperboard Products made by Municipal Solid Waste-derived Fiber, Cellulosic Ethanol Fermentation Waste and Environmental Friendly Bindersen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee藍浩繁,張慶源,張家驥,林法勤
dc.subject.keyword蒸煮都市固體廢棄物回收纖維,纖維酒精發酵廢棄物,硫酸鹽製漿黑液之環境友善膠合劑,紙張及紙板物理性質,尿素甲醛樹脂,zh_TW
dc.subject.keywordMunicipal solid waste-derived fiber,cellulosic ethanol fermentation waste,kraft black liquor derived binder,physical properties,urea formaldehyde.,en
dc.relation.page71
dc.rights.note未授權
dc.date.accepted2015-07-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved