Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17868
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王致恬(Chih-Tien Wang)
dc.contributor.authorYu-Tien Hsiaoen
dc.contributor.author蕭愉恬zh_TW
dc.date.accessioned2021-06-08T00:45:05Z-
dc.date.copyright2015-09-02
dc.date.issued2015
dc.date.submitted2015-08-05
dc.identifier.citationAckman, J.B., Burbridge, T.J., and Crair, M.C. (2012). Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490, 219-225.
Albillos, A., Dernick, G., Horstmann, H., Almers, W., Alvarez de Toledo, G., and Lindau, M. (1997). The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389, 509-512.
Alvarez de Toledo, G., Fernandez-Chacon, R., and Fernandez, J.M. (1993). Release of secretory products during transient vesicle fusion. Nature 363, 554-558.
Anderson, B.B., Zerby, S.E., and Ewing, A.G. (1999). Calculation of transmitter concentration in individual PC12 cell vesicles with electrochemical data and a distribution of vesicle size obtained by electron microscopy. J Neurosci Methods 88, 163-170.
Ashery, U., Varoqueaux, F., Voets, T., Betz, A., Thakur, P., Koch, H., Neher, E., Brose, N., and Rettig, J. (2000). Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. EMBO J 19, 3586-3596.
Bai, J., Wang, C.T., Richards, D.A., Jackson, M.B., and Chapman, E.R. (2004). Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions. Neuron 41, 929-942.
Bark, I.C., Hahn, K.M., Ryabinin, A.E., and Wilson, M.C. (1995). Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development. Proc Natl Acad Sci U S A 92, 1510-1514.
Bark, I.C., and Wilson, M.C. (1994). Regulated vesicular fusion in neurons: snapping together the details. Proc Natl Acad Sci U S A 91, 4621-4624.
Betz, A., Ashery, U., Rickmann, M., Augustin, I., Neher, E., Sudhof, T.C., Rettig, J., and Brose, N. (1998). Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 21, 123-136.
Blankenship, A.G., and Feller, M.B. (2010). Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 11, 18-29.
Blankenship, A.G., Ford, K.J., Johnson, J., Seal, R.P., Edwards, R.H., Copenhagen, D.R., and Feller, M.B. (2009). Synaptic and extrasynaptic factors governing glutamatergic retinal waves. Neuron 62, 230-241.
Bos, J.L. (2003). Epac: a new cAMP target and new avenues in cAMP research. Nature reviews Molecular cell biology 4, 733-738.
Bruns, D., and Jahn, R. (1995). Real-time measurement of transmitter release from single synaptic vesicles. Nature 377, 62-65.
Capogna, M., Gahwiler, B.H., and Thompson, S.M. (1995). Presynaptic enhancement of inhibitory synaptic transmission by protein kinases A and C in the rat hippocampus in vitro. J Neurosci 15, 1249-1260.
Carabelli, V., Giancippoli, A., Baldelli, P., Carbone, E., and Artalejo, A.R. (2003). Distinct potentiation of L-type currents and secretion by cAMP in rat chromaffin cells. Biophys J 85, 1326-1337.
Centanin, L., and Wittbrodt, J. (2014). Retinal neurogenesis. Development 141, 241-244.
Chang, C.W., Hui, E., Bai, J., Bruns, D., Chapman, E.R., and Jackson, M.B. (2015). A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores. J Neurosci 35, 5772-5780.
Chapman, E.R. (2008). How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77, 615-641.
Chapman, E.R., Hanson, P.I., An, S., and Jahn, R. (1995). Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J Biol Chem 270, 23667-23671.
Chiang, C.W., Chen, Y.C., Lu, J.C., Hsiao, Y.T., Chang, C.W., Huang, P.C., Chang, Y.T., Chang, P.Y., and Wang, C.T. (2012). Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains. PLoS One 7, e47465.
Chiang, N., Hsiao, Y.T., Yang, H.J., Lin, Y.C., Lu, J.C., and Wang, C.T. (2014). Phosphomimetic Mutation of Cysteine String Protein-alpha Increases the Rate of Regulated Exocytosis by Modulating Fusion Pore Dynamics in PC12 Cells. PLoS One 9, e99180.
Chow, R.H., von Ruden, L., and Neher, E. (1992). Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60-63.
Craven, K.B., and Zagotta, W.N. (2006). CNG and HCN channels: two peas, one pod. Annu Rev Physiol 68, 375-401.
