請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17837
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄧述諄(Shu-Chun Teng) | |
dc.contributor.author | Chein-Wei Wang | en |
dc.contributor.author | 王健瑋 | zh_TW |
dc.date.accessioned | 2021-06-08T00:44:26Z | - |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-06 | |
dc.identifier.citation | 1. Alexander, M.R. et al. Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. Molecular biology of the cell 12, 53-62 (2001). 2. Brauer, M.J. et al. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Molecular biology of the cell 19, 352-367 (2008). 3. Flattery-O'Brien, J.A. Dawes, I.W. Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function. The Journal of biological chemistry 273, 8564-8571 (1998). 4. Li, X. Cai, M. Recovery of the yeast cell cycle from heat shock-induced G(1) arrest involves a positive regulation of G(1) cyclin expression by the S phase cyclin Clb5. The Journal of biological chemistry 274, 24220-24231 (1999). 5. Wang, X. et al. Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Molecular and cellular biology 20, 4543-4552 (2000). 6. Braun, E.L., Fuge, E.K., Padilla, P.A. Werner-Washburne, M. A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family. Journal of bacteriology 178, 6865-6872 (1996). 7. Newcomb, L.L., Diderich, J.A., Slattery, M.G. Heideman, W. Glucose regulation of Saccharomyces cerevisiae cell cycle genes. Eukaryotic cell 2, 143-149 (2003). 8. Belli, G., Gari, E., Aldea, M. Herrero, E. Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Molecular microbiology 39, 1022-1035 (2001). 9. Duch, A. et al. Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature 493, 116-119 (2013). 10. Shackelford, R.E., Kaufmann, W.K. Paules, R.S. Oxidative stress and cell cycle checkpoint function. Free radical biology medicine 28, 1387-1404 (2000). 11. Tapon, N., Moberg, K.H. Hariharan, I.K. The coupling of cell growth to the cell cycle. Current opinion in cell biology 13, 731-737 (2001). 12. Breeden, L.L. Periodic transcription: a cycle within a cycle. Current biology : CB 13, R31-38 (2003). 13. Wittenberg, C. La Valle, R. Cell-cycle-regulatory elements and the control of cell differentiation in the budding yeast. BioEssays : news and reviews in molecular, cellular and developmental biology 25, 856-867 (2003). 14. Cho, R.J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular cell 2, 65-73 (1998). 15. Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular biology of the cell 9, 3273-3297 (1998). 16. Richardson, H.E., Wittenberg, C., Cross, F. Reed, S.I. An essential G1 function for cyclin-like proteins in yeast. Cell 59, 1127-1133 (1989). 17. Mendenhall, M.D. Hodge, A.E. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiology and molecular biology reviews : MMBR 62, 1191-1243 (1998). 18. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737-741 (2003). 19. Tyers, M., Tokiwa, G. Futcher, B. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. The EMBO journal 12, 1955-1968 (1993). 20. Hubler, L., Bradshaw-Rouse, J. Heideman, W. Connections between the Ras-cyclic AMP pathway and G1 cyclin expression in the budding yeast Saccharomyces cerevisiae. Molecular and cellular biology 13, 6274-6282 (1993). 21. Polymenis, M. Schmidt, E.V. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes development 11, 2522-2531 (1997). 22. Futcher, B. Cyclins and the wiring of the yeast cell cycle. Yeast 12, 1635-1646 (1996). 23. Tyers, M. Futcher, B. Far1 and Fus3 link the mating pheromone signal transduction pathway to three G1-phase Cdc28 kinase complexes. Molecular and cellular biology 13, 5659-5669 (1993). 24. Dirick, L., Bohm, T. Nasmyth, K. Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. The EMBO journal 14, 4803-4813 (1995). 25. Cross, F.R., Hoek, M., McKinney, J.D. Tinkelenberg, A.H. Role of Swi4 in cell cycle regulation of CLN2 expression. Molecular and cellular biology 14, 4779-4787 (1994). 26. Koch, C., Moll, T., Neuberg, M., Ahorn, H. Nasmyth, K. A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261, 1551-1557 (1993). 27. Toone, W.M., Aerne, B.L., Morgan, B.A. Johnston, L.H. Getting started: regulating the initiation of DNA replication in yeast. Annual review of microbiology 51, 125-149 (1997). 28. Stuart, D. Wittenberg, C. CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes development 9, 2780-2794 (1995). 29. Costanzo, M. et al. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117, 899-913 (2004). 30. de Bruin, R.A., McDonald, W.H., Kalashnikova, T.I., Yates, J., 3rd Wittenberg, C. Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117, 887-898 (2004). 31. Schaefer, J.B. Breeden, L.L. RB from a bud's eye view. Cell 117, 849-850 (2004). 32. Chang, F. Herskowitz, I. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63, 999-1011 (1990). 33. McKinney, J.D., Chang, F., Heintz, N. Cross, F.R. Negative regulation of FAR1 at the Start of the yeast cell cycle. Genes development 7, 833-843 (1993). 34. Peter, M. Herskowitz, I. Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265, 1228-1231 (1994). 35. Schwob, E., Bohm, T., Mendenhall, M.D. Nasmyth, K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233-244 (1994). 36. Verma, R., Feldman, R.M. Deshaies, R.J. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Molecular biology of the cell 8, 1427-1437 (1997). 37. Riechmann, J.L. Meyerowitz, E.M. MADS domain proteins in plant development. Biological chemistry 378, 1079-1101 (1997). 38. Shore, P. Sharrocks, A.D. The MADS-box family of transcription factors. European journal of biochemistry / FEBS 229, 1-13 (1995). 39. Bender, A. Sprague, G.F., Jr. MAT alpha 1 protein, a yeast transcription activator, binds synergistically with a second protein to a set of cell-type-specific genes. Cell 50, 681-691 (1987). 40. Kuo, M.H. Grayhack, E. A library of yeast genomic MCM1 binding sites contains genes involved in cell cycle control, cell wall and membrane structure, and metabolism. Molecular and cellular biology 14, 348-359 (1994). 41. Lydall, D., Ammerer, G. Nasmyth, K. A new role for MCM1 in yeast: cell cycle regulation of SW15 transcription. Genes development 5, 2405-2419 (1991). 42. McInerny, C.J., Partridge, J.F., Mikesell, G.E., Creemer, D.P. Breeden, L.L. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes development 11, 1277-1288 (1997). 43. MacKay, V.L., Mai, B., Waters, L. Breeden, L.L. Early cell cycle box-mediated transcription of CLN3 and SWI4 contributes to the proper timing of the G(1)-to-S transition in budding yeast. Molecular and cellular biology 21, 4140-4148 (2001). 44. Estruch, F. Carlson, M. Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Molecular and cellular biology 13, 3872-3881 (1993). 45. Causton, H.C. et al. Remodeling of yeast genome expression in response to environmental changes. Molecular biology of the cell 12, 323-337 (2001). 46. Martinez-Pastor, M.T. et al. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). The EMBO journal 15, 2227-2235 (1996). 47. Schmitt, A.P. McEntee, K. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 93, 5777-5782 (1996). 48. Tkach, J.M. et al. Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nature cell biology 14, 966-976 (2012). 49. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the cell 11, 4241-4257 (2000). 50. Gorner, W. et al. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes development 12, 586-597 (1998). 51. Alepuz, P.M., Jovanovic, A., Reiser, V. Ammerer, G. Stress-induced map kinase Hog1 is part of transcription activation complexes. Molecular cell 7, 767-777 (2001). 52. Petrenko, N., Chereji, R.V., McClean, M.N., Morozov, A.V. Broach, J.R. Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses. Molecular biology of the cell 24, 2045-2057 (2013). 53. Rep, M., Krantz, M., Thevelein, J.M. Hohmann, S. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. The Journal of biological chemistry 275, 8290-8300 (2000). 54. Teng, S.C. et al. Induction of global stress response in Saccharomyces cerevisiae cells lacking telomerase. Biochemical and biophysical research communications 291, 714-721 (2002). 55. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141-147 (2002). 56. Barberis, M. et al. The yeast cyclin-dependent kinase inhibitor Sic1 and mammalian p27Kip1 are functional homologues with a structurally conserved inhibitory domain. The Biochemical journal 387, 639-647 (2005). 57. Miller, M.L. et al. Linear motif atlas for phosphorylation-dependent signaling. Science signaling 1, ra2 (2008). 58. Archambault, V. et al. Targeted proteomic study of the cyclin-Cdk module. Molecular cell 14, 699-711 (2004). 59. Escote, X., Zapater, M., Clotet, J. Posas, F. Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nature cell biology 6, 997-1002 (2004). 60. Miller, M.E., Cross, F.R., Groeger, A.L. Jameson, K.L. Identification of novel and conserved functional and structural elements of the G1 cyclin Cln3 important for interactions with the CDK Cdc28 in Saccharomyces cerevisiae. Yeast 22, 1021-1036 (2005). 61. Saito, H. Posas, F. Response to hyperosmotic stress. Genetics 192, 289-318 (2012). 62. Kuo, M.H., Nadeau, E.T. Grayhack, E.J. Multiple phosphorylated forms of the Saccharomyces cerevisiae Mcm1 protein include an isoform induced in response to high salt concentrations. Molecular and cellular biology 17, 819-832 (1997). 63. Roberts, C.J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873-880 (2000). 64. Cuadrado, A. Nebreda, A.R. Mechanisms and functions of p38 MAPK signalling. The Biochemical journal 429, 403-417 (2010). 65. Joaquin, M. et al. The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. The EMBO journal 31, 2952-2964 (2012). 66. Adrover, M.A. et al. Time-dependent quantitative multicomponent control of the G(1)-S network by the stress-activated protein kinase Hog1 upon osmostress. Science signaling 4, ra63 (2011). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17837 | - |
