請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17871完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
| dc.contributor.author | Chun-I Lu | en |
| dc.contributor.author | 呂俊毅 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:45:09Z | - |
| dc.date.copyright | 2015-08-06 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-04 | |
| dc.identifier.citation | Bibliography
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D Jiang, M. I Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438(7065):197–200, November 2005. [2] Yuanbo Zhang, Yan-Wen Tan, Horst L Stormer, and Philip Kim. Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature, 438(7065):201–204, November 2005. [3] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 146(9-10):351–355, June 2008. [4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys., 81:109–162, Jan 2009. [5] Andre K. Geim. Nobel lecture: Random walk to graphene*. Rev. Mod. Phys., 83:851–862, Aug 2011. [6] K. S. Novoselov. Nobel lecture: Graphene: Materials in the flatland*. Rev. Mod. Phys., 83:837–849, Aug 2011. [7] Melinda Y. Han, Barbaros ぴ Ozyilmaz, Yuanbo Zhang, and Philip Kim. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett., 98:206805, May 2007. [8] Gianluca Giovannetti, Petr A. Khomyakov, Geert Brocks, Paul J. Kelly, and Jeroen van den Brink. Substrate-induced band gap in graphene on hexago- 67 Bibliography 68 nal boron nitride: Ab initio density functional calculations. Phys. Rev. B, 76:073103, Aug 2007. [9] S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater., 6(10):770–775, 10 2007. [10] Gui Gui, Jin Li, and Jianxin Zhong. Band structure engineering of graphene by strain: First-principles calculations. Phys. Rev. B, 78:075435, Aug 2008. [11] Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit, Zhao Hao, Michael C. Martin, Alex Zettl, Michael F. Crommie, Y. Ron Shen, and Feng Wang. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459(7248):820– 823, 06 2009. [12] Zhen Hua Ni, Ting Yu, Yun Hao Lu, Ying Ying Wang, Yuan Ping Feng, and Ze Xiang Shen. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano, 2(11):2301–2305, 2008. [13] Fengnian Xia, Damon B. Farmer, Yu-ming Lin, and Phaedon Avouris. Graphene field-e↵ect transistors with high on/o↵ current ratio and large transport band gap at room temperature. Nano Letters, 10(2):715–718, 02 2010. [14] Xiaolin Li, Xinran Wang, Li Zhang, Sangwon Lee, and Hongjie Dai. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science (New York, N.Y.), 319(5867):1229–1232, 2008. [15] Liying Jiao, Li Zhang, Xinran Wang, Georgi Diankov, and Hongjie Dai. Narrow graphene nanoribbons from carbon nanotubes. Nature, 458(7240):877–880, 2009. [16] R. A. Bromley, R. B. Murray, and A. D. Yo↵e. The Band Structures of Some Transition Metal Dichalcogenides: III. Group VI A: Trigonal Prism Materials. J. Phys. C: Solid State Phys., 5:759–778, 1972. [17] Th. Bぴoker, R. Severin, A. Mぴuller, C. Janowitz, R. Manzke, D. Vos, P. Krぴuger, A. Mazur, and J. Pollmann. Band structure of mos2, mose2, and ↵-mote2: July 30, 2015 Bibliography 69 Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B, 64(23):235305, November 2001. [18] R. Coehoorn, C. Haas, J. Dijkstra, C. F. J. Flipse, R. A. de Groot, and A.Wold. Electronic Structure ofMoSe2, MoS2 and WSe2. I. Band-Structure Calculations and Photoelectron Spectroscopy. Phys. Rev. B, 35:6195–6202, 1987. [19] L. F. Mattheiss. Band Structure of Transition-Metal-Dichalcogenide Layer Compounds. Phys. Rev. B, 8:3719–3740, 1973. [20] Hemamala I Karunadasa, Elizabeth Montalvo, Yujie Sun, Marcin Majda, Jeffrey R Long, and Christopher J Chang. A molecular mos2 edge site mimic for catalytic hydrogen generation. Science, 335(6069):698–702, 2012. [21] a.M. M. Seayad and D.M. M. Antonelli. Recent Advances in Hydrogen Storage in Metal-Containing Inorganic Nanostructures and Related Materials. Adv. Mater., 16(910):765–777, May 2004. [22] Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz. Atomically thin mos2: A new direct-gap semiconductor. Phys. Rev. Lett., 105:136805, Sep 2010. [23] A K Geim and I V Grigorieva. Van der Waals heterostructures. Nature, 499(7459):419–25, 2013. [24] Branimir Radisavljevic, Michael Brian Whitwick, and Andras Kis. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 5(12):9934–8, December 2011. [25] Z. Tan, H. Tian, T. Feng, L. Zhao, D. Xie, Y. Yang, L. Xiao, J. Wang, T.-L. Ren, and J. Xu. A small-signal generator based on a multi-layer graphene/molybdenum disulfide heterojunction. Appl. Phys. Lett., 103:263506, 2013. [26] B. Sachs, L. Britnell, T. O. Wehling, A. Eckmann, R. Jalil, B. D. Belle, A. I. Lichtenstein, M. I. Katsnelson, and K. S. Novoselov. Doping mechanisms in graphene-MoS2 hybrids. Appl. Phys. Lett., 103:251607, 2013. July 30, 2015 Bibliography 70 [27] Zhen Tan, He Tian, Tingting Feng, Lianfeng Zhao, Dan Xie, Yi Yang, Lei Xiao, JingWang, and Tian-ling Ren. A small-signal generator based on a multilayer graphene / molybdenum disulfide heterojunction A small-signal generator based on a multi-layer graphene / molybdenum disulfide heterojunction. Appl. Phys. Lett., 263506(2013):2013–2016, 2014. [28] S Bertolazzi, D Krasnozhon, and A Kis. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano, 7:3246–3252, 2013. [29] P T K Loan, W Zhang, C.-T. Lin, K.-H. Wei, L.-J. Li, and C.-H. Chen. Graphene/MoS2 Heterostructures for Ultrasensitive Detection of DNA Hybridisation. Adv. Mater., 26:4838–4844, 2014. [30] Han Wang, Lili Yu, Yi-Hsien Lee, Yumeng Shi, Allen Hsu, Matthew L. Chin, Lain-Jong Li, Madan Dubey, Jing Kong, and Tomas Palacios. Integrated circuits based on bilayer mos2 transistors. Nano Lett., 12(9):4674–4680, 2012. PMID: 22862813. [31] B Radisavljevic, a Radenovic, J Brivio, V Giacometti, and a Kis. Single-layer MoS2 transistors. Nat. Nanotech., 6(3):147–50, March 2011. [32] Z. Zhu, Y. Cheng, and U. Schwingenschlぴogl. Giant Spin-Orbit-Induced Spin Splitting in Two-Dimensional Transition-Metal Dichalcogenide Semiconductors. Phys. Rev. B, 84(15):153402/1–153402/5, October 2011. [33] S. Leb`egue and O. Eriksson. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B, 79(11):4–7, March 2009. [34] Tianshu Li and Giulia Galli. Electronic properties of mos2 nanoparticles. J. Phys. Chem. C, 12:16192–16196, 2007. [35] Di Xiao, Gui-Bin Liu, Wanxiang Feng, Xiaodong Xu, and Wang Yao. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett., 108(19):196802/1–196802/5, May 2012. July 30, 2015 Bibliography 71 [36] Yu-Ting Wang, Chih-Wei Luo, Atsushi Yabushita, Kaung-Hsiung Wu, Takayoshi Kobayashi, Chang-Hsiao Chen, and Lain-Jong Li. Ultrafast Multi- Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2. Sci. Rep., 5:8289, 2015. [37] M S Choi, Gwan-Hyoung H Lee, Young-Jun J Yu, Dae-Yeong Y Lee, S H Lee, Philip Kim, James Hone, and W J Yoo. Controlled Charge Trapping by Molybdenum Disulphide and Graphene in Ultrathin Heterostructured Memory Devices. Nat. Commun., 4:1624–1630, mar 2013. [38] Woo Jong Yu, Zheng Li, Hailong Zhou, Yu Chen, Yang Wang, Yu Huang, and Xiangfeng Duan. Vertically Stacked Multi-Heterostructures of Layered Materials for Logic Transistors and Complementary inverters. Nat. Mater., 12(3):246–252, December 2012. [39] W Zhang, C.-P. Chuu, J.-K. Huang, C.-H. Chen, M.-L. Tsai, Y.-H. Chang, C.-T. Liang, Y.-Z. Chen, Y.-L. Chueh, J.-H. He, M.-Y. Chou, and L.-J. Li. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Sci. Rep., 4:3826–3833, 2014. [40] Yung-Huang Chang, Cheng-Te Lin, Tzu-Yin Chen, Chang-Lung Hsu, Yi-Hsien Lee, Wenjing Zhang, Kung-Hwa Wei, and Lain-Jong Li. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Advanced materials (Deerfield Beach, Fla.), 25(5):756–760, feb 2013. [41] Yumeng Shi, Wu Zhou, Ang-yu Lu, Wenjing Fang, Yi-hsien Lee, Allen Long Hsu, Soo Min Kim, Ki Kang Kim, Hui Ying Yang, Lain-jong Li, Juan-carlos Idrobo, and Jing Kong. van der waals epitaxy of mos2 layers using graphene as growth templates. Nano Lett., 12(6):2784, 2012. [42] Yi-Hsien Lee, Xin-Quan Zhang, Wenjing Zhang, Mu-Tung Chang, Cheng-Te Lin, Kai-Di Chang, Ya-Chu Yu, Jacob Tse-Wei Wang, Chia-Seng Chang, Lain- Jong Li, and Tsung-Wu Lin. Synthesis of large-area mos2 atomic layers with chemical vapor deposition. Adv. Mater., 24(17):2320–2325, 2012. July 30, 2015 Bibliography 72 [43] Chendong Zhang, Amber Johnson, Chang-Lung Hsu, Lain-Jong Li, and Chih- Kang Shih. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett., 14(5):2443–7, May 2014. [44] J Kang, J Li, S S. Li, J B. Xia, and L W. Wang. Electronic Structural Moir’e Pattern E↵ects on MoS2/MoSe2 2D Heterostructures. Neno Lett., 13:5485– 5490, 2013. [45] D. Martoccia, P. R. Willmott, T. Brugger, M. Bjぴorck, S. Gぴunther, C. M. Schlepぴutz, A. Cervellino, S. A. Pauli, B. D. Patterson, S. Marchini, J. Wintterlin, W. Moritz, and T. Greber. Graphene on ru(0001): A 25 ⇥ 25 supercell. Phys. Rev. Lett., 101:126102, Sep 2008. [46] B. Wang, M-L. Bocquet, S. Gぴunther, and J. Wintterlin. Comment on “periodically rippled graphene: Growth and spatially resolved electronic structure”. Phys. Rev. Lett., 101:099703, Aug 2008. [47] D. Stradi, S. Barja, C. D’ıaz, M. Garnica, B. Borca, J. J. Hinarejos, D. S’anchez- Portal, M. Alcam’ı, A. Arnau, A. L. V’azquez de Parga, R. Miranda, and F. Mart’ın. Role of dispersion forces in the structure of graphene monolayers on ru surfaces. Phys. Rev. Lett., 106:186102, May 2011. [48] D. Stradi, S. Barja, C. D’ıaz, M. Garnica, B. Borca, J. J. Hinarejos, D. S’anchez- Portal, M. Alcam’ı, a. Arnau, a. L. V’azquez de Parga, R. Miranda, and F. Mart’ın. Electron localization in epitaxial graphene on Ru(0001) determined by moir’e corrugation. Phys. Rev. B, 85(12):121404, March 2012. [49] Guohong Li, A Luican, J M B Lopes Santos, A H Castro Neto, A Reina, J Kong, and E Y Andrei. Observation of Van Hove singularities in twisted graphene layers. Nature Physics, 6(November 2009), 2010. [50] J. R. Wallbank, M. Mucha-Kruczy’nski, and V. I. Fal’ko. Moir’e minibands in graphene heterostructures with almost commensurate p3 ⇥ p3 hexagonal crystals. Phys. Rev. B, 88:155415, Oct 2013. July 30, 2015 Bibliography 73 [51] Rafi Bistritzer and Allan H. MacDonald. Moir bands in twisted double-layer graphene. Proc. Natl. Acad. Sci., 108(30):12233–12237, 2011. [52] W. Landgraf, S. Shallcross, K. Tぴurschmann, D. Weckbecker, and O. Pankratov. Electronic structure of twisted graphene flakes. Phys. Rev. B, 87(7):1–12, 2013. [53] Long-Jing Yin, Jia-Bin Qiao,Wen-XiaoWang, Zhao-Dong Chu, Kai Fen Zhang, Rui-Fen Dou, Chun Lei Gao, Jin-Feng Jia, Jia-Cai Nie, and Lin He. Tuning structures and electronic spectra of graphene layers with tilt grain boundaries. Phys. Rev. B, 89(20):205410, 2014. [54] Abbas Ebnonnasir, Badri Narayanan, Suneel Kodambaka, and Cristian V. Ciobanu. Tunable mos2 bandgap in mos2-graphene heterostructures. Appl. Phys. Lett., 105(3):031603, 2014. [55] X. D. Li, S. Yu, S. Q. Wu, Y. H. Wen, S. Zhou, and Z. Z. Zhu. Structural and Electronic Properties of Superlattice Composed of Graphene and Monolayer MoS2. The Journal of Physical Chemistry C, 117:15347, 2013. [56] Yu Li Huang, Yifeng Chen, Wenjing Zhang, Su Ying Quek, Chang-Hsiao Chen, Lain-Jong Li, Wei-Ting Hsu, Wen-Hao Chang, Yu Jie Zheng, Wei Chen, and Andrew T. S. Wee. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun., 6:6298, 2015. [57] Jakob Kibsgaard, Jeppe V. Lauritsen, Erik Laegsgaard, Bjerne S. Clausen, Henrik Tops? e, and Flemming Besenbacher. Cluster-Support Interactions and Morphology of MoS2 Nanoclusters in a Graphite-Supported Hydrotreating Model Catalyst. J. Am. Chem. Soc., 128(42):13950–13958, October 2006. [58] Charles Kittel. Introduction to Solid State Physics. John Wiley & Sons, Inc., New York, 6th edition, 1986. [59] D. M. Bruls, J. W. A. M. Vugs, P. M. Koenraad, H. W. M. Salemink, J. H. Wolter, M. Hopkinson, M. S. Skolnick, Fei Long, and S. P. A. Gill. Determination of the shape and indium distribution of low-growth-rate inas quan- July 30, 2015 Bibliography 74 tum dots by cross-sectional scanning tunneling microscopy. Appl. Phys. Lett., 81(9):1708–1710, 2002. [60] R. M. Feenstra, E. T. Yu, J. M. Woodall, P. D. Kirchner, C. L. Lin, and G. D. Pettit. Crosssectional imaging and spectroscopy of gaas doping superlattices by scanning tunneling microscopy. Appl. Phys. Lett., 61(7):795–797, 1992. [61] M. B. Johnson, U. Maier, H.P. Meier, and H. W. M. Salemink. Atomicscale view of algaas/gaas heterostructures with crosssectional scanning tunneling microscopy. Appl. Phys. Lett., 63(9):1273–1275, 1993. [62] L. Petersen, P. T. Sprunger, Ph. Hofmann, E. Lagsgaard, B. G. Briner, M. Doering, H.-P. Rust, A. M. Bradshaw, F. Besenbacher, and E. W. Plummer. Direct imaging of the two-dimensional fermi contour: Fourier-transform stm. Phys. Rev. B, 57:R6858–R6861, Mar 1998. [63] Yoshinori Okada, Chetan Dhital, Wenwen Zhou, Erik D. Huemiller, Hsin Lin, S. Basak, A. Bansil, Y.-B. Huang, H. Ding, Z. Wang, Stephen D. Wilson, and V. Madhavan. Direct observation of broken time-reversal symmetry on the surface of a magnetically doped topological insulator. Phys. Rev. Lett., 106:206805, May 2011. [64] Pedram Roushan, Jungpil Seo, Colin V. Parker, Y. S. Hor, D. Hsieh, Dong Qian, Anthony Richardella, M. Z. Hasan, R. J. Cava, and Ali Yazdani. Topological surface states protected from backscattering by chiral spin texture. Nature, 460(7259):1106–1109, 08 2009. [65] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett., 49:57–61, Jul 1982. [66] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel. Tunneling through a controllable vacuum gap. Appl. Phys. Lett., 40(2):178–180, 1982. [67] J. Terso↵ and D. R. Hamann. Theory of the scanning tunneling microscope. Phys. Rev. B, 31:805–813, Jan 1985. July 30, 2015 Bibliography 75 [68] Vladimir A. Ukraintsev. Data evaluation technique for electron-tunneling spectroscopy. Phys. Rev. B, 53:11176–11185, Apr 1996. [69] S. Helveg, J. V. Lauritsen, E. Lagsgaard, I. Stensgaard, J. K. N?rskov, B. S. Clausen, H. Tops?e, and F. Besenbacher. Atomic-scale structure of single-layer mos2 nanoclusters. Phys. Rev. Lett., 84:951–954, Jan 2000. [70] Katsuyoshi Kobayashi and Jun Yamauchi. Electronic structure and scanningtunneling- microscopy image of molybdenum dichalcogenide surfaces. Phys. Rev. B, 51:17085–17095, Jun 1995. [71] A. Altibelli, C. Joachim, and P. Sautet. Interpretation of {STM} images: the mos2 surface. Surface Science, 367(2):209 – 220, 1996. [72] R. Suzuki, M. Sakano, Y. J. Zhang, R. Akashi, D. Morikawa, A. Harasawa, K. Yaji, K. Kuroda, K. Miyamoto, T. Okuda, K. Ishizaka, R. Arita, and Y. Iwasa. Valley-dependent spin polarization in bulk mos2 with broken inversion symmetry. Nat. Nanotech., 9(8):611–617, 08 2014. [73] Chun-I Lu, Christopher John Butler, Jing-Kai Huang, Cheng-Rong Hsing, Hung-Hsiang Yang, Yu-Hsun Chu, Chi-Hung Luo, Yung-Che Sun, Shih-Hao Hsu, Kui-Hong Ou Yang, Ching-Ming Wei, Lain-Jong Li, and Minn-Tsong Lin. Graphite edge controlled registration of monolayer MoS2 crystal orientation. Appl. Phys. Lett., 106(18):181904, 2015. [74] Tawinan Cheiwchanchamnangij and Walter R. Lambrecht. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B, 85(20):205302, May 2012. [75] R M Feenstra and Joseph a Stroscio. Tunneling spectroscopy of the gaas(110) surface. J. Vac. Sci. Technol. B, 5(February):923–929, 1987. [76] C Ataca, M Topsakal, E Akt, and S Ciraci. A Comparative Study of Lattice Dynamics of Three- and Two-Dimensional MoS2. The Journal of Physical Chemistry C, 115:16354–16361, 2011. July 30, 2015 Bibliography 76 [77] P Hohenberg and W Kohn. Inhomogeneous Electron Gas. Phys. Rev., 136:B864–B871, 1964. [78] W Kohn and L J Sham. Self-Consistent Equations Including Exchange and Correlation E↵ects. Phys. Rev., 140:A1133–A1138, 1965. [79] D M Ceperley and B J Alder. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett., 45(7):566–569, 1980. [80] G Kresse and J Furthmiiller. Efficiency of ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set. Comput. Mater. Sci., 6:15–50, 1996. [81] G Kresse and J Furthmuller. Efficient Iterative Schemes for ab-initio Totalenergy Calculations Using a Plane-wave Basis Set. Phy. Rev. B, 54(16):11169– 11186, 1996. [82] P E Blぴochl. Projector Augmented-wave Method. Phy. Rev. B, 50:17953–17979, 1994. [83] Katsuyoshi Kobayashi. Moir’e pattern in scanning tunneling microscopy: Mechanism in observation of subsurface nanostructures. Phys. Rev. B, 53:11091– 11099, Apr 1996. [84] R Dombrowski, C. Steinebach, C. Wittneven, M Morgenstern, and R Wiesendanger. Tip-induced band bending by scanning tunneling spectroscopy of the states of the tip-induced quantum dot on InAs(110). Phys. Rev. B, 59(12):8043– 8048, 1999. July 30, 2015 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17871 | - |
| dc.description.abstract | 自從石墨烯出現之後,科學界對於二維材料產生很大的興趣,也開始尋找其他的二維材料,二硫化鉬(MoS2)是這些其他二維材料中,最著名的一個例子,其導電狀態為半導體,因此在產業應用上,二硫化鉬比起石墨烯更俱有潛力。而化學氣相沉積(CVD)是在微米尺度中成長二硫化鉬的原子級平坦的單層薄膜的一種有效方法,並經常使用於工業界。在本研究中,我們用原子力顯微鏡(AFM)和掃描穿隧電子顯微鏡/電子能譜 (STM /STS),對於CVD生長於石墨的二硫化鉬,進行了一系列的基礎研究。 我們知道,當兩個不同的二維晶體重疊時,晶格失配 (lattice mismatch)和相對轉角(relative rotational angle)會使其表面的原子晶格排列,額外產生一種週期性的超結構(Superstructure),這種結構被稱為摩爾紋 (moire pattern)。我們隨機挑選了一些單層二硫化鉬三角形島嶼,並針對其中的摩爾紋做分析,我們發現,這其中存在至少七種不同的超結構,以及,二硫化鉬吸附層和石墨基板晶格之間的相對轉角,通常小於5°,也就是說,二硫化鉬與石墨的晶格之間,是比較偏好於保持平行的。這個結論可以解釋我們在原子力顯微鏡觀察到的現象:二
硫化鉬生長在石墨台階邊緣時,其島嶼的方向性是有所偏好的,而這與二硫化鉬生長在石墨鋸齒狀 (zig-zag) 或扶手椅 (arm-chair) 的邊緣上有關。 另一方面,有許多文獻指出,摩爾紋不只是幾何圖形上的意義,其圖案也可能影響其異質界面的電子結構,這是因為波紋造成的週期性電子局域化,導致額外的長週期電位能,這可能使二硫化鉬產生電子能帶的改變,摩爾紋的出現就好像自由電子在表面遇到了週期性的量子位能阱。在一系列的STS測量中,我們可以得出一些觀察上的結論:雖然同是單層的二硫化鉬,但是不同的超結構卻量到不同的穿隧電子能譜,該能譜可以對應到材料的電子結構,然後,利用原子解析度的STS量測可以得知,即使是在單一的超結構裡,這些能譜也有原子位置的相依性。考慮到二硫化鉬材料的半導體特性,可以推測出,這些測量到的與摩爾紋相關連的電子能階,很有可能同時也是STM探針引導出的量子態。 | zh_TW |
| dc.description.abstract | MoS2, a two-dimensional semiconductor, yields intense interest and great potential for technological applications. Chemical vapor deposition (CVD) is an efficient method of developing micro-meter scale to atomically flat monolayer islands of MoS2.