Craxton, M. (2010). A manual collection of Syt, Esyt, Rph3a, Rph3al, Doc2, and Dblc2 genes from 46 metazoan genomes--an open access resource for neuroscience and evolutionary biology. BMC genomics 11, 37.
de Wit, H. (2010). Morphological docking of secretory vesicles. Histochem Cell Biol 134, 103-113.
Debus, K., and Lindau, M. (2000). Resolution of patch capacitance recordings and of fusion pore conductances in small vesicles. Biophys J 78, 2983-2997.
Delgado-Martinez, I., Nehring, R.B., and Sorensen, J.B. (2007). Differential abilities of SNAP-25 homologs to support neuronal function. J Neurosci 27, 9380-9391.
Domanska, M.K., Kiessling, V., Stein, A., Fasshauer, D., and Tamm, L.K. (2009). Single vesicle millisecond fusion kinetics reveals number of SNARE complexes optimal for fast SNARE-mediated membrane fusion. J Biol Chem 284, 32158-32166.
Dunn, T.A., Storm, D.R., and Feller, M.B. (2009). Calcium-dependent increases in protein kinase-A activity in mouse retinal ganglion cells are mediated by multiple adenylate cyclases. PLoS One 4, e7877.
Dunn, T.A., Wang, C.T., Colicos, M.A., Zaccolo, M., DiPilato, L.M., Zhang, J., Tsien, R.Y., and Feller, M.B. (2006). Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. J Neurosci 26, 12807-12815.
Evans, G.J., Wilkinson, M.C., Graham, M.E., Turner, K.M., Chamberlain, L.H., Burgoyne, R.D., and Morgan, A. (2001). Phosphorylation of cysteine string protein by protein kinase A. Implications for the modulation of exocytosis. J Biol Chem 276, 47877-47885.
Fang, Q., Berberian, K., Gong, L.W., Hafez, I., Sorensen, J.B., and Lindau, M. (2008). The role of the C terminus of the SNARE protein SNAP-25 in fusion pore opening and a model for fusion pore mechanics. Proc Natl Acad Sci U S A 105, 15388-15392.
Feller, M.B., Wellis, D.P., Stellwagen, D., Werblin, F.S., and Shatz, C.J. (1996). Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272, 1182-1187.
Finnegan, J.M., Pihel, K., Cahill, P.S., Huang, L., Zerby, S.E., Ewing, A.G., Kennedy, R.T., and Wightman, R.M. (1996). Vesicular quantal size measured by amperometry at chromaffin, mast, pheochromocytoma, and pancreatic beta-cells. J Neurochem 66, 1914-1923.
Gillis, K.D., Mossner, R., and Neher, E. (1996). Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16, 1209-1220.
Greenlee, M.H., Roosevelt, C.B., and Sakaguchi, D.S. (2001). Differential localization of SNARE complex proteins SNAP-25, syntaxin, and VAMP during development of the mammalian retina. J Comp Neurol 430, 306-320.
Guo, Z., Turner, C., and Castle, D. (1998). Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell 94, 537-548.
Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391, 85-100.
Han, X., and Jackson, M.B. (2005). Electrostatic interactions between the syntaxin membrane anchor and neurotransmitter passing through the fusion pore. Biophys J 88, L20-22.
Han, X., Wang, C.T., Bai, J., Chapman, E.R., and Jackson, M.B. (2004). Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304, 289-292.
Hay, J.C., and Martin, T.F. (1992). Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J Cell Biol 119, 139-151.
Holz, G.G., Kang, G., Harbeck, M., Roe, M.W., and Chepurny, O.G. (2006). Cell physiology of cAMP sensor Epac. J Physiol 577, 5-15.
Hua, Y., and Scheller, R.H. (2001). Three SNARE complexes cooperate to mediate membrane fusion. Proc Natl Acad Sci U S A 98, 8065-8070.
Huang, P.C., Hsiao, Y.T., Kao, S.Y., Chen, C.F., Chen, Y.C., Chiang, C.W., Lee, C.F., Lu, J.C., Chern, Y., and Wang, C.T. (2014). Adenosine A2A Receptor Up-Regulates Retinal Wave Frequency via Starburst Amacrine Cells in the Developing Rat Retina. PLoS One 9, e95090.
Jackson, M.B., and Chapman, E.R. (2008). The fusion pores of Ca(2+)-triggered exocytosis. Nat Struct Mol Biol 15, 684-689.