dc.description.abstract | 為了在自然界中生存,酵母細胞必須針對瞬息萬變的外在壓力做出快速並且適當的反應。細胞當細胞遭遇環境壓力,例如滲透壓壓力時,細胞週期會停頓在G1時期,讓細胞適應並且排除壓力。細胞週期中G1到S期的轉換是由G1週期素和Cdc28週期素依賴性蛋白激酶複合體的活性來調控。G1週期素中的Cln1和Cln2對於細胞週期的啟動提供了特殊的貢獻,而Cln3則是作用在CLN1和CLN2時間點之上的表現和其他在G1時期表現的基因。之前的研究顯示出Ypl014w (我們命名為Sic2)是Cdc28/G1週期素複合體的其中一員。然而,這個基因是如何在細胞週期中被調控,以及是否影響週期素依賴性蛋白激酶素–G1週期素複合體的活性仍然是未知的。在本篇論文中,我們發現SIC2會在細胞遭遇逆境時被轉錄因子Mns2/4表現,或是隨者細胞週期中受到轉錄因子Mcm1的調控。當Sic2大量表現時,細胞週期大規模地停滯在G1時期。利用共同免疫沉澱法證實了Sic2和G1週期素是會互相結合的。此外,Sic2對於滲透壓力造成的暫時性G1週期停頓有重要的貢獻,其功能在此逆境情況下與Sic1有重複性。本篇論文證明Sic2可能是週期素依賴性蛋白激酶的抑制物,且在細胞遭受逆境時調控細胞週期的進行。 | zh_TW |
dc.description.abstract | To survive, budding yeast Saccharomyces cerevisiae delays G1 progression under several stresses, such as osmotic stress, to prevent damage accumulation. The G1-S transition is controlled by the activity of Cdk1/G1 cyclin. Proteomic screening suggested that Sic2 is a component of the Cdk1/G1 cyclin complex. However, the regulation of Sic2 expression or its functions on the activity of the Cdk1/G1 cycling complex is still unknown. Here we demonstrated that expression of Sic2 is not only regulated through stress mediated transcriptional factor Msn2/4, but also by cell cycle mediated transcriptional factor Mcm1. Overexpression of Sic2 causes cyclin-mediated-cell cycle arrest at G1 stage, and this cell cycle inhibition of Sic2 is dependent on osmotic stress-induced T65, T69, T73 and S192 phosphorylation. The phosphorylation of Sic2 is required for its Cln3 interaction, which may cause the reduction of Cdk1/Cln3 activity by the competition with the Cdk1-Cln3 interaction. Under osmotic stress, we found that Sic2 can cause transient G1 delay and play as a functional redundant protein of major stress-induced CKI, Sic1. Our study implies that Sic2 serves as a CDK inhibitor to modulate cell cycle progression under environmental stresses. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T00:44:26Z (GMT). No. of bitstreams: 1 ntu-104-R02445129-1.pdf: 1835213 bytes, checksum: 556926c921d45831debfd9cc16311b5b (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | INTRODUCTION 1 RESULTS 7 Stress induce SIC2 expression 7 The expression of SIC2 under stresses is dependent on Msn2/4 7 The STRE elements are important for stress-induced SIC2 expression 8 Overexpression of Sic2 induces G1 arrest 9 SIC2 is expressed in G1 stage during the cell cycle 10 Mcm1 regulates SIC2 expression at the M/G1 junction 11 Sic2 is phosphorylated under osmotic stress, and these phosphorylations facilitate cell cycle arrest 12 Sic2-S192 could be phosphorylated by Ypk2 13 Sic2-3T are phosphorylated by Hog1 under osmotic stress 14 The association of Sic2 with Cln2 and Cln3 is regulated by Hog1 dependent phosphorylation 15 Sic2 is involved in osmotic stress induced transitory G1 delay 17 Sic2 regulates G1/S cell cycle progression by inhibiting Cdk1/Cln3 activity 18 Sic2-Cln3 interaction is increased in Cdk1 interaction-defective cln3 mutants 20 sic2Δ mutant causes transitory effect in cell cycle timing 20 sic2Δ mutant does not affect genome instability 21 Discussion 22 MATERIALS METHODS 26 Yeast strains and plasmids 26 RNA analysis and Northern blot 27 Chromatin immunoprecipitation (ChIP) analysis 28 Reverse transcription and real-time PCR assay 28 Budding index under osmostress 29 Co- immunoprecipitation 29 Kinase prediction and screening 30 Phospo-specific antibody preparation 30 Phospho-protein detection 31 FIGURES 33 Contribution Table 54 REFERENCES 55 | |
dc.language.iso | en | |
dc.title | Sic2為一酵母菌逆境誘發之G1時期細胞週期磷酸酶抑制物 | zh_TW |
dc.title | Sic2, a stress induced potential CKI, participates in G1 checkpoint in Saccharomyces cerevisiae. | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林敬哲(Jing-Jer Lin),李財坤(Tsai-Kun Li) | |
dc.subject.keyword | 細胞週期,逆境,磷酸?,週期素, | zh_TW |
dc.subject.keyword | G1/S checkpoint,cyclin,kinase,stress, | en |
dc.relation.page | 60 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2015-08-07 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。