Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17796
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李宣書
dc.contributor.authorYoung-Bin Chenen
dc.contributor.author陳永斌zh_TW
dc.date.accessioned2021-06-08T00:43:42Z-
dc.date.copyright2015-08-11
dc.date.issued2015
dc.date.submitted2015-08-11
dc.identifier.citationREFERENCES
Advani SH (2010) Targeting mTOR pathway: A new concept in cancer therapy. Indian J Med Pediatr Oncol 31:132-136.
Ait-Aissa S, Porcher J, Arrigo A, Lambre C (2000) Activation of the hsp70 promoter by environmental inorganic and organic chemicals: relationships with cytotoxicity and lipophilicity.Toxicology 145:147-157.
Akram KM, Samad S, Spiteri MA, Forsyth NR (2013) Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms. Respir Res 14:9.
Baker M, Robinson SD, Lechertier T, Barber PR, Tavora B, D'Amico G, Jones DT, Vojnovic B, Hodivala-Dilke K (2012) Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc 7:89-104.
Barnes PJ (2004) Mediators of chronic obstructive pulmonary disease. Pharmacol Rev 56:515-548.
Baron-Menguy C, Bocquet A, Guihot AL, Chappard D, Amiot MJ, Andriantsitohaina R, Loufrani L, Henrion D (2007) Effects of red wine polyphenols on postischemic neovascularization model in rats: low doses are proangiogenic, high doses anti-angiogenic. FASEB J 21:3511-3521.
Bertelli AA, Giovannini L, Bernini W, Migliori M, Fregoni M, Bavaresco L, Bertelli A (1996) Antiplatelet activity of cis-resveratrol. Drugs Exp Clin Res 22:61-63.
Belleri M, Ribatti D, Savio M, Stivala LA, Forti L, Tanghetti E, Alessi P, Coltrini D, Bugatti A, Mitola S, Nicoli S, Vannini V, Presta M (2008) alphavbeta3 Integrin-dependent antiangiogenic activity of resveratrol stereoisomers. Mol Cancer Ther 7:3761-3770.
Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P, Müller M, Risau W, Edgington T, Collen D (1996) Role of tissue factor in embryonic blood vessel development. Nature 383:73-75.
Chan AW, Chong KY, Martinovich C, Simerly C, Schatten G (2001) Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 291:309-312.
Chen YB, Lan YW, Hung TH, Chen LG, Choo KB, Cheng WTK, Lee HS, Chong KY (2015) Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol alleviates elastase-induced emphysema in a mouse model. Cell Stress Chaperones 20:643-652.
Chen PL, Easton AS (2011) Anti-angiogenic effects of resveratrol on cerebral angiogenesis. Curr Neurovasc Res 8:14-24.
Cheng SE, Luo SF, Jou MJ, Lin CC, Kou YR, Lee IT, Hsieh HL, Yang CM (2009) Cigarette smoke extract induces cytosolic phospholipase A2 expression via NADPH oxidase, MAPKs, AP-1, and NF-kappaB in human tracheal smooth muscle cells. Free Radic Biol Med 46:948-960.
Chong KY, Lai CC, Su CY (2013) Inducible and constitutive HSP70s confer synergistic resistance against metabolic challenges. Biochem Biophys Res Commun 430:774-779.
Chong KY, Hsu CJ, Hung TH, Hu HS, Wang TH, Wang CH, Chen CM, Choo KB, Lai HC, Tseng CP (2015) Wnt pathway activation and ABCB1 expression account for attenuation of proteasome Inhibitor-mediated apoptosis in multidrug-resistant cancer cells. Cancer Biol Ther 16:149-159.
Chun JL, O'Brien R, Song MH, Wondrasch BF, Berry SE (2013) Injection of vessel-derived stem cells prevents dilated cardiomyopathy and promotes angiogenesis and endogenous cardiac stem cell proliferation in mdx/utrn-/- but not aged mdx mouse models for duchenne muscular dystrophy. Stem Cells Transl Med 2:68-80.
Chung KF, Adcock IM (2008) Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J 31:1334-1356.
Crosby LM, Waters CM (2010) Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 298:L715-731.
Culpitt SV, Rogers DF, Fenwick PS, Shah P, De Matos C, Russell RE, Barnes PJ, Donnelly LE (2003) Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax 58:942-946.