Klyachko, V.A., and Jackson, M.B. (2002). Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418, 89-92.
Lin, R.C., and Scheller, R.H. (2000). Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol 16, 19-49.
Llinas, R., Sugimori, M., and Silver, R.B. (1992). Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677-679.
Lynch, K.L., Gerona, R.R., Larsen, E.C., Marcia, R.F., Mitchell, J.C., and Martin, T.F. (2007). Synaptotagmin C2A loop 2 mediates Ca2+-dependent SNARE interactions essential for Ca2+-triggered vesicle exocytosis. Mol Biol Cell 18, 4957-4968.
Ma, C., Su, L., Seven, A.B., Xu, Y., and Rizo, J. (2013). Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339, 421-425.
Marquardt, T., and Gruss, P. (2002). Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci 25, 32-38.
McLaughlin, T., Torborg, C.L., Feller, M.B., and O'Leary, D.D. (2003). Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40, 1147-1160.
Moghadam, P.K., and Jackson, M.B. (2013). The Functional Significance of Synaptotagmin Diversity in Neuroendocrine Secretion. Front Endocrinol (Lausanne) 4, 124.
Mohrmann, R., de Wit, H., Verhage, M., Neher, E., and Sorensen, J.B. (2010). Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 330, 502-505.
Montecucco, C., Schiavo, G., and Pantano, S. (2005). SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem Sci 30, 367-372.
Munno, D.W., Prince, D.J., and Syed, N.I. (2003). Synapse number and synaptic efficacy are regulated by presynaptic cAMP and protein kinase A. J Neurosci 23, 4146-4155.
Nagy, G., Matti, U., Nehring, R.B., Binz, T., Rettig, J., Neher, E., and Sorensen, J.B. (2002). Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J Neurosci 22, 9278-9286.
Nagy, G., Reim, K., Matti, U., Brose, N., Binz, T., Rettig, J., Neher, E., and Sorensen, J.B. (2004). Regulation of releasable vesicle pool sizes by protein kinase A-dependent phosphorylation of SNAP-25. Neuron 41, 417-429.
Neher, E., and Marty, A. (1982). Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A 79, 6712-6716.
Oberhauser, A.F., Robinson, I.M., and Fernandez, J.M. (1995). Do caged-Ca2+ compounds mimic the physiological stimulus for secretion? Journal of physiology, Paris 89, 71-75.
Osen-Sand, A., Catsicas, M., Staple, J.K., Jones, K.A., Ayala, G., Knowles, J., Grenningloh, G., and Catsicas, S. (1993). Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364, 445-448.
Penn, A.A., Riquelme, P.A., Feller, M.B., and Shatz, C.J. (1998). Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 2108-2112.
Pozzi, D., Condliffe, S., Bozzi, Y., Chikhladze, M., Grumelli, C., Proux-Gillardeaux, V., Takahashi, M., Franceschetti, S., Verderio, C., and Matteoli, M. (2008). Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proc Natl Acad Sci U S A 105, 323-328.
Ravichandran, V., Chawla, A., and Roche, P.A. (1996). Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J Biol Chem 271, 13300-13303.
Risinger, C., and Bennett, M.K. (1999). Differential phosphorylation of syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) isoforms. J Neurochem 72, 614-624.
Rizo, J., Chen, X., and Arac, D. (2006). Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol 16, 339-350.
Schiavo, G., Stenbeck, G., Rothman, J.E., and Sollner, T.H. (1997). Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc Natl Acad Sci U S A 94, 997-1001.
Schneider, S.W. (2001). Kiss and run mechanism in exocytosis. J Membr Biol 181, 67-76.
Seino, S., and Shibasaki, T. (2005). PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85, 1303-1342.
Shatz, C.J., and Stryker, M.P. (1988). Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242, 87-89.
Shelly, M., Lim, B.K., Cancedda, L., Heilshorn, S.C., Gao, H., and Poo, M.M. (2010). Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327, 547-552.
Sheng, Z.H., Rettig, J., Cook, T., and Catterall, W.A. (1996). Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379, 451-454.
Shimazaki, Y., Nishiki, T., Omori, A., Sekiguchi, M., Kamata, Y., Kozaki, S., and Takahashi, M. (1996). Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem 271, 14548-14553.
Smith, C. (1999). A persistent activity-dependent facilitation in chromaffin cells is caused by Ca2+ activation of protein kinase C. J Neurosci 19, 589-598.