In the present study, MoS2 grown by CVD process on graphite was examined by using atomic force and scanning tunneling microscopy/ spectroscopy (STM/STS) techniques. When the two different 2D crystal overlapping, lattice mismatch and relative rotational angle would lead to have a kind of superstructure, called moir’e pattern. By analyzing the moir’e patterns from several triangular MoS2 islands, we find that, there exists at least seven different superstructures and the relative rotational angles between the MoS2 adlayer and graphite substrate lattices are typically less than 5. According to this analysis, we conclude that since MoS2 grows at graphite step edges, it is the edge structure which controls the orientation of the islands, with whom grows from zig-zag (or armchair) edges tending to orient with one lattice vector parallel (perpendicular) to the step-edge. On the other hand, moir’e pattern could also affect the electronic structure of the heterostructure, due to the corrugation with periodical electron localization leads to additional long period of potential. It generates mini bands and the moir’e spots behave just like moir’e quantum well. In the series of STS measurements, we can conclude that, tunneling spectra of two superstructures of MoS2 are different. The difference is also found between moir’e hill and moir’e valley. These peaks could be related to the position within the single moir’e pattern. After considering the semiconductor property of MoS2, these states can be supposed as tip-induced quantum states, but influenced by moir’e pattern. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:45:09Z (GMT). No. of bitstreams: 1 ntu-104-D98222023-1.pdf: 3314877 bytes, checksum: 0bf78d0b7984824c4804da19371403fa (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Contents
Abstract iii Declaration v Acknowledgements vi 1 Introduction 1 2 Experimental Apparatus and Techniques 6 2.1 Ultra-high Vacuum Systems . . . . . . . . . . . 6 2.1.1 Overview . . . . . . . . . . . . . . . . . . . 6 2.1.2 Sputtering and Annealing . . . . . . . . . . .10 2.2 Low-Energy Electron Di↵raction Principle . . . 12 2.2.1 LEED Principle . . . . . . . . . . . . . . . .12 2.2.2 LEED I/V . . . . . . . . . . . . . . . . . . .14 2.3 Auger Electron Spectroscopy . . . . . . . . . . 16 2.4 Fabrication of STM Tips . . . . . . . . . . . . 16 2.5 The Cu(001) Surface . . . . . . . . . . . . . . 17 2.6 MoS2 Preparation . . . . . . . . . . . . . . . 18 3 Scanning Tunneling Microscopy 21 3.1 The Quantum Tunneling Effect . . . . . . . . . 21 3.2 Setup of Scanning Tunneling Microscope . . . . .23 3.3 Scanning Tunneling Spectroscopy . . . . . . . . 24 4 Data Analysis 28 4.1 Two-dimensional Fourier Analysis . . . . . . . .28 4.2 Calibration of Scanning Tunneling Microscopy Images . .29 4.3 Determination of Relative Rotational Angles . . . . . .30 5 Morphology of the Monolayer MoS2 on HOPG System 32 5.1 Monolayer MoS2 Nano-sheets on HOPG . . . . . . . . . . 32 5.2 Atomic Structure of Monolayer MoS2 on HOPG . . . . . . 35 5.3 Superstructure Analysis on Monolayer MoS2 on HOPG . . .37 6 Atomically Resolved STS on Monolayer MoS2 on HOPG 42 6.1 STS Measurements on Two Di↵erent Moir’e Superstructures 42 6.2 STS Curves Within the Single Moir’e Period . . . . . . 48 7 Discussion 54 7.1 The Binding Energy of the Superstructures . . . . . . 54 7.2 Orientations of MoS2 Flakes on HOPG Step Edges . . . . 56 7.3 Setpoint Dependence Tunneling Image of the Heterostructure 57 7.4 Exploring the Mechanism of the Moir’e Pattern Dependent States . 60 8 Conclusions 64 Bibliography 67 | |
| dc.language.iso | en | |
| dc.title | 單層二硫化鉬沉積於高定向熱解石墨表面之原子排列與電子結構解析 | zh_TW |
| dc.title | Investigation of the Orientation and Electronic Structure of Monolayer MoS2 on HOPG surface | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 魏金明,莊天明,郭建成,邱雅萍,吳啟彬 | |
| dc.subject.keyword | 二硫化鉬,二維材料,半導體,掃描穿隧電子顯微鏡,掃描穿隧電子能譜摩爾紋,異質性結構,化學氣象沈積, | zh_TW |
| dc.subject.keyword | MoS2,2D Material,Semiconductor,Scanning Tunneling Microscopy,Scanning Tunneling Spectroscopy,Moir’e pattern,Heterostructure,CVD, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-08-05 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