Faux SP, Tai T, Thorne D, Xu Y, Breheny D, Gaca M (2009) The role of oxidative stress in the biological responses of lung epithelial cells to cigarette smoke. Biomarkers 1:90-96.
Fierro FA, Kalomoiris S, Sondergaard CS, Nolta JA (2011) Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem cells 29:1727-1737.
Foronjy RF, Mirochnitchenko O, Propokenko O, Lemaitre V, Jia Y, Inouye M, Okada Y, D'Armiento JM (2006) Superoxide dismutase expression attenuates cigarette smoke- or elastase-generated emphysema in mice. Am J Respir Crit Care Med 173:623-631.
Galbraith R (1999) Heme oxygenase: who needs it? Proc Soc Exp Biol Med 222:299-305.
Gawad A, Ptak-Belowska A, Brzozowski T, Pawlik WW (2009) Monocytes and vascular endothelial cells apoptosis. Role of p-HSP27. J Physiol Pharmacol 60:55-61.
Geismann C, Arlt A, Sebens S, Schäfer H (2014) Cytoprotection 'gone astray': Nrf2 and its role in cancer. Onco Targets Ther 7:1497-1518.
Gerhardt H (2008) VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4:241-246.
Guertin DA, Sabatini DM (2007). Defining the role of mTOR in cancer. Cancer Cell 12:9-22.
Hacker S, Lambers C, Hoetzenecker K, Pollreisz A, Aigner C, Lichtenauer M, Mangold A, Niederpold T, Zimmermann M, Taghavi S, Klepetko W, Ankersmit HJ (2009) Elevated HSP27, HSP70 and HSP90 alpha in chronic obstructive pulmonary disease: markers for immune activation and tissue destruction. Clin Lab 55:31-40.
Henson PM, Vandivier RW, Douglas IS (2006) Cell death, remodeling, and repair in chronic obstructive pulmonary disease? Proc Am Thorac Soc 3:713-717.
Huang TT, Lai HC, Chen YB, Chen LG, Wu YH, Ko YF, Lu CC, Chang CJ, Wu CY, Martel J, Ojcius DM, Chong KY, Young JD (2014) cis-Resveratrol produces anti-inflammatory effects by inhibiting canonical and non-canonical inflammasomes in macrophages. Innate Immun 20:735-750.
Hung TH, Chen CM, Tseng CP, Shen CJ, Wang HL, Choo KB, Chong KY (2014a) FZD1 activates protein kinase C delta-mediated drug-resistance in multidrug-resistant MES-SA/Dx5 cancer cells. Int J Biochem Cell Biol 53:55-65.
Hung TH, Hsu SC, Cheng CY, Choo KB, Tseng CP, Chen TC, Lan YW, Huang TT, Lai HC, Chen CM, Chong KY (2014b) Wnt5A regulates ABCB1 expression in multidrug-resistant cancer cells through activation of the non-canonical PKA/beta-catenin pathway. Oncotarget 5:12273-12290.
Iizuka T, Ishii Y, Itoh K, Kiwamoto T, Kimura T, Matsuno Y, Morishima Y, Hegab AE, Homma S, Nomura A, Sakamoto T, Shimura M, Yoshida A, Yamamoto M, Sekizawa K (2005) Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells 10:1113-1125.
Ishii Y, Itoh K, Morishima Y, Kimura T, Kiwamoto T, Iizuka T, Hegab AE, Hosoya T, Nomura A, Sakamoto T, Yamamoto M, Sekizawa K (2005) Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. J Immunol 175:6968-6975.
Isomoto H, Ohtsuru A, Braiden V, Iwamatsu M, Miki F, Kawashita Y, Mizuta Y, Kaneda Y, Kohno S, Yamashita S (2006) Heat-directed suicide gene therapy mediated by heat shock protein promoter for gastric cancer. Oncol Rep 15:629-635.
Juan SH, Cheng TH, Lin HC, Chu YL, Lee WS (2005) Mechanism of concentration-dependent induction of heme oxygenase-1 by resveratrol in humanaortic smooth muscle cells. Biochem Pharmacol 69:41-48.
