請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17828完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭石通(Shih-Tong Jeng) | |
| dc.contributor.author | Hao-Yu Wei | en |
| dc.contributor.author | 魏皓宇 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:44:15Z | - |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-07 | |
| dc.identifier.citation | 朱敏瑤 (2014) Identification and functional characterization of wounding-responsive miRNAs in sweet potato (Ipomoea batatas cv. Tainung 57).國立台灣大學植物科學研究所碩士論文。 Allen E, Xie ZX, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature Genetics 36: 1282-1290 Ando Y, Maida Y, Morinaga A, Burroughs AM, Kimura R, Chiba J, Suzuki H, Masutomi K, Hayashizaki Y (2011) Two-step cleavage of hairpin RNA with 5 ' overhangs by human DICER. Bmc Molecular Biology 12 Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, Yamaguchi S, Kamiya Y, Okada K, Nishimura T, Koshiba T, Yokota T, Kamada H, Satoh S (2011) Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 108: 16128-16132 Asahina M, Satoh S (2015) Molecular and physiological mechanisms regulating tissue reunion in incised plant tissues. Journal of Plant Research 128: 381-388 Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. Journal of Experimental Botany 65: 1229-1240 Bowles D (1990) Molecular-Biology - Signals in the Wounded Plant. Nature 343: 314-315 Campo S, Peris-Peris C, Sire C, Moreno AB, Donaire L, Zytnicki M, Notredame C, Llave C, San Segundo B (2013) Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytologist 199: 212-227 Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301: 336-338 Chen YC, Chang HS, Lai HM, Jeng ST (2005) Characterization of the wound-inducible protein ipomoelin from sweet potato. Plant Cell and Environment 28: 251-259 Cronan JE, Zhao X, Jiang YF (2005) Function, attachment and synthesis of lipoic acid in Escherichia coli. Advances in Microbial Physiology, Vol 50 50: 103-146 Dempsey DA, Klessig DF (2012) SOS - too many signals for systemic acquired resistance? Trends in Plant Science 17: 538-545 Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Annals of Botany 99: 787-822 Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends in Genetics 16: 449-455 Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811 Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnology 26: 407-415 Gong ZZ, Dong CH, Lee H, Zhu JH, Xiong LM, Gong DM, Stevenson B, Zhu JK (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17: 256-267 Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644-U130 Han SW, Green L, Schnell DJ (2009) The Signal Peptide Peptidase Is Required for Pollen Function in Arabidopsis. Plant Physiology 149: 1289-1301 Jacobo-Velazquez DA, Gonzalez-Aguero M, Cisneros-Zevallos L (2015) Cross-talk between signaling pathways: The link between plant secondary metabolite production and wounding stress response. Scientific Reports 5 Jeong DH, Green PJ (2013) The role of rice microRNAs in abiotic stress responses. Journal of Plant Biology 56: 187-197 Jih PJ, Chen YC, Jeng ST (2003) Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato. Plant Physiology 132: 381-389 Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Molecular Cell 14: 787-799 Katagiri F, Tsuda K (2010) Understanding the Plant Immune System. Molecular Plant-Microbe Interactions 23: 1531-1536 Khraiwesh B, Zhu JK, Zhu JH (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms 1819: 137-148 Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate Feed-Forward Regulation of Age-Dependent Cell Death Involving miR164 in Arabidopsis. Science 323: 1053-1057 Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST (2012) MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytologist 196: 427-440 Liu QK, Wang F, Axtell MJ (2014) Analysis of Complementarity Requirements for Plant MicroRNA Targeting Using a Nicotiana benthamiana Quantitative Transient Assay. Plant Cell 26: 741-753 Ma C, Lu Y, Bai SL, Zhang WN, Duan XW, Meng D, Wang ZG, Wang AD, Zhou ZS, Li TZ (2014) Cloning and Characterization of miRNAs and Their Targets, Including a Novel miRNA-Targeted NBS-LRR Protein Class Gene in Apple (Golden Delicious). Molecular Plant 7: 218-230 Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen XM, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi YJ, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhui JK (2008) Criteria for Annotation of Plant MicroRNAs. Plant Cell 20: 3186-3190 Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in Trans. Plant Cell 2: 279-289 Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science 6 Pieterse CMJ, van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trends in Plant Science 4: 52-58 Romano N, Macino G (1992) Quelling - Transient Inactivation of Gene-Expression in Neurospora-Crassa by Transformation with Homologous Sequences. Molecular Microbiology 6: 3343-3353 Rutz B, Seraphin B (2000) A dual role for BBP/ScSF1 in nuclear pre-mRNA retention and splicing. Embo Journal 19: 1873-1886 Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology 1477: 112-121 Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nature Biotechnology 26: 1135-1145 Shi J, Dong A, Shen WH (2015) Epigenetic regulation of rice flowering and reproduction. Frontiers in Plant Science 5 Sun XL, Ji W, Ding XD, Bai X, Cai H, Yang SS, Qian X, Sun MZ, Zhu YM (2013) GsVAMP72, a novel Glycine soja R-SNARE protein, is involved in regulating plant salt tolerance and ABA sensitivity. Plant Cell Tissue and Organ Culture 113: 199-215 Sunkar R, Zhu JK (2007) Micro RNAs and short-interfering RNAs in plants. Journal of Integrative Plant Biology 49: 817-826 Tabata R, Ikezaki M, Fujibe T, Aida M, Tian C, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2010) Arabidopsis AUXIN RESPONSE FACTOR6 and 8 Regulate Jasmonic Acid Biosynthesis and Floral Organ Development via Repression of Class 1 KNOX Genes. Plant and Cell Physiology 51: 164-175 Tang GL, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Development 17: 49-63 Taye B, Giday M, Animut A, Seid J (2011) Antibacterial activities of selected medicinal plants in traditional treatment of human wounds in Ethiopia. Asian Pac J Trop Biomed 1: 370-375 Thatcher SR, Burd S, Wright C, Lers A, Green PJ (2015) Differential expression of miRNAs and their target genes in senescing leaves and siliques: insights from deep sequencing of small RNAs and cleaved target RNAs. Plant Cell and Environment 38: 188-200 Vazquez F, Blevins T, Ailhas J, Boller T, Meins F (2008) Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Research 36: 6429-6438 Yang XZ, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27: 2614-2615 Yang ZY, Ebright YW, Yu B, Chen XM (2006) HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2 ' OH of the 3 ' terminal nucleotide. Nucleic Acids Research 34: 667-675 Zhang BH, Pan XP, Cobb GP, Anderson TA (2006) Plant microRNA: A small regulatory molecule with big impact. Developmental Biology 289: 3-16 Zhang ZM, Lin HJ, Shen YO, Gao J, Xiang K, Liu L, Ding HP, Yuan GS, Lan H, Zhou SF, Zhao MJ, Gao SB, Rong TZ, Pan GT (2012) Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress. Molecular Biology Reports 39: 8137-8146 Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31: 3406-3415 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17828 | - |
| dc.description.abstract | 植物防禦機制基因受到轉錄、轉錄後以及轉譯階段的調控。MicroRNA (miRNA)在傷害反應的轉錄及轉錄後調控扮演著重要的角色。為了研究甘藷傷害反應的miRNA,我們實驗室先前建構small RNA libraries,處理組別為對照組與傷害處理後30分鐘。由於甘藷不是已解序物種,我們也建構了甘藷的de novo transcriptome作為處理small RNA deep-sequencing data序列比對時的參考序列。我們利用次世代定序技術進行定序,得到大量的序列資料。實驗室前人朱敏瑤利用miRBase資料庫比對分析,發現許多傷害相關的conserved miRNA。然而,隨著演化產生差異,不同物種間應存在許多不保守性的novel miRNA參與植物生理反應。本實驗利用miRNA生合成過程中的兩個特性─stem-loop structure之precursor和miRNA/miRNA* duplex,開發Linux軟體miRcutter以預測甘藷傷害反應下novel miRNA。藉由定序資料比對分析,我們找到128條novel miRNA precursor以及16條conserved miRNA precursor。我們以small RNA定序資料中傷害前後表現量差異大作為篩選條件,挑選出5個novel miRNA precursor,暫名為pre1-5。利用反轉錄PCR (RT-PCR)檢測pre1-5在傷害處理下的表現量。結果顯示pre1-5皆會受傷害調控,並且其傷害30分鐘後的表現量,與pre1-5在small RNA定序資料預測之趨勢一致。利用miRNA目標基因預測軟體Mir_score,我們預測了novel miRNA的目標基因。Novel miRNA tag-292在傷害反應中可能藉由調控putative auxin efflux carrier component 8-like (AC8)的基因表現量來改變auxin濃度。本實驗發現甘藷傷害反應的novel miRNA precursor,並透過預測novel miRNA和目標基因的調控關係,更了解甘藷傷害反應的全貌。 | zh_TW |
| dc.description.abstract | Subjected to wounding stress, plants regulate genes related to many physiological processes. It was known that plant hormones and secondary metabolites are associated with wounding responses. However, much less is known about post-transcriptional controls in wounding responses. MicroRNAs are a class of noncoding RNAs, which typically function by guiding ARGONAUTE to cleave or block target mRNAs. Thus, miRNAs play a crucial and currently uncertain part in regulating post-transcriptional gene expression in wounding response. In previous studies, we constructed small RNA deep-sequencing libraries with wounding and its control treatments in sweet potato (Ipomoea batatas L.). We also constructed the de novo transcriptome in sweet potato as reference sequences. The miRcutter, a software program under Linux, was developed to map small RNA deep-sequencing data into the transcriptome for identification of novel miRNAs precursors and miRNA*. By miRcutter, 128 novel miRNA precursors and 16 conserved miRNA precursors were found. Further, the expression levels of 5 novel miRNA precursors, pre1-5, were confirmed to correspond with those of deep sequencing data in wounding responses. A gene which is annotated as an auxin efflux carrier component is one of the interesting target genes recognized by tag-292, a novel miRNA, in wounding responses. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:44:15Z (GMT). No. of bitstreams: 1 ntu-104-R02b42032-1.pdf: 2031944 bytes, checksum: 97f0e75410ee99e66b0a29c97feea948 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄 口試委員議定書 I 致謝 II 中文摘要 III Abstract IV 目錄 2 第一章 前言 5 一、 植物的防禦機制 5 二、 miRNA的生合成與作用機制 6 三、 次世代定序資料於miRNA研究的應用 8 四、 研究目的與方向 9 第二章 材料與方法 10 一、 植物材料與處理 10 1. 甘藷 10 二、 實驗方法 10 1. 甘藷葉片total RNA萃取 10 1.2. 反轉錄反應Reverse transcription(RT) 11 1.3. Real-Time PCR 11 2. 質體構築 12 2.1. PCR反應(polymerase chain reaction) 12 2.2. DNA 膠體電泳法 13 2.3. 由膠體回收DNA片段 13 2.4. DNA黏合反應 13 2.5. 轉形作用與轉形菌株挑選 14 2.6. 質體DNA的抽取 14 2.7. DNA定序 15 3. 北方墨點分析 15 3.1. 膠體核酸轉印 15 3.2. RNA探針製備 15 3.3. 雜合反應與訊號偵測 16 第三章 結果 19 傷害反應small RNA libraries與transcriptome之序列配對分析 19 Putative pre-miRNA的RNA二級摺疊結構判斷 20 putative miRNA的miRNA star strand之比對探尋 20 putative miRNA之分類歸納與保守性分析 21 傷害處理下novel miRNA precursor表現量測定 22 傷害反應之novel miRNA目標基因預測 23 傷害反應下novel miRNA tag-292目標基因AC8之表現量檢測 23 miRcutter預測結果與miR-Deep-P比較以檢驗miRcutter之正確性 24 第四章 討論 25 先前初步篩選novel miRNA的經驗提供miRcutter程式設計方向 25 miRcutter的預測能力經檢驗符合預期 26 pre1、pre3、pre4於傷害反應下之表現量趨勢與small RNA定序資料相符合 27 tag-292目標基因AC8於傷害反應下表現量與pre1呈現相反趨勢 28 受傷害誘導的pre3、pre4之功能探討 30 novel miRNA precursor gene屬於演化上較年輕的MIR gene 31 結論 32 圖表 33 表格 43 附錄 50 第五章 參考文獻 66 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用生物資訊軟體在甘藷中探索傷害逆境相關之嶄新miRNAs | zh_TW |
| dc.title | Exploring novel miRNAs in response to wounding stress using bioinformatics programs in sweet potato | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林讚標(Tsan-Piao Lin),陳倩瑜(Chien-Yu Chen),林淑怡(Shu-I Lin) | |
| dc.subject.keyword | 甘藷,傷害,miRNA預測程式,嶄新miRNA,次世代定序資料分析, | zh_TW |
| dc.subject.keyword | sweet potato,wounding,miRNA prediction program,novel miRNA,sequencing data analysis, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-08-07 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