Smith, C., Moser, T., Xu, T., and Neher, E. (1998). Cytosolic Ca2+ acts by two separate pathways to modulate the supply of release-competent vesicles in chromaffin cells. Neuron 20, 1243-1253.
Sorensen, J.B. (2009). Conflicting views on the membrane fusion machinery and the fusion pore. Annu Rev Cell Dev Biol 25, 513-537.
Sorensen, J.B., Nagy, G., Varoqueaux, F., Nehring, R.B., Brose, N., Wilson, M.C., and Neher, E. (2003). Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114, 75-86.
Sretavan, D.W., Shatz, C.J., and Stryker, M.P. (1988). Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature 336, 468-471.
Stafford, B.K., Sher, A., Litke, A.M., and Feldheim, D.A. (2009). Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections. Neuron 64, 200-212.
Stellwagen, D., Shatz, C.J., and Feller, M.B. (1999). Dynamics of retinal waves are controlled by cyclic AMP. Neuron 24, 673-685.
Sudhof, T.C. (2004). The synaptic vesicle cycle. Annual review of neuroscience 27, 509-547.
Sutton, R.B., Fasshauer, D., Jahn, R., and Brunger, A.T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347-353.
Syed, M.M., Lee, S., Zheng, J., and Zhou, Z.J. (2004). Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J Physiol 560, 533-549.
Tafoya, L.C., Shuttleworth, C.W., Yanagawa, Y., Obata, K., and Wilson, M.C. (2008). The role of the t-SNARE SNAP-25 in action potential-dependent calcium signaling and expression in GABAergic and glutamatergic neurons. BMC Neurosci 9, 105.
Torborg, C.L., and Feller, M.B. (2005). Spontaneous patterned retinal activity and the refinement of retinal projections. Prog Neurobiol 76, 213-235.
Torborg, C.L., Hansen, K.A., and Feller, M.B. (2005). High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nat Neurosci 8, 72-78.
Trudeau, L.E., Emery, D.G., and Haydon, P.G. (1996). Direct modulation of the secretory machinery underlies PKA-dependent synaptic facilitation in hippocampal neurons. Neuron 17, 789-797.
van den Bogaart, G., Holt, M.G., Bunt, G., Riedel, D., Wouters, F.S., and Jahn, R. (2010). One SNARE complex is sufficient for membrane fusion. Nat Struct Mol Biol 17, 358-364.
Verderio, C., Pozzi, D., Pravettoni, E., Inverardi, F., Schenk, U., Coco, S., Proux-Gillardeaux, V., Galli, T., Rossetto, O., Frassoni, C., et al. (2004). SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41, 599-610.
Vician, L., Lim, I.K., Ferguson, G., Tocco, G., Baudry, M., and Herschman, H.R. (1995). Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Proc Natl Acad Sci U S A 92, 2164-2168.
Violin, J.D., Zhang, J., Tsien, R.Y., and Newton, A.C. (2003). A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 161, 899-909.
Wang, C.T., Bai, J., Chang, P.Y., Chapman, E.R., and Jackson, M.B. (2006). Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation. J Physiol 570, 295-307.
Wang, C.T., Grishanin, R., Earles, C.A., Chang, P.Y., Martin, T.F., Chapman, E.R., and Jackson, M.B. (2001). Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294, 1111-1115.
Wang, C.T., Lu, J.C., Bai, J., Chang, P.Y., Martin, T.F., Chapman, E.R., and Jackson, M.B. (2003). Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424, 943-947.
Wang, G., Witkin, J.W., Hao, G., Bankaitis, V.A., Scherer, P.E., and Baldini, G. (1997). Syndet is a novel SNAP-25 related protein expressed in many tissues. Journal of cell science 110 ( Pt 4), 505-513.
West Greenlee, M.H., Finley, S.K., Wilson, M.C., Jacobson, C.D., and Sakaguchi, D.S. (1998). Transient, high levels of SNAP-25 expression in cholinergic amacrine cells during postnatal development of the mammalian retina. J Comp Neurol 394, 374-385.
Wightman, R.M., Jankowski, J.A., Kennedy, R.T., Kawagoe, K.T., Schroeder, T.J., Leszczyszyn, D.J., Near, J.A., Diliberto, E.J., Jr., and Viveros, O.H. (1991). Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A 88, 10754-10758.
Wiser, O., Bennett, M.K., and Atlas, D. (1996). Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L- and N-type Ca2+ channels. EMBO J 15, 4100-4110.
Wiser, O., Trus, M., Hernandez, A., Renstrom, E., Barg, S., Rorsman, P., and Atlas, D. (1999). The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci U S A 96, 248-253.
Wong, R.O., Chernjavsky, A., Smith, S.J., and Shatz, C.J. (1995). Early functional neural networks in the developing retina. Nature 374, 716-718.
Xu, H.P., Furman, M., Mineur, Y.S., Chen, H., King, S.L., Zenisek, D., Zhou, Z.J., Butts, D.A., Tian, N., Picciotto, M.R., et al. (2011). An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron 70, 1115-1127.
Yang, Y., Craig, T.J., Chen, X., Ciufo, L.F., Takahashi, M., Morgan, A., and Gillis, K.D. (2007). Phosphomimetic mutation of Ser-187 of SNAP-25 increases both syntaxin binding and highly Ca2+-sensitive exocytosis. J Gen Physiol 129, 233-244.
Zhang, J., Ackman, J.B., Xu, H.P., and Crair, M.C. (2012). Visual map development depends on the temporal pattern of binocular activity in mice. Nat Neurosci 15, 298-307.
Zhang, J., Hupfeld, C.J., Taylor, S.S., Olefsky, J.M., and Tsien, R.Y. (2005). Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature 437, 569-573.
Zhang, X., Kim-Miller, M.J., Fukuda, M., Kowalchyk, J.A., and Martin, T.F. (2002). Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34, 599-611.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17868-
dc.description.abstractSNARE複合體可調控囊泡融合。在三個SNARE蛋白質中,僅SNAP-25(SN25)可被蛋白質激酶A(protein kinase A,PKA)和蛋白質激酶C(protein kinase C,PKC)磷酸化,且磷酸化位置分別在SN25的T138和S187。以往的研究顯示,PKA或PKC磷酸化的SN25可藉由控制囊泡池(vesicle pool)的大小或補充囊泡池來調控囊泡的分泌量。然而,目前仍不清楚(1)SN25的磷酸化如何調控胞吐作用的動態;(2)此調控是否可以顯著影響大規模的網路活動。為了解決第一個問題,我們利用可測得單一囊泡釋放的氧化電流技術(single-event amperometry),在PC12細胞內研究SN25b的磷酸化對胞吐動態的影響,尤其是對融合孔(fusion pore)動態的影響。此研究中,我們使用兩種不同secretogogues在短時間內(約1分鐘)誘發鈣離子依賴性胞吐作用(Ca2+-dependent exocytosis),包括高濃度氯化鉀(KCl)、高濃度氯化鉀與福斯克林(Forskolin,一種腺苷酸環化酶的激活劑;FSK)的混合液(KCl FSK)。與對照組相比,KCl降低過量表現SN25b細胞的囊泡釋放速率,但KCl FSK更為顯著降低過量表現SN25b細胞的囊泡釋放速率,藉由免疫沉澱實驗顯示KCl FSK可使SN25b被PKA磷酸化,降低鈣離子依賴性胞吐作用的速率。此外, 和SN25b相比,過量表現SN25b突變株(SN25b-T138A或SN25b-S187A)的細胞,其囊泡釋放速率增加,顯示經由被PKA或PKC磷酸化的SN25b會負向調控囊泡釋放速率。有趣的是,在過量表現SN25b-T138A的細胞中,KCl FSK會減少其融合孔開啟的時間,顯示被PKA磷酸化的SN25b可穩定融合孔,但SN25b-S187A則否;因此,SN25b可在短時間內藉由PKA的磷酸化來調控胞吐作用的動態,此現象可能與提高SN25b與Stx1的交互作用有關。為了探討SN25b的磷酸化是否能進一步影響大規模的網路活動,我們檢測發育中大鼠視網膜內的模式化、自發性放電的現象(稱為視網膜波,此現象伴隨著週期性PKA和PKC活性的上升)。我們在突觸前神經元(星狀無軸突細胞,starburst amacrine cells,SACs)中過量表現SN25b或其突變株,利用即時鈣離子影像偵測在視網膜節神經元(retinal ganglion cells) 內鈣離子濃度瞬間的變化。在SACs過量表現SN25b,會降低視網膜波的頻率;而SACs過量表現SN25b-T138A或SN25b-S187A ,不會改變視網膜波的頻率。這些結果顯示被PKA或PKC磷酸化的SN25b可負向調控突觸前神經元神經傳導物質的釋放,進而可影響突觸後神經元的大規模網路活動。總而言之,我們的研究結果證明, SN25的單一氨基酸上的轉譯後修飾(post-translational modification),可調控神經傳導物質釋放的動態以及突觸後神經元大規模的網路活動;故細胞內訊息傳遞分子的即時變化,足以在短時間內造成神經傳導的多樣性。zh_TW
dc.description.abstractThe SNARE complex mediates vesicle fusion. Among three SNARE proteins, only SN25 can be phosphorylated by protein kinase A (PKA) at the residue of T138 and by protein kinase C (PKC) at the residue of S187. Previous studies showed that SN25 phosphorylation by PKA or PKC can regulate secretion via controlling the size of vesicle pool or recruiting vesicles, respectively. However, it remains unclear (1) how SN25 phosphorylation regulates the kinetics of exocytosis and (2) whether this regulation can cause a significant effect on the large-scale network activity. To address the first question, we performed single-event amperometry in PC12 cells to study the effects of SN25b phosphorylation on the exocytotic kinetics, with a special focus on the dynamics of fusion pore, reflected by foot signals preceding amperometry spikes (prespike foot, PSF). Two different secretogogues were applied to trigger Ca2+-dependent exocytosis, including KCl alone and KCl with forskolin. KCl alone reduced the secretion rate in cells overexpressing SN25b compared to control, but KCl with forskolin even more reduced the secretion rate in cells overexpressing SN25 compared to control, suggesting that SN25b may down-regulate calcium-dependent exocytosis via PKA phosphorylation. Furthermore, the secretion rate was increased in cells overexpressing the SN25b phosphodeficient mutant (SN25b-T138A or SN25b-S187A) compared to SN25b, confirming that SN25b down-regulates the secretion rate via the PKA- or PKC-phosphorylation site. Moreover, KCl with forskolin reduced PSF lifetime in cells overexpressing SN25b-T138A, but not SN25b-S187A, suggesting that SN25b PKA-phosphodeficiency destabilizes the fusion pore. Taken together, SN25b phosphorylation may regulate the kinetics of exocytosis in secretory cells. To address whether SN25b phosphorylation can cause a significant effect on the large-scale network activity, the patterned spontaneous, correlated activity (termed retinal waves) was detected in the developing rat retina where the PKA and PKC activities remain high. Live calcium imaging was subsequently performed to monitor the wave-associated calcium transients after molecular manipulation in the wave-initiating neurons (starburst amacrine cells, SACs). The frequency of retinal waves was reduced by overexpressing SN25b in SACs, whereas SN25b-T138A or SN25b-S187A in SACs did not change the wave frequency, suggesting that SN25b phosphorylation by PKA or PKC may down-regulate the wave activity from presynaptic neurons. Together, our results suggest that post-translation modification at a single residue of SN25 is sufficient to serve as a molecular regulator in modulating neurotransmitter release and the large-scale network activity.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:45:05Z (GMT). No. of bitstreams: 1
ntu-104-F96B43010-1.pdf: 8495388 bytes, checksum: 19973df9ce202e8b6662b50b645c5ff5 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iv
Abstract vi
Abbreviations viii
Contents 1
CHAPTER I BACKGROUND AND SIGNIFICANCE 7
1 Characteristics of Ca2+-dependent exocytosis 7
1.1 Calcium influx via calcium channels 7
1.2 Vesicle cycle during Ca2+-dependent exocytosis 8
2 Proteins involved in Ca2+-dependent exocytosis: SNARE complex and synaptotagmins 9
2.1 SNARE complex  the membrane fusion machinery 10
2.2 Synaptotagmins (Syts)  calcium sensors 10
3 Fusion pore 11
3.1 Structure of fusion pores 11
3.2 Modes of fusion pores 12
3.3 Kinetics of fusion pores 12
4 SNAP-25 (SN25) 13
4.1 Structure of SN25 13
4.2 Isoforms of SN25 13
4.3 Function of SN25 14
5 Neural development 15
5.1 patterned spontaneous activity during neural circuit refinement 16
6 Visual system 16
6.1 Retinal architecture 16
6.2 Visual transduction 17
6.3 Patterned spontaneous activity in retinas - Retinal waves 18
6.5 SN25 in the developing retina 19
7 Real-time techniques to monitor cellular physiology 20
7.1 Single-event amperometry 20
7.2 Fluorescence resonance energy transfer (FRET) 20
7.3 Calcium imaging 21
7.4 Patch-clamp 22
8 Objectives for this study 22
9 Significance 23
CHAPTER II MATERIALS AND METHODS 25
1 Site-directed mutagenesis 25
2 Vector construction and subcloning 26
3 Cell culture 26
4 Animals 27
5 Primary retinal explants culture 27
6 Transient transfection 28
7 Single-event amperometry 29
8 RNA extraction 30
9 Reverse transcriptase-quantitative real-time PCR (RT-qPCR) 31
10 Fluorescence resonance energy transfer (FRET) 32
11 Live calcium imaging 33
12 Whole-cell voltage-clamp 34
13 Statistics 35
CHAPTER III RESULTS 37
1 Effects of PKA-mediated SN25b phosphorylation 37
Overexpression of SN25b or SN25b-T138A does not change the expression of essential exocytotic proteins or the SN25 cellular localization in PC12 cells 37
Acute application of FSK enhances PKA activity and increases the level of SN25 phosphorylation. 38
PKA-mediated SN25b phosphorylation decreases secretion rate via the residue T138 40
PKA-mediated SN25 phosphorylation decreases full-fusion frequency without altering the fraction of kiss-and-run events 41
SN25b PKA-phosphodeficiency destabilizes the open fusion pore leading to dilation 43
PKA-mediated SN25b phosphorylation promotes the open fusion pore towards dilating or closing. 45
PKA-mediated SN25b phosphorylation does not alter the voltage-gated Ca2+ influxes and the intracellular calcium levels 47
Acute application of FSK does not induce gene expression of Syt4 and SN25 isoforms. 48
PKA-mediated SN25b phosphorylation enhances the interaction of Stx1 48
PKA-mediated SN25b phosphorylation reduces the frequency of wave-associated Ca2+ transients 49
PKA-mediated SN25b phosphorylation does not alter the spatial correlation of wave-associated Ca2+ transients 51
2 Effects of PKC-mediated SN25b phosphorylation 51
Overexpression of SN25b-S187A does not change the expression of essential exocytotic proteins in PC12 cells 51
Acute application of KCl enhances PKC activity 52
PKC-mediated SN25b phosphorylation decreases secretion rate via the residue S187 53
PKC-mediated SN25b phosphorylation decreases full-fusion frequency without altering the fraction of kiss-and-run events 54
PKC-mediated SN25b phosphorylation does not regulate the life time of fusion pores 56
The SN25b PKC-phosphodeficiency promotes the open fusion pore towards closing with additional FSK application 56
PKC-mediated SN25b phosphorylation does not alter the voltage-gated Ca2+ influxes and the intracellular calcium levels 58
PKC-mediated SN25b phosphorylation enhances the interaction of Stx1 58
PKC-mediated SN25b phosphorylation reduces the frequency of wave-associated Ca2+ transients 59
PKC-mediated SN25b phosphorylation does not alter the spatial correlation of wave-associated Ca2+ transients 60
CHAPTER IV DISCUSSION 62
CHAPTER V CONCLUSION 70
References 71
List of figures
Figure 1. Ca2+-dependent exocytosis and fusion machinery. 78
Figure 2. The changes of expression levels after transfection with the SN25 PKA-phosphodeficient mutant. 79
Figure 3. The real-time changes in PKA activity by secretagogues. 81
Figure 4. The secretion rate is down-regulated by SN25b, but not by SN25b-T138A, upon applying KCl with FSK. 83
Figure 5. Kiss-and-run events and full-fusion events in cells overexpressing the SN25b-PKA-phosphodeficient mutant. 85
Figure 6. The distributions of mean amplitude for KR events and prespike feet (PSF) in the cells overexpressing SN25b-T138A. 87
Figure 7. The mean amplitude of KR events does not be changed with time in cells overexpressing SN25b-T138A. 89
Figure 8. Spike characteristics in cells overexpressing SN25b-T138A. 91
Figure 9. PSF duration is reduced by SN25b-T138A upon application of KCl with FSK. 93
Figure 10. The SN25b PKA-phosphodeficient mutant regulates fusion pore kinetics. 95
Figure 11. The changes in whole-cell Ca2+ currents and intracellular Ca2+ concentration in cells overexpressing SN25b-T138A. 97
Figure 12. FSK does not induce Syt4 gene expression in PC12 cells during the recording time of this study. 98
Figure 13. SACs overexpressing SN25b, but not SN25b-T138A, show a decrease in Ca2+ transient frequency. 100
Figure 14. The size and spatial correlation of Ca2+ transients are not changed in the SACs overexpressing SN25b or SN25b-T138A. 102
Figure 15. The changes of expression levels after transient transfection with the SN25 PKC-phosphodeficient mutant. 103
Figure 16. The real-time changes in PKC activity by secretagogues. 105
Figure 17. The secretion rate is down-regulated by SN25b, and the SN25b PKC-phosphodeficient mutant upon applying KCl with FSK. 107
Figure 18. The distributions of mean amplitude for KR events and PSF in the cells overexpressing SN25b-S187A. 109
Figure 19. The mean amplitude of KR events is not changed over time in cells overexpressing SN25b-S187A. 111
Figure 20. Kiss-and-run events and full-fusion events in cells overexpressing SN25b-PKC-phosphodeficient mutant. 113
Figure 21. Spike characteristics in cells overexpressing SN25b-S187A. 115
Figure 22. PKC-mediated SN25b phosphorylation does not affect PSF duration. 117
Figure 23. The SN25b PKC-phosphodeficiency promotes the open fusion pore towards closing. 119
Figure 24. The changes in whole-cell Ca2+ currents and intracellular Ca2+ concentration in cells overexpressing SN25b-S187A. 121
Figure 25. SACs overexpressing SN25b, but not SN25b-S187A, show a decrease in the Ca2+ transient frequency. 122
Figure 26. The size and spatial correlation of Ca2+ transients are not changed in SACs overexpressing SN25b or SN25b-S187A. 124
Figure 27. The model of PKA- or PKC-mediated SN25b phosphorylatioin in Ca2+-dependent exocytosis. 126
List of tables
Table 1. Primers for subcloning and site-directed mutagenesis. 127
Table 2. Primers for RT-qPCR. 128
Appendix 129
Figure 1. The changes of expression levels after transient transfection. 130
Figure 2. The subcellular localization of SN25 in transfected PC12 cells. 132
Figure 3. The SN25-Stx1 binding is decreased in SN25b PKA-phosphodeficient mutants. 134
Figure 4. The subcellular localization of SN25 in the transfected retina. 135
Figure 5. The SN25-Stx1 binding is decreased in the SN25b PKC-phosphodeficient mutant. 136
Figure 6. The subcellular localization of SN25 in transfected PC12 cells. 137
The 39th Annual Meeting of the Society for Neuroscience (17-21 October 2009, Chicago, IL, U.S.A.): abstract and poster 138
The 40th Annual Meeting of the Society for Neuroscience (13-17 November 2010, San Diego, CA, U.S.A.): abstract and poster 140
The 41st Annual Meeting of the Society for Neuroscience (12-16 November 2011, Washington, DC, U.S.A.): abstract and poster 142
The 42nd Annual Meeting of the Society for Neuroscience (13-17 October 2012, New Orleans, LA, U.S.A.): abstract and poster 145
The 44th Annual Meeting of the Society for Neuroscience (15-19 November 2014, Washington, DC, U.S.A.): abstract and poster 147
2014 Institute of Molecular and Cellular Biology Poster Contest: abstract and poster 150
dc.language.isoen
dc.titleSNAP-25b的磷酸化調控分泌細胞的胞吐作用動態及發育中大鼠的視網膜波zh_TW
dc.titleSNAP-25b phosphorylation modulates the exocytotic kinetics in secretory cells and retinal waves in the developing rat retinaen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee徐立中(Li-Chung Hsu),焦傳金,溫進德,盧主欽,陳示國
dc.subject.keywordSNAP-25,磷酸化,鈣離子調控的胞吐作用,融合孔動態,氧化電流測定術,kiss and run,prespike foot,全融合,視網膜波,星狀無軸突細胞,zh_TW
dc.subject.keywordSNAP-25,phosphorylation,Ca2+-dependent exocytosis,fusion pore kinetics,amperometry,kiss and run,full fusion,prespike foot,retinal waves,starburst amacrine cells,en
dc.relation.page152
dc.rights.note未授權
dc.date.accepted2015-08-05
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
8.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved