請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17866完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游偉絢(Wei-Hsuan Yu) | |
| dc.contributor.author | Ya-Ting Yang | en |
| dc.contributor.author | 楊雅婷 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:45:03Z | - |
| dc.date.copyright | 2020-08-27 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.citation | [1] Khor B, Gardet A, Xavier RJ: Genetics and pathogenesis of inflammatory bowel disease. Nature 2011, 474:307-17. [2] Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR: Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 2007, 104:13780-5. [3] Ni J, Wu GD, Albenberg L, Tomov VT: Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 2017, 14:573-84. [4] Geremia A, Arancibia-Carcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, Travis SP, Powrie F: IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 2011, 208:1127-33. [5] Brynskov J, Nielsen OH, Ahnfelt-Ronne I, Bendtzen K: Cytokines in inflammatory bowel disease. Scand J Gastroenterol 1992, 27:897-906. [6] de Souza HS, Fiocchi C: Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 2016, 13:13-27. [7] Ng SC, Bernstein CN, Vatn MH, Lakatos PL, Loftus EV, Jr., Tysk C, O'Morain C, Moum B, Colombel JF, Epidemiology, Natural History Task Force of the International Organization of Inflammatory Bowel D: Geographical variability and environmental risk factors in inflammatory bowel disease. Gut 2013, 62:630-49. [8] Turner JR: Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009, 9:799-809. [9] Kiesler P, Fuss IJ, Strober W: Experimental Models of Inflammatory Bowel Diseases. Cell Mol Gastroenterol Hepatol 2015, 1:154-70. [10] Rezende KS, Fernandes MR, Faria BBd, Guimarães RCA, Freitas KC: Use of Animal Models in the Study of Colitis. Experimental Animal Models of Human Diseases - An Effective Therapeutic Strategy, 2018. [11] Eichele DD, Kharbanda KK: Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol 2017, 23:6016-29. [12] Czarnewski P, Parigi SM, Sorini C, Diaz OE, Das S, Gagliani N, Villablanca EJ: Conserved transcriptomic profile between mouse and human colitis allows unsupervised patient stratification. Nat Commun 2019, 10:2892. [13] Dieleman LA, Ridwan BU, Tennyson GS, Beagley KW, Bucy RP, Elson CO: Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 1994, 107:1643-52. [14] Fournier BM, Parkos CA: The role of neutrophils during intestinal inflammation. Mucosal Immunol 2012, 5:354-66. [15] Perse M, Cerar A: Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol 2012, 2012:718617. [16] Guo S, Nighot M, Al-Sadi R, Alhmoud T, Nighot P, Ma TY: Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal Transduction Pathway Activation of FAK and MyD88. J Immunol 2015, 195:4999-5010. [17] Saito K, Katakura K, Suzuki R, Suzuki T, Ohira H: Modulating Toll-like receptor 4 signaling pathway protects mice from experimental colitis. Fukushima J Med Sci 2013, 59:81-8. [18] Gross J, Lapiere CM: Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A 1962, 48:1014-22. [19] Matrisian LM: Matrix Metallopeptidase-7/Matrilysin. Handbook of Proteolytic Enzymes, 2013. pp. 786-95. [20] Khokha R, Murthy A, Weiss A: Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol 2013, 13:649-65. [21] Crabbe T, Willenbrock F, Eaton D, Hynds P, Carne AF, Murphy G, Docherty AJ: Biochemical characterization of matrilysin. Activation conforms to the stepwise mechanisms proposed for other matrix metalloproteinases. Biochemistry 1992, 31:8500-7. [22] Piccard H, Van den Steen PE, Opdenakker G: Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J Leukoc Biol 2007, 81:870-92. [23] Burke B: The role of matrix metalloproteinase 7 in innate immunity. Immunobiology 2004, 209:51-6. [24] Parks WC, Wilson CL, Lopez-Boado YS: Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 2004, 4:617-29. [25] Li Q, Park PW, Wilson CL, Parks WC: Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 2002, 111:635-46. [26] Yu WH, Woessner JF, Jr.: Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 2000, 275:4183-91. [27] Swee M, Wilson CL, Wang Y, McGuire JK, Parks WC: Matrix metalloproteinase-7 (matrilysin) controls neutrophil egress by generating chemokine gradients. J Leukoc Biol 2008, 83:1404-12. [28] Busiek DF, Baragi V, Nehring LC, Parks WC, Welgus HG: Matrilysin expression by human mononuclear phagocytes and its regulation by cytokines and hormones. J Immunol 1995, 154:6484-91. [29] Halpert I, Sires UI, Roby JD, Potter-Perigo S, Wight TN, Shapiro SD, Welgus HG, Wickline SA, Parks WC: Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci U S A 1996, 93:9748-53. [30] Haro H, Crawford HC, Fingleton B, Shinomiya K, Spengler DM, Matrisian LM: Matrix metalloproteinase-7-dependent release of tumor necrosis factor-alpha in a model of herniated disc resorption. J Clin Invest 2000, 105:143-50. [31] Rath T, Roderfeld M, Graf J, Wagner S, Vehr AK, Dietrich C, Geier A, Roeb E: Enhanced expression of MMP-7 and MMP-13 in inflammatory bowel disease: a precancerous potential? Inflamm Bowel Dis 2006, 12:1025-35. [32] Rath T, Roderfeld M, Halwe JM, Tschuschner A, Roeb E, Graf J: Cellular sources of MMP-7, MMP-13 and MMP-28 in ulcerative colitis. Scand J Gastroenterol 2010, 45:1186-96. [33] Jakubowska K, Pryczynicz A, Iwanowicz P, Niewinski A, Maciorkowska E, Hapanowicz J, Jagodzinska D, Kemona A, Guzinska-Ustymowicz K: Expressions of Matrix Metalloproteinases (MMP-2, MMP-7, and MMP-9) and Their Inhibitors (TIMP-1, TIMP-2) in Inflammatory Bowel Diseases. Gastroenterol Res Pract 2016, 2016:2456179. [34] Matsuno K, Adachi Y, Yamamoto H, Goto A, Arimura Y, Endo T, Itoh F, Imai K: The expression of matrix metalloproteinase matrilysin indicates the degree of inflammation in ulcerative colitis. J Gastroenterol 2003, 38:348-54. [35] Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF: Ulcerative colitis. Lancet 2017, 389:1756-70. [36] Ford AC, Achkar JP, Khan KJ, Kane SV, Talley NJ, Marshall JK, Moayyedi P: Efficacy of 5-aminosalicylates in ulcerative colitis: systematic review and meta-analysis. Am J Gastroenterol 2011, 106:601-16. [37] Waljee AK, Wiitala WL, Govani S, Stidham R, Saini S, Hou J, Feagins LA, Khan N, Good CB, Vijan S, Higgins PD: Corticosteroid Use and Complications in a US Inflammatory Bowel Disease Cohort. PLoS One 2016, 11:e0158017. [38] Ardizzone S, Cassinotti A, Manes G, Porro GB: Immunomodulators for all patients with inflammatory bowel disease? Therap Adv Gastroenterol 2010, 3:31-42. [39] Arora Z, Shen B: Biological therapy for ulcerative colitis. Gastroenterol Rep (Oxf) 2015, 3:103-9. [40] Riley SA, Mani V, Goodman MJ, Lucas S: Why do patients with ulcerative colitis relapse? Gut 1990, 31:179-83. [41] Meier J, Sturm A: Current treatment of ulcerative colitis. World J Gastroenterol 2011, 17:3204-12. [42] Salaga M, Zatorski H, Sobczak M, Chen C, Fichna J: Chinese herbal medicines in the treatment of IBD and colorectal cancer: a review. Curr Treat Options Oncol 2014, 15:405-20. [43] Lee JS, Park SY, Thapa D, Choi MK, Chung IM, Park YJ, Yong CS, Choi HG, Kim JA: Grifola frondosa water extract alleviates intestinal inflammation by suppressing TNF-alpha production and its signaling. Exp Mol Med 2010, 42:143-54. [44] Sandborn WJ, Targan SR, Byers VS, Rutty DA, Mu H, Zhang X, Tang T: Andrographis paniculata extract (HMPL-004) for active ulcerative colitis. Am J Gastroenterol 2013, 108:90-8. [45] Naganuma M, Sugimoto S, Mitsuyama K, Kobayashi T, Yoshimura N, Ohi H, Tanaka S, Andoh A, Ohmiya N, Saigusa K, Yamamoto T, Morohoshi Y, Ichikawa H, Matsuoka K, Hisamatsu T, Watanabe K, Mizuno S, Suda W, Hattori M, Fukuda S, Hirayama A, Abe T, Watanabe M, Hibi T, Suzuki Y, Kanai T, Group IS: Efficacy of Indigo Naturalis in a Multicenter Randomized Controlled Trial of Patients With Ulcerative Colitis. Gastroenterology 2018, 154:935-47. [46] Muluye RA, Bian Y, Alemu PN: Anti-inflammatory and Antimicrobial Effects of Heat-Clearing Chinese Herbs: A Current Review. J Tradit Complement Med 2014, 4:93-8. [47] Lee HS, Beon MS, Kim MK: Selective growth inhibitor toward human intestinal bacteria derived from Pulsatilla cernua root. J Agric Food Chem 2001, 49:4656-61. [48] Cho SC, Sultan MZ, Moon SS: Anti-acne activities of pulsaquinone, hydropulsaquinone, and structurally related 1, 4-quinone derivatives. Arch Pharm Res 2009, 32:489-94. [49] Yang L, Wu H, Qiu W, Guo L, Du X, Yu Q, Gao J, Luo S: Pulsatilla decoction inhibits Candida albicans proliferation and adhesion in a mouse model of vulvovaginal candidiasis via the Dectin-1 signaling pathway. J Ethnopharmacol 2018, 223:51-62. [50] Yokozawa T, Ishida A, Kashiwada Y, Cho EJ, Kim HY, Ikeshiro Y: Coptidis Rhizoma: protective effects against peroxynitrite-induced oxidative damage and elucidation of its active components. J Pharm Pharmacol 2004, 56:547-56. [51] Xu QM, Shu Z, He WJ, Chen LY, Yang SL, Yang G, Liu YL, Li XR: Antitumor activity of Pulsatilla chinensis (Bunge) Regel saponins in human liver tumor 7402 cells in vitro and in vivo. Phytomedicine 2012, 19:293-300. [52] Huang T, Xiao Y, Yi L, Li L, Wang M, Tian C, Ma H, He K, Wang Y, Han B, Ye X, Li X: Coptisine from Rhizoma Coptidis Suppresses HCT-116 Cells-related Tumor Growth in vitro and in vivo. Sci Rep 2017, 7:38524. [53] Wu S, Tong L, Liu B, Ai Z, Hong Z, You P, Wu H, Yang Y: Bioactive ingredients obtained from Cortex Fraxini impair interactions between FAS and GPI. Free Radic Biol Med 2019. [54] Park YK, Chung YS, Kim YS, Kwon OY, Joh TH: Inhibition of gene expression and production of iNOS and TNF-alpha in LPS-stimulated microglia by methanol extract of Phellodendri cortex. Int Immunopharmacol 2007, 7:955-62. [55] Mao YF, Li YQ, Zong L, You XM, Lin FQ, Jiang L: Methanol extract of Phellodendri cortex alleviates lipopolysaccharide-induced acute airway inflammation in mice. Immunopharmacol Immunotoxicol 2010, 32:110-5. [56] Kim EK, Kwon KB, Han MJ, Song MY, Lee JH, Lv N, Ka SO, Yeom SR, Kwon YD, Ryu DG, Kim KS, Park JW, Park R, Park BH: Coptidis rhizoma extract protects against cytokine-induced death of pancreatic beta-cells through suppression of NF-kappaB activation. Exp Mol Med 2007, 39:149-59. [57] Hu Y, Chen X, Duan H, Hu Y, Mu X: Pulsatilla decoction and its active ingredients inhibit secretion of NO, ET-1, TNF-alpha, and IL-1 alpha in LPS-induced rat intestinal microvascular endothelial cells. Cell Biochem Funct 2009, 27:284-8. [58] Yu J, Zhang Y, Song X, Yang Y, Jia R, Chen X, Sun K, Li L, Zhao X, Cui Q, Fu Q, Zou Y, Li L, Yin Z: Effect of Modified Pulsatilla Powder on Enterotoxigenic Escherichia coli O101-Induced Diarrhea in Mice. Evid Based Complement Alternat Med 2017, 2017:3687486. [59] Wang X, Fan F, Cao Q: Modified Pulsatilla decoction attenuates oxazolone-induced colitis in mice through suppression of inflammation and epithelial barrier disruption. Mol Med Rep 2016, 14:1173-9. [60] Friedrich M, Pohin M, Powrie F: Cytokine Networks in the Pathophysiology of Inflammatory Bowel Disease. Immunity 2019, 50:992-1006. [61] Chelakkot C, Ghim J, Ryu SH: Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 2018, 50:103. [62] Friedman DJ, Kunzli BM, YI AR, Sevigny J, Berberat PO, Enjyoji K, Csizmadia E, Friess H, Robson SC: From the Cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci U S A 2009, 106:16788-93. [63] Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, Neurath MF: Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc 2017, 12:1295-309. [64] Erben U, Loddenkemper C, Doerfel K, Spieckermann S, Haller D, Heimesaat MM, Zeitz M, Siegmund B, Kuhl AA: A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol 2014, 7:4557-76. [65] Ostvik AE, Granlund AV, Bugge M, Nilsen NJ, Torp SH, Waldum HL, Damas JK, Espevik T, Sandvik AK: Enhanced expression of CXCL10 in inflammatory bowel disease: potential role of mucosal Toll-like receptor 3 stimulation. Inflamm Bowel Dis 2013, 19:265-74. [66] Kuhn KA, Schulz HM, Regner EH, Severs EL, Hendrickson JD, Mehta G, Whitney AK, Ir D, Ohri N, Robertson CE, Frank DN, Campbell EL, Colgan SP: Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol 2018, 11:357-68. [67] Dignass AU: Mechanisms and modulation of intestinal epithelial repair. Inflamm Bowel Dis 2001, 7:68-77. [68] Lopez-Boado YS, Wilson CL, Hooper LV, Gordon JI, Hultgren SJ, Parks WC: Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J Cell Biol 2000, 148:1305-15. [69] Pereira FC, Berry D: Microbial nutrient niches in the gut. Environ Microbiol 2017, 19:1366-78. [70] Neurath MF: Cytokines in inflammatory bowel disease. Nat Rev Immunol 2014, 14:329-42. [71] Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W: Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 2002, 17:629-38. [72] Axelsson LG, Landstrom E, Bylund-Fellenius AC: Experimental colitis induced by dextran sulphate sodium in mice: beneficial effects of sulphasalazine and olsalazine. Aliment Pharmacol Ther 1998, 12:925-34. [73] Kazantseva MG, Hung NA, Highton J, Hessian PA: MMP expression in rheumatoid inflammation: the rs11568818 polymorphism is associated with MMP-7 expression at an extra-articular site. Genes Immun 2013, 14:162-9. [74] Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL, et al.: Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature 1994, 370:555-7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17866 | - |
| dc.description.abstract | 腸道發炎是潰瘍性結腸炎 (ulcerative colitis) 一個典型的病徵,臨床上潰瘍性結腸 炎的治療常以抑制腸道內異常發炎反應作為治療方針。白頭翁湯 (Pulsatilla decoction) 為一傳統中藥,也是亞洲國家中醫師用以治療潰瘍性結腸炎的處方之一, 然而目前尚不清楚白頭翁湯是透過何種機制抑制腸道發炎。因此,本篇論文中, 我們將葡萄糖硫酸鈉 (dextran sulfate sodium) 添加至小鼠的飲用水誘發潰瘍性結腸 炎,並且餵予小鼠白頭翁湯,探討其在潰瘍性結腸炎小鼠模型中的分子機制。我 們發現在餵予小鼠白頭翁湯後,會有較少的先天免疫細胞浸潤到大腸,使得腸道 發炎的現象較為趨緩。並且,在潰瘍性結腸炎小鼠模型中,嗜中性白血球與巨噬 細胞浸潤的程度與促發炎細胞激素介白素-1β 與腫瘤壞死因子-α 的量呈現正相關。 在免疫螢光染色實驗中,我們進一步觀察到腸道中浸潤的白血球與巨噬細胞會表 現基質金屬蛋白酶-7 (matrix metalloproteinase-7, MMP-7) 。有趣的是,當白頭翁湯 減少腸道中嗜中性白血球與巨噬細胞的浸潤時,活化型 MMP-7 的蛋白表現量也會 隨之下降,顯示在潰瘍性結腸炎小鼠模型中,白頭翁湯由 MMP-7 調控免疫細胞聚 集的重要性。整體來說,我們的研究提供白頭翁湯在抑制人類潰瘍性結腸炎中可 能參與的一種分子機制,並且指出抑制 MMP-7 可能可以作為潰瘍性結腸炎一有效 的治療方針。 | zh_TW |
| dc.description.abstract | Intestinal inflammation is considered to be an important characteristic of ulcerative colitis (UC) and the current medical treatments of UC are usually proposed to suppress abnormal intestinal immune responses. Pulsatilla decoction (PD), a traditional Chinese medicine, is frequently used in UC treatments in Asian countries; however, the mechanism of the action of PD remains unclear. In the present study, the mechanism of the action of PD is elucidated in dextran sulfate sodium (DSS)-induced colitis mouse model. In DSS-induced colitis mouse model, the administration of PD attenuates the intestinal inflammation through suppression of colonic infiltration of innate immune cells. In addition, the level of neutrophil and macrophage infiltration is consistent with the level of pro-inflammatory cytokines, interleukin-1β and tumor necrosis factor-α, in colonic tissues in DSS-induced colitis mouse model. The immunofluorescence double staining further reveals that matrix metalloproteinase-7 (MMP-7) is expressed by the infiltrating leukocytes, including macrophages. Noticeably, the reduced neutrophil and macrophage infiltration is accompanied by a downregulation of the protein level of active MMP-7 in PD treatments, which identifies MMP-7 as an important regulator of leukocyte recruitment in intestinal inflammation underlying PD in DSS-induced colitis mouse model. In conclusion, these findings provide a potential molecular mechanism underlying PD in UC and indicate MMP-7 inhibition as a promising therapeutic approach in UC therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:45:03Z (GMT). No. of bitstreams: 1 U0001-1408202000195400.pdf: 4306051 bytes, checksum: 7a91c2d332ed5e827eee34a7cf1c6165 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 .............................................................................i 中文摘要 .........................................................................ii Abstract .........................................................................iii Table of Contents ................................................................iv List of Figures...................................................................vii List of Tables ...................................................................ix Chapter 1. Introduction ..........................................................1 1.1 Inflammatory bowel disease ...................................................1 1.2. Dextran sulfate sodium-induced colitis mouse model ..........................1 1.2.1. Molecular mechanism in DSS-induced colitis mouse model ....................2 1.3. Matrix metalloproteinases-7..................................................3 1.3.1. Matrix metalloproteinase-7 in immunity ....................................4 1.3.2. Matrix metalloproteinase-7 in ulcerative colitis...........................4 1.4. Treatments for ulcerative colitis ...........................................5 1.4.1. Pulsatilla decoction in traditional Chinese medicine ......................6 Chapter 2. Specific Aims..........................................................7 2.1. To investigate the role of matrix metalloproteinase-7 (MMP-7) upon dextran sulfate sodium (DSS) exposure in vitro and in vivo .....7 2.1.1. To address whether DSS induce MMP-7 expression and activation in HT-29, Caco-2, and Raw 264.7 cells .............................7 2.1.2. To address whether DSS induce MMP-7 expression and activation in DSS-induced colitis mouse model ................................7 2.2. To investigate the therapeutic effects of Pulsatilla decoction (PD) on DSS- induced colitis mouse model ...........................8 2.2.1. To address whether PD ameliorates DSS-induced murine colitis ..............8 2.2.2. To address whether PD suppresses intestinal inflammation in DSS- induced colitis mouse model ....................................9 2.2.3. To address whether PD suppresses changes in intestinal architecture in DSS-induced colitis mouse model ..........................10 Chapter 3. Materials and Methods..................................................11 3.1. Mice ........................................................................11 3.2. Cell lines and cell culture..................................................11 3.3. Cell viability assay ........................................................12 3.4. DSS-induced colitis mouse models.............................................12 3.4.1. Preparation of Pulsatilla decoction........................................13 3.5. Assessment of colitis .......................................................13 3.6. Histopathological analysis ..................................................14 3.7. Immunohistochemical (IHC) analysis ..........................................16 3.8. Immunoblot analysis .........................................................17 3.9. Multi-Plex immunoassay ......................................................18 3.10. Immunofluorescence staining.................................................18 3.11. Statistical analysis .......................................................19 Chapter 4. Results ...............................................................20 4.1. DSS exhibits cytotoxic effects on Caco-2 and Raw 264.7 cells and induces MMP-7 activation in vitro..................................20 4.2. Pulsatilla decoction (PD) ameliorates DSS-induced colitis mouse model ......20 4.3. PD reduces the infiltration of Ly6G+ neutrophils and F4/80+ macrophages in colonic inflammation.....................................22 4.4. PD increases the cytokine level of IL-6 in colonic tissues in DSS-induced colitis mouse model.......................................23 4.5. PD does not significantly increase the epithelial proliferation in DSS-induced colitis mouse model..................................24 4.6. DSS alters the localization of MMP-7 from intestinal epithelial cells to infiltrating immune cells..................................25 4.7. PD decreases the activation of MMP-7 and suppresses MMP-7+ infiltrating immune cells in DSS-induced colitis mouse model.............26 4.8. DSS increases the activation of MMP-7 in the proximal colon with a time dependency in DSS-induced colitis mouse model by western blot analysis .........27 4.9. MMP-7 regulates the colonic infiltration of neutrophils and macrophages through increasing cytokine levels of IL-1β and TNF-α while PD inhibits MMP- 7-mediated neutrophil and macrophage infiltration in DSS-induced colitis mouse model.....28 Chapter 5. Discussion.............................................................30 Chapter 6. Reference..............................................................35 Chapter 7. Figures................................................................44 | |
| dc.language.iso | en | |
| dc.title | 在潰瘍性結腸炎小鼠模型中探討白頭翁湯的分子機制 | zh_TW |
| dc.title | Investigation of the molecular mechanism underlying the Pulsatilla decoction in dextran sulfate sodium-induced colitis mouse model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳煥源(Huan-Yuan Chen),俞松良(Sung-Liang Yu) | |
| dc.subject.keyword | 基質金屬蛋白酶-7,白頭翁湯,免疫細胞聚集,腸道發炎,潰瘍性結腸炎, | zh_TW |
| dc.subject.keyword | Matrix metalloproteinase-7,Pulsatilla decoction,leukocyte recruitment,intestinal inflammation,ulcerative colitis, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202003348 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202000195400.pdf 未授權公開取用 | 4.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