Jurivich DA, Sistonen L, Sarge KD, Morimoto RI (1994) Arachidonate is a potent modulator of human heat shock gene transcription. Proc Natl Acad Sci U S A 91:2280-2284.
Kaga S, Zhan L, Matsumoto M, Maulik N (2005) Resveratrol enhances neovascularization in the infarcted rat myocardium through the induction of thioredoxin-1, heme oxygenase-1 and vascular endothelial growth factor. J Mol Cell Cardiol 39:813-822.
Kalil RA, Salles FB, Giusti II, Rodrigues CG, Han SW, Sant'Anna RT, Ludwig E, Grossman G, Prates PR, Sant'anna JR, Teixeira Filho GF, Nardi NB, Nesralla IA (2010) VEGF gene therapy for angiogenesis in refractory angina: phase I/II clinical trial. Rev Bras Cir Cardiovasc 25:311-321
Katsha AM, Ohkouchi S, Xin H, Kanehira M, Sun R, Nukiwa T, Saijo Y (2011) Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model. Mol Ther 19:196-203.
Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D'Acquisto F, Addeo R, Makuuchi M, Esumi H (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95:189-197
Kode A, Rajendrasozhan S, Caito S, Yang SR, Megson IL, Rahman I (2008) Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 294:478-488.
Korbutt G, Archer SL, Thébaud B (2009) Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 180:1131-1142.
Kurtagic E, Jedrychowski MP, Nugent MA (2009) Neutrophil elastase cleaves VEGF to generate a VEGF fragment with altered activity. Am J Physiol Lung Cell Mol Physiol 296:534-546.
Lambrechts D, Devriendt K, Driscoll DA, Goldmuntz E, Gewillig M, Vlietinck R, Collen D, Carmeliet P (2005) Low expression VEGF haplotype increases the risk for tetralogy of Fallot: a family based association study. J Med Genet 42:519-522.
Lan YW, Choo KB, Chen CM, Huang TH, Chen YB, Hsieh CH, Kuo HP, Chong KY (2015) Hypoxia-preconditioned mesenchymal stem cells attenuates bleomycin-Induced pulmonary fibrosis. Stem Cell Res Ther 6:97
Leblond AL, Naud P, Forest V, Gourden C, Sagan C, Romefort B, Mathieu E, Delorme B, Collin C, Pagès JC, Sensebé L, Pitard B, Lemarchand P (2009) Developing cell therapy techniques for respiratory disease: intratracheal delivery of genetically engineered stem cells in a murine model of airway injury. Hum Gene Ther 20:1329-1343.
Lee EJ, Park HW, Jeon HJ, Kim HS, Chang MS (2013) Potentiated therapeutic angiogenesis by primed human mesenchymal stem cells in a mouse model of hindlimb ischemia. Regen Med 8:283-293.
Leeper NJ, Hunter AL, Cooke JP (2010) Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 122:517-526.
Liao Y, Feng J, Yi Q, Cui H, He L, Tang L (2013) A siRNA system based on HSP70 promoter results in controllable and powerful gene silencing by heat-induction. Biotechnol Prog 29:1289-1297.
Lin H, Shabbir A, Molnar M, Yang J, Marion S, Canty JM, Jr., Lee T (2008) Adenoviral expression of vascular endothelial growth factor splice variants differentially regulate bone marrow-derived mesenchymal stem cells. J Cell Physiol 216:458-468.
Liu J, Razani B, Tang S, Terman BI, Ware JA, Lisanti MP (1999) Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem 274:15781-15785.
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.
Luczak K, Balcerczyk A, Soszynski M, Bartosz G (2004) Low concentration of oxidant and nitric oxide donors stimulate proliferation of human endothelial cells in vitro. Cell Biol Int 28:483-486.
Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20:419-427.
Messier EM, Bahmed K, Tuder RM, Chu HW, Bowler RP, Kosmider B (2013) Trolox contributes to Nrf2-mediated protection of human and murine primary alveolar type II cells from injury by cigarette smoke. Cell Death Dis 4:e573.
Moon EJ, Giaccia A (2015) Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic Biol Med 79:292-299.
Moon HH, Joo MK, Mok H, Lee M, Hwang KC, Kim SW, Jeong JH, Choi D, Kim SH (2014) MSC-based VEGF gene therapy in rat myocardial infarction model using facial amphipathic bile acid-conjugated polyethyleneimine. Biomaterials 35:1744-1754.
Moon WS, Rhyu KH, Kang MJ, Lee DG, Yu HC, Yeum JH, Koh GY, Tarnawski AS (2003) Overexpression of VEGF and angiopoietin 2: a key to high vascularity of hepatocellular carcinoma? Mod Pathol 16:552-557.
Orallo F (2006) Comparative studies of the antioxidant effects of cis- and trans-resveratrol. Curr Med Chem 13:87-98.
Pagidipati NJ, Gaziano TA (2013) Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 127:749-756.
Papaioannou AI, Kostikas K, Kollia P, Gourgoulianis KI (2006) Clinical implications for vascular endothelial growth factor in the lung: friend or foe? Respir Res 7:128.
Pettit GR, Grealish MP, Jung MK, Hamel E, Pettit RK, Chapuis JC, Schmidt JM (2002) Antineoplastic agents. 465. Structural modification of resveratrol: sodium resverastatin phosphate. J Med Chem 45:2534-2542.
Pinot F, Bachelet M, François D, Polla BS, Walti H (1999) Modified natural porcine surfactant modulates tobacco smoke-induced stress response in human monocytes. Life Sci 64:125-134.
Polytarchou C, Papadimitriou E (2004) Antioxidants inhibit angiogenesis in vivo through down-regulation of nitric oxide synthase expression and activity. Free Radic Res 38:501-508.
Porcu P, Emanueli C, Kapatsoris M, Chao J, Chao L, Madeddu P (2002) Reversal of angiogenic growth factor upregulation by revascularization of lower limb ischemia. Circulation 105:67-72.
Putics A, Végh EM, Csermely P, Soti C (2008) Resveratrol induces the heat-shock response and protects human cells from severe heat stress. Antioxid Redox Signal 10:65-75.
Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, Yamamoto M, Petrache I, Tuder RM, Biswal S (2004) Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 114:1248-1259.
Reinders ME, Rabelink TJ, Briscoe DM (2006) Angiogenesis and endothelial cell repair in renal disease and allograft rejection. J Am Soc Nephrol 17:932-942.
Risau W (1997) Mechanisms of angiogenesis. Nature 386:671-674.
Rissanen TT, Rutanen J, Ylä-Herttuala S (2004) Gene transfer for therapeutic vascular growth in myocardial and peripheral ischemia. Adv Genet 52:117-164.
Shakibaei M, Harikumar KB, Aggarwal BB (2009) Resveratrol addiction: to die or not to die. Mol Nutr Food Res 53:115-128.
Shinohara T, Kaneko T, Nagashima Y, Ueda A, Tagawa A, Ishigatsubo Y (2005) Adenovirus-mediated transfer and overexpression of heme oxygenase 1 cDNA in lungs attenuates elastase-induced pulmonary emphysema in mice. Hum Gene Ther 16:318-327.
Spilsbury K, Garrett KL, Shen WY, Constable IJ, Rakoczy PE (2000) Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 157:135-144.
Thébaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, Hashimoto K, Harry G, Haromy A, Korbutt G, Archer SL (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112:2477-2486.
Tuder RM, Yoshida T, Fijalkowka I, Biswal S, Petrache I (2006) Role of lung maintenance program in the heterogeneity of lung destruction in emphysema. Proc Am Thorac Soc 3:673-679.
Tung YT, Chen HL, Lai CW, Shen CJ, Lai YW, Chen CM (2011) Curcumin reduces pulmonary tumorigenesis in vascular endothelial growth factor (VEGF)-overexpressing transgenic mice. Mol Nutr Food Res 55:1036-1043.
Vayssier-Taussat M, Camilli T, Aron Y, Meplan C, Hainaut P, Polla BS, Weksler B (2001) Effects of tobacco smoke and benzo[a]pyrene on human endothelial cell and monocyte stress responses. Am J Physiol Heart Circ Physiol 280:H1293-1300.
Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, Stockley RA, Sin DD, Rodriguez-Roisin R (2013) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187:347-365.
Wang Y, Kilic E, Kilic U, Weber B, Bassetti CL, Marti HH, D.M. Hermann DM (2005) VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain 128:52-63.
Wray LS, Hu X, Gallego J, Georgakoudi I, Omenetto FG, Schmidt D, Kaplan DL (2011) Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. J Biomed Mater Res B Appl Biomater 99:89-101.
Xiao Z, Kong Y, Yang S, Li M, Wen J, Li L (2007) Upregulation of Flk-1 by bFGF via the ERK pathway is essential for VEGF-mediated promotion of neural stem cell proliferation. Cell Res 17:73-79.
Zhang M, Zhang BH, Chen L, An W (2002) Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation. Cell Res 12:123-132.
Zhen G, Liu H, Gu N, Zhang H, Xu Y, Zhang Z (2008) Mesenchymal stem cells transplantation protects against rat pulmonary emphysema. Front Biosci 13:3415-3422.
Zhou YF, Stabile E, Walker J, Shou M, Baffour R, Yu Z, Rott D, Yancopoulos GD, Rudge JS, Epstein SE (2004) Effects of gene delivery on collateral development in chronic hypoperfusion: diverse effects of angiopoietin-1 versus vascular endothelial growth factor. J Am Coll Cardiol 44:897-903.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17796-
dc.description.abstract中文摘要
研究指出利用血管內皮生長因子(VEGFA)基因療法或間質幹細胞(MSC)移植,成功讓肢體缺血和心臟衰竭等減少(因缺血而損傷),且具持續再生的效果。基因改良的MSCs增強改善血管缺血性損傷。此外,研究也證明MSC透過分泌抗凋亡因子和抗炎因子等旁分泌因子來改善大鼠肺氣腫及降低肺損傷。儘管如此,但移植之MSC容易受到損傷微環境之傷害而死亡,而造成應用MSC治療的障礙,開發新穎幹細胞與基因療法系統成為當務之急。為避免VEGFA過度表現所造成多項副作用,我們建立調控式大量表現VEGFA (以HSP70的啟動子調控;只有在白藜蘆醇刺激時才大量表現)之幹細胞與基因治療系統,並以血管新生動物模式及肺氣腫動物模式來評估其療效。第一部份,白藜蘆醇處理HSP70-VEGFA-MSC細胞時有效調控HSP70啟動子表現VEGFA增加2倍,其培養液具誘發人類臍帶靜脈內皮細胞 (HUVEC) 管狀形成的能力。白藜蘆醇長期處理HSP70-VEGFA-MSC,該細胞呈現血管內皮細胞特殊形態及表現內皮細胞特異細胞標記。在體外小鼠主動脈環發芽分析中發現其促進動脈組織新生出小血管及細胞。再者,在體內移植也顯示基因改良的MSCs移植區域,血管明顯比較密集及血管管徑明顯較粗壯等促進血管生成的能力。第二部份,當利用香煙萃取物刺激白藜蘆醇處理HSP70-VEGFA-MSC細胞時,可協同HSP70轉錄活性、誘導Nrf2及HO-1等抗氧化基因表現。再者,以頸靜脈注射HSP70-VEGFA-MSC於elastase誘導肺氣腫的小鼠模式,餵食白藜蘆醇的八週後實驗組中發現肺部功能有明顯改善、肺部VEGFA, Nrf2及HO-1等基因表現皆有明顯上升。在肺部組織切片中肺氣腫的損傷有明顯的下降及肺泡組織結構有明顯恢復。綜合所述,本論文驗證了HSP70-VEGFA-MSC幹細胞與基因治療系統中,白藜蘆醇調控HSP70啓動子誘導表現VEGFA,有效促進血管新生成作用及修復肺氣腫損傷,且可避免過量表現VEGFA所造成的副作用。
zh_TW
dc.description.abstractABSTRACT
Several studies of stem cell-based gene therapy have indicated that long-lasting regeneration following vessel ischemia may be stimulated through VEGFA gene therapy and/or mesenchymal stem cell (MSC) transplantation for reduction of ischemic injury in limb ischemia and heart failure. The therapeutic potential of MSC transplantation can be further improved by genetically modifying MSCs with genes which enhance angiogenesis following ischemic injury. Furthermore, several studies have demonstrated that MSC-based cell therapy results in improvement in the treatment of emphysema in rat models. MSCs secrete anti-apoptotic and anti-inflammatory paracrine factors and reduce lung injuries. Despite reported successes, it was demonstrated that the amount of engrafted MSCs decreased dramatically after 24 hours of transplantation due to exposure to toxic and oxidative microenvironments. In additions, several possible side effects that may arise from clinical applications of VEGFA should be closely monitored. To avoid the VEGFA complications, we propose to further examine the protective effect of a conditional overexpression of VEGFA (under Resveratrol induced HSP70 promoter regulation) in two animal models. In this work, we aimed to test that VEGFA expression increased by RSV acting on the HSP70 promoter in transplanted MSC augments the angiogenic effects in a mouse angiogenesis model and protects against elastase-induced pulmonary emphysema in a mouse model by using stem cell and gene therapy. In the first study, HSP70 promoter-driven VEGFA expression was induced by resveratrol (RSV) in MSCs, and in combination with known RSV biological functions, to develop MSC-based therapy for repair and mitigation of ischemic injury and regeneration of damaged tissues in ischemic disease. We investigated the protective effects of our approach by using ex vivo aortic ring co-culture system and 3D scaffolds in vivo model. Results of first investigation demonstrated that HSP70 promoter-driven VEGFA expression in MSC increased approximately 2-fold over the background VEGFA levels upon HSP70 promoter induction by RSV. Exposure of HUVEC cells to medium containing MSC in which VEGFA had been induced by c-RSV enhanced tube formation in the treated HUVEC cells. RSV-treated MSC cells differentiated into endothelial-like phenotypes, exhibiting markedly elevated expression of endothelial cell markers. These MSCs also induced aortic ring sprouting, characteristic of neovascular formation from pre-existing vessels, and additionally promoted neovascularization at the MSC transplantation site in a mouse model. In the second study, this same stem cell line was further evaluated for its protective capacity to alleviate elastase-induced pulmonary emphysema in mice. Results of second study showed that c-RSV-treatment of HSP-VEGFA-MSC exhibited synergy between HSP70 transcription activity and induced expression of antioxidant-related genes when challenged by cigarette smoke extracts. Eight weeks after jugular-vein injection of HSP-VEGFA-MSC into mice with elastase-induced pulmonary emphysema, followed by c-RSV treatment to induce transgene expression, significant improvement was observed in respiratory functions. Expression of VEGFA, endogenous Nrf2 and MnSOD was significantly increased in the lung tissues of the c-RSV-treated mice. Histopathologic examination of treated mice revealed gradual but significant abatement of emphysema and restoration of airspace volume. In conclusion, the present investigation demonstrates that resveratrol-regulated VEGFA expression in HSP-VEGFA-MSC significantly improved the therapeutic effects on the treatment of ischemic disease and COPD in the mouse, possibly avoiding side effects associated with constitutive VEGFA expression.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:43:42Z (GMT). No. of bitstreams: 1
ntu-104-D96642009-1.pdf: 7128959 bytes, checksum: ff265d3e2182e8dea7f29644f752807a (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsCONTENTS
致謝 I
中文摘要 II
ABSTRACT IV
CONTENTS VII
LIST OF FIGURES XII
LIST OF TABLE XIV
ABBREVIATIONS XV
CHAPTER 1 LITERATURE REVIEW 1
1.1. Vascular endothelial growth factor A (VEGFA) 2
1.2. Role and characteristics of VEGFA in chronic obstructive pulmonary disease (COPD) 4
1.3. Role and characteristics of VEGFA in ischemic vascular disease 6
1.4. Oxidant and inflammation 8
1.5. Tobacco smoke pollution and air pollution-induced cellular oxidative stress 10
1.6. Nuclear factor erythroid 2-related factor 2 (Nrf2) 12
1.7. Resveratrol and cellular stress 14
1.8. HSP70 in COPD 17
1.9. Mesenchymal stem cells for treatment of lung injury 18
1.10. Promoter systems in gene therapy 21
1.11. Inducible promoters 22
CHAPTER 2 AIMS OF STUDY 25
CHAPTER 3 MESENCHYMAL STEM CELL-BASED HSP70 PROMOTER-DRIVEN VEGFA INDUCTION BY RESVERATROL PROMOTES ANGIOGENESIS IN A MOUSE MODEL 29
3.1. Introduction 30
3.2. Materials and methods 32
3.2.1. Cell lines 32
3.2.2. Preparation of conditioned medium 33
3.2.3. Construction of lentiviral vectors and transduction into MSCs 33
3.2.4. Cell proliferation test 35
3.2.5. Cell viability MTT assay 35
3.2.6. Luciferase activity assay 35
3.2.7. Quantitative real-time RT-PCR 36
3.2.8. Western blot analysis 36
3.2.9. Heat shock challenges 38
3.2.10. Tube formation ability assay 38
3.2.11. Aortic ring coculture MSCs 38
3.2.12. Formation of 3D scaffolds in vivo 39
3.2.13. Endothelial induction of MSCs 40
3.2.14. Statistical analysis 40
3.3. Results 41
3.3.1. Low-dosage RSV treatment does not cause acute cytotoxicity in MSCs and HUVECs 41
3.3.2. HSP70 promoter-driven transgene expression is effectively activated by RSV and/or heat shock in HSP-VEGFA-MSC stable cell 41
3.3.3. RSV induces endothelial differentiation in MSCs and promotes tube formation in HUVECs 42
3.3.4. RSV conditionally regulates HSP-VEGFA-MSC-dependent angiogenesis in aortic rings ex vivo and in 3D scaffolds in vivo 44
3.4. Discussion 45
CHAPTER 4 MESENCHYMAL STEM CELL-BASED HSP70 PROMOTER-DRIVEN VEGFA INDUCTION BY RESVERATROL ALLEVIATES ELASTASE-INDUCED EMPHYSEMA IN A MOUSE MODEL 50
4.1. Introduction 51
4.2. Materials and methods 55
4.2.1. Cell culture 55
4.2.2. Preparation of cigarette smoke extract 55
4.2.3. MTT cell viability assay 55
4.2.4. Luciferase activity assay 56
4.2.5. Quantitative real-time RT-PCR 56
4.2.6. Western blot analysis 57
4.2.7. Construction of lentiviral vector and transduction into MSCs 58
4.2.8. Porcine pancreatic elastase-induced emphysema mouse model 59
4.2.9. Noninvasive measurement of pulmonary functions by whole-body plethysmography (WBP) 60
4.2.10. Morphometric assessment 61
4.2.11. Immunohistochemical staining for beta-galactosidase protein 61
4.2.12. Statistical analysis 62
4.3. Results 63
4.3.1. Induction of transcription activities of HSP and ARE and enhanced cell survival in RSV-treated MSCs after CSE challenge 63
4.3.2. Induction of Nrf2 and HO-1 in response to c-RSV treatment 64
4.3.3. Improvement of pulmonary respiratory functions in the lungs of PPE-induced emphysema on c-RSV co-treatment of HSP-VEGFA-MSC transplant 65
4.3.4. Upregulated expression of antioxidant-related genes and VEGFA in c-RSV co-treatment of HSP-VEGFA-MSC transplantation in the lungs of PPE-induced emphysema 65
4.3.5. c-RSV co-treatment of HSP-VEGFA-MSC transplantation alleviates histological changes in the lungs of PPE-emphysema 66
4.4. Discussion 69
CONCLUSION 73
FIGURE AND LEGENDS 74
TABLE………... 99
REFERENCES 100
CURRICULUM VITAE 112
APPENDIX… 114
dc.language.isoen
dc.title開發白藜蘆醇透過誘導HSP70啟動子大量表現血管内皮生長因子之新穎幹細胞與基因療法系統zh_TW
dc.titleDeveloping a novel stem cell and gene therapy system based on resveratrol-induced HSP70 promoter-regulated VEGFA expressionen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.coadvisor張國友
dc.contributor.oralexamcommittee鄭 登 貴,吳 信 志,陳 全 木
dc.subject.keyword幹細胞與基因治療,白藜蘆醇,HSP70?動子,血管內皮生長因子A,血管新生,肺氣腫,動物模式,zh_TW
dc.subject.keywordStem cell-based gene therapy,Resveratrol,HSP70 promoter,VEGFA,angiogenesis,emphysema,mouse model,en
dc.relation.page135
dc.rights.note未授權
dc.date.accepted2015-08-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
6.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved