請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17848完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾麗慧 | |
| dc.contributor.author | Chien-Lung Yang | en |
| dc.contributor.author | 楊乾隆 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:44:39Z | - |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-06 | |
| dc.identifier.citation | 1. Center, M.M., et al., Worldwide variations in colorectal cancer. CA Cancer J Clin, 2009. 59(6): p. 366-78. 2. Jemal, A., et al., Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev, 2010. 19(8): p. 1893-907. 3. Siegel, R., et al., Cancer statistics, 2014. CA Cancer J Clin, 2014. 64(1): p. 9-29. 4. Vogelaar, I., et al., How much can current interventions reduce colorectal cancer mortality in the U.S.? Mortality projections for scenarios of risk-factor modification, screening, and treatment. Cancer, 2006. 107(7): p. 1624-33. 5. Health, D.o., Department of Health: health statistics, 2012. Executive Yuan, Republic of China,, 2014. 6. Huang, C.S., S.K. Lal, and F.A. Farraye, Colorectal cancer screening in average risk individuals. Cancer Causes Control, 2005. 16(2): p. 171-88. 7. Haenszel W and K. M., Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst, 1968. 40(1): p. 43-68. 8. Fernandez, E., et al., Joint effects of family history and adult life dietary risk factors on colorectal cancer risk. Epidemiology, 2002. 13(3): p. 360-3. 9. Han, Y., et al., Prognostic significance of Beclin-1 expression in colorectal cancer: a meta-analysis. Asian Pac J Cancer Prev, 2014. 15(11): p. 4583-7. 10. Turati, F., et al., Family history of cancer and the risk of cancer: a network of case-control studies. Ann Oncol, 2013. 24(10): p. 2651-6. 11. Guillemette, C., et al., Structural heterogeneity at the UDP-glucuronosyltransferase 1 locus: functional consequences of three novel missense mutations in the human UGT1A7 gene. Pharmacogenetics, 2000. 10(7): p. 629-44. 12. Wong, N., et al., Genetic counseling and interpretation of genetic tests in familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer. Dis Colon Rectum, 2001. 44(2): p. 271-9. 13. Winawer, S.J., et al., Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med, 1993. 329(27): p. 1977-81. 14. Chlebowski, R.T., et al., Estrogen plus progestin and colorectal cancer in postmenopausal women. N Engl J Med, 2004. 350(10): p. 991-1004. 15. Rostom, A., et al., Nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors for primary prevention of colorectal cancer: a systematic review prepared for the U.S. Preventive Services Task Force. Ann Intern Med, 2007. 146(5): p. 376-89. 16. Winawer, S., et al., Colorectal cancer screening and surveillance: clinical guidelines and rationale-Update based on new evidence. Gastroenterology, 2003. 124(2): p. 544-60. 17. Harari, P.M., G.W. Allen, and J.A. Bonner, Biology of interactions: antiepidermal growth factor receptor agents. J Clin Oncol, 2007. 25(26): p. 4057-65. 18. Blum, R. and Y. Kloog, Tailoring Ras-pathway--inhibitor combinations for cancer therapy. Drug Resist Updat, 2005. 8(6): p. 369-80. 19. Takai, Y., T. Sasaki, and T. Matozaki, Small GTP-binding proteins. Physiol Rev, 2001. 81(1): p. 153-208. 20. Normanno, N., et al., Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol, 2009. 6(9): p. 519-27. 21. Grossmann, A.H. and W.S. Samowitz, Epidermal growth factor receptor pathway mutations and colorectal cancer therapy. Arch Pathol Lab Med, 2011. 135(10): p. 1278-82. 22. Ausch, C., et al., Sensitive detection of KRAS mutations in archived formalin-fixed paraffin-embedded tissue using mutant-enriched PCR and reverse-hybridization. J Mol Diagn, 2009. 11(6): p. 508-13. 23. Andreyev, H.J., et al., Kirsten ras mutations in patients with colorectal cancer: the 'RASCAL II' study. Br J Cancer, 2001. 85(5): p. 692-6. 24. Wang, J.Y., et al., Molecular mechanisms underlying the tumorigenesis of colorectal adenomas: correlation to activated K-ras oncogene. Oncol Rep, 2006. 16(6): p. 1245-52. 25. Fang, J.Y. and B.C. Richardson, The MAPK signalling pathways and colorectal cancer. Lancet Oncol, 2005. 6(5): p. 322-7. 26. Shendure, J. and H. Ji, Next-generation DNA sequencing. Nat Biotechnol, 2008. 26(10): p. 1135-45. 27. Dressman, D., et al., Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A, 2003. 100(15): p. 8817-22. 28. Metzker, M.L., Sequencing technologies - the next generation. Nat Rev Genet, 2010. 11(1): p. 31-46. 29. Sherry, S.T., M. Ward, and K. Sirotkin, dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res, 1999. 9(8): p. 677-9. 30. Pearson, W.R., Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol, 2000. 132: p. 185-219. 31. Boguski, M.S., T.M. Lowe, and C.M. Tolstoshev, dbEST--database for 'expressed sequence tags'. Nat Genet, 1993. 4(4): p. 332-3. 32. Baxevanis, A.D., Information retrieval from biological databases. Methods Biochem Anal, 2001. 43: p. 155-85. 33. Jimeno, A., et al., KRAS mutations and sensitivity to epidermal growth factor receptor inhibitors in colorectal cancer: practical application of patient selection. J Clin Oncol, 2009. 27(7): p. 1130-6. 34. Gonzalez de Castro, D., et al., A comparison of three methods for detecting KRAS mutations in formalin-fixed colorectal cancer specimens. Br J Cancer, 2012. 107(2): p. 345-51. 35. Rothberg, J.M., et al., An integrated semiconductor device enabling non-optical genome sequencing. Nature, 2011. 475(7356): p. 348-52. 36. Langmead, B. and S.L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012. 9(4): p. 357-9. 37. Chaisson, M.J. and G. Tesler, Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics, 2012. 13: p. 238. 38. Karapetis, C.S., et al., K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med, 2008. 359(17): p. 1757-65. 39. Amado, R.G., et al., Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol, 2008. 26(10): p. 1626-34. 40. Van Cutsem, E., et al., Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol, 2011. 29(15): p. 2011-9. 41. Forbes, S., et al., COSMIC 2005. Br J Cancer, 2006. 94(2): p. 318-22. 42. Neumann, J., et al., Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol Res Pract, 2009. 205(12): p. 858-62. 43. Pylayeva-Gupta, Y., E. Grabocka, and D. Bar-Sagi, RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer, 2011. 11(11): p. 761-74. 44. Chen, C.C., et al., Computational analysis of KRAS mutations: implications for different effects on the KRAS p.G12D and p.G13D mutations. PLoS One, 2013. 8(2): p. e55793. 45. Lee, H.J., et al., Comparison of Direct Sequencing, PNA Clamping-Real Time Polymerase Chain Reaction, and Pyrosequencing Methods for the Detection of EGFR Mutations in Non-small Cell Lung Carcinoma and the Correlation with Clinical Responses to EGFR Tyrosine Kinase Inhibitor Treatment. Korean J Pathol, 2013. 47(1): p. 52-60. 46. Ronaghi, M., et al., Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem, 1996. 242(1): p. 84-9. 47. Quail, M.A., et al., A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 2012. 13: p. 341. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17848 | - |
| dc.description.abstract | 結腸直腸癌(CRC)在台灣是最常見的癌症之一,預估每年有14000例的新增病和5000位死亡個案。早期的結腸直腸癌(第一和二期)藉由外科手術就有很高的治癒率,而在第三期只接受外科手術其復發率大約有50%,大部分的病患因癌症的轉移而死亡。EGFR抑制劑是標的藥物而且被限定使用在野生型KRAS的基因型。KRAS的突變在轉移性結腸直腸癌病患的發生率大約為35%~45%,而且導致EGFR下游路徑的活化。分子診斷來檢測KRAS基因的變異是現今最被使用的,而且腫瘤組織是由不同成分組成包含腫瘤細胞、非癌化細胞、發炎細胞以及間質細胞,因此我們在正常參考病患中使用次世代定序法來偵測突變序列當作背景值,並用Basic Local Alignment Search Tool (BLAST) 和Bowti2的序列比對工具進行資料分析。結果指出Bowti2結合Integrative Genomics Viewer (IGV)在資料分析上是一個比BLAST快速、靈敏以及準確的組合。大腸癌的100個病患中我們實驗結果是有29位病患找到密碼子12突變(61.70%),有17位病患找到密碼子13突變(36.17%)然而有1位病患找到密碼子14突變(2.13%)。這也顯示出突變後被Aspartate取代的最多。在分子層面,KRAS突變導致GTPase本身的活性下降,進而促使KRAS本身和下游訊號路徑永久性的活化,因此傳達惡性的形成。這些單一胺基酸的替換是位在密碼子12以及13,然而KRAS突變也少頻率的發生在密碼子61和146。因此KRAS突變(突變的密碼子12、13、61和146)是一個對EGFR治療產生抗性的預測指標。藉由高通量定序法的策略已經可以依照各個腫瘤的特性為結腸直腸癌的病患訂定客製化的治療。臨床醫師可以從晚期病患的腫瘤活檢中獲得對治療產生抗藥性的臨床相關訊息,我們利用次世代定序法鑑定有潛能的生物指標就如同為結腸直腸癌的患者提供正確的治療方法。 | zh_TW |
| dc.description.abstract | Colorectal cancer (CRC) is one of the most common cancers in Taiwan with an estimated 14,000 new cases and 5,000 deaths each year. While early stage CRC (stage I and II) has a high cure rate after surgery, the recurrence rate is about 50% for stage III CRC after surgery alone and most patients with metastatic disease will ultimately succumb to their cancer. EGFR inhibitors represent “targeted agents” and their useis limited to have wild type KRAS genotype. KRAS mutations occur in approximately 35%-45% of mCRC patients, and lead to the constitutive activation of EGFR downstream pathways. Molecular biological methods for detecting variations of the KRAS gene are now used. Solid tumors are very heterogeneous, containing tumor cells, nonneoplastic cells, inflammatory cells, and mesenchymal cells. Therefore, we use next generation sequencing (NGS) to detect somatic variants at low frequencies in normal reference patients, and regard results as background. We also compare alignment tools(Basic Local Alignment Search Tool (BLAST) and Bowtie2) to analysis NGS data. Our comparison shows that Bowtie 2 combines Integrative Genomics Viewer (IGV) to achieve a combination of high speed, sensitivity and accuracy than BLAST. our result showed 46% KRAS mutation rate in 100 colorectal cancer, and mutations are detected in codons 12 (63.70%), 13 (36.17%) and 14(2.13%)On the molecular level, KRAS mutations result in reduced intrinsic GTPase activity, which in turn leads to permanent activation of KRAS itself and downstream signalling pathways, thereby mediating malignant transformation. These single amino acid substitutions typically affect hotspots at codons 12 and 13. However, KRAS mutations also occur in codons 61, and 146 at low frequencies. KRAS mutations (mutationat codons 12 ,13, 61 or 146) are predictive of treatment resistance to EGFR therapy. The mechanism of the sensitivity of oxaliplatin was through down-regulation of excision repair cross-complementation group 1 (ERCC1) which was a predictor of oxaliplatin resistance. Personalized CRC patient treatment based on characterizing the individual tumors by high throughput sequencing strategies has been attempted. we utilized next generation sequencing technologies (NGS) to identify potential biomarkers so as to identify treatment options for patients with mCRC. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:44:39Z (GMT). No. of bitstreams: 1 ntu-104-P02448008-1.pdf: 3869396 bytes, checksum: 1b8e5777effc771113987749de78690d (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 II 英文摘要 III 圖目錄 V 表目錄 VI 第一章、緒論 1 1.1 結腸直腸癌流行病學 1 1.2 結腸直腸癌發生的病因 1 1.4 KRAS基因 3 1.5 高通量定序技術 4 1.5.1高通量定序平台與Sanger定序法的比較 5 1.5.2高通量定序平台介紹 6 1.6 資訊搜尋與序列比對 11 1.6.1 Basic Local Alignment Search Tool(BLAST) 11 1.6.2 Bowtie 12 1.7研究的假說與特定目的 13 第二章、研究方法 14 2.1檢體來源 14 2.2檢體收集 14 2.3 Geoomic DNA的萃取與定量分析 14 2.4次世代基因定序分析 15 2.5資料分析 16 2.5.1使用BLAST進行Alignment 16 2.5.2 Bowtie2操作步驟 16 2.5.3 KRAS參考的序列 17 2.5.4基因體瀏覽器 17 第三章 結果 19 3.2 BLAST比對序列 21 3.3 BLAST比對參考病患的NGS數據 21 3.3 Bowtie2比對參考病患的NGS數據 22 3.4 BLAST與Bowtie2比對參考病患NGS結果的差異 23 3.5 Bowtie2比對參考病患NGS數據的結果 24 3.6 Bowtie2比對參考病患NGS數據的結果 25 3.7 結腸直腸癌病患的結果 25 第四章、討論 26 第五章、參考文獻 31 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用次世代定序法探討腸癌病人治療之抗藥性機轉 | zh_TW |
| dc.title | Application of Next Generation Sequencing to Establish the Mechanism of Therapy Resistance in Patients with Colorectal Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉坤輝,林本仁 | |
| dc.subject.keyword | 結腸直腸癌,KRAS,Basic Local Alignment Search Tool,Bowti2,Integrative Genomics Viewer, | zh_TW |
| dc.subject.keyword | Colorectal cancer,KRAS,Basic Local Alignment Search Tool,Bowti2,ntegrative Genomics Viewer, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-08-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
