Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17780
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉興華(Shing-Hwa Liu)
dc.contributor.authorKuo-Tong Huangen
dc.contributor.author黃國棟zh_TW
dc.date.accessioned2021-06-08T00:43:26Z-
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-08-12
dc.identifier.citation1. Chen, H. W., Su, S. F., Chien, C. T., Lin, W. H., Yu, S. L., Chou, C. C., Chen, J. J., and Yang, P. C. (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 20, 2393-2395
2. Institute, I. R. S. (2000) The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report. Inhalation toxicology 12, 1-17
3. Tsuji, J. S., Maynard, A. D., Howard, P. C., James, J. T., Lam, C. W., Warheit, D. B., and Santamaria, A. B. (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicological sciences : an official journal of the Society of Toxicology 89, 42-50
4. Fabian, E., Landsiedel, R., Ma-Hock, L., Wiench, K., Wohlleben, W., and van Ravenzwaay, B. (2008) Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Archives of toxicology 82, 151-157
5. Oberdorster, G. (2001) Pulmonary effects of inhaled ultrafine particles. International archives of occupational and environmental health 74, 1-8
6. Muhlfeld, C., Geiser, M., Kapp, N., Gehr, P., and Rothen-Rutishauser, B. (2007) Re-evaluation of pulmonary titanium dioxide nanoparticle distribution using the 'relative deposition index': Evidence for clearance through microvasculature. Particle and fibre toxicology 4, 7
7. Sager, T. M., Kommineni, C., and Castranova, V. (2008) Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Particle and fibre toxicology 5, 17
8. Li, Y., Li, J., Yin, J., Li, W., Kang, C., Huang, Q., and Li, Q. (2010) Systematic influence induced by 3 nm titanium dioxide following intratracheal instillation of mice. Journal of nanoscience and nanotechnology 10, 8544-8549
9. Wang, J., Zhou, G., Chen, C., Yu, H., Wang, T., Ma, Y., Jia, G., Gao, Y., Li, B., Sun, J., Li, Y., Jiao, F., Zhao, Y., and Chai, Z. (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology letters 168, 176-185
10. Hagens, W. I., Oomen, A. G., de Jong, W. H., Cassee, F. R., and Sips, A. J. (2007) What do we (need to) know about the kinetic properties of nanoparticles in the body? Regulatory toxicology and pharmacology : RTP 49, 217-229
11. Deng, Z. J., Mortimer, G., Schiller, T., Musumeci, A., Martin, D., and Minchin, R. F. (2009) Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20, 455101
12. Rothen-Rutishauser, B. M., Schurch, S., Haenni, B., Kapp, N., and Gehr, P. (2006) Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environmental science technology 40, 4353-4359
13. Geiser, M. (2010) Update on macrophage clearance of inhaled micro- and nanoparticles. Journal of aerosol medicine and pulmonary drug delivery 23, 207-217
14. Shimizu, M., Tainaka, H., Oba, T., Mizuo, K., Umezawa, M., and Takeda, K. (2009) Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Particle and fibre toxicology 6, 20
15. Hougaard, K. S., Jackson, P., Jensen, K. A., Sloth, J. J., Loschner, K., Larsen, E. H., Birkedal, R. K., Vibenholt, A., Boisen, A. M., Wallin, H., and Vogel, U. (2010) Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Particle and fibre toxicology 7, 16
16. Geiser, M., and Kreyling, W. G. (2010) Deposition and biokinetics of inhaled nanoparticles. Particle and fibre toxicology 7, 2
17. Liu, R., Yin, L. H., Pu, Y. P., Li, Y. H., Zhang, X. Q., Liang, G. Y., Li, X. B., Zhang, J., Li, Y. F., and Zhang, X. Y. (2010) The immune toxicity of titanium dioxide on primary pulmonary alveolar macrophages relies on their surface area and crystal structure. Journal of nanoscience and nanotechnology 10, 8491-8499
18. Unnithan, J., Rehman, M. U., Ahmad, F. J., and Samim, M. (2011) Aqueous synthesis and concentration-dependent dermal toxicity of TiO2 nanoparticles in Wistar rats. Biological trace element research 143, 1682-1694
19. Huang, S., Chueh, P. J., Lin, Y. W., Shih, T. S., and Chuang, S. M. (2009) Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicology and applied pharmacology 241, 182-194
20. Susin, S. A., Daugas, E., Ravagnan, L., Samejima, K., Zamzami, N., Loeffler, M., Costantini, P., Ferri, K. F., Irinopoulou, T., Prevost, M. C., Brothers, G., Mak, T. W., Penninger, J., Earnshaw, W. C., and Kroemer, G. (2000) Two distinct pathways leading to nuclear apoptosis. The Journal of experimental medicine 192, 571-580
21. Stearns, R. C., Paulauskis, J. D., and Godleski, J. J. (2001) Endocytosis of ultrafine particles by A549 cells. American journal of respiratory cell and molecular biology 24, 108-115
22. Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wang, T., Yuan, H., Ye, C., Zhao, F., Chai, Z., Zhu, C., Fang, X., Ma, B., and Wan, L. (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicology letters 163, 109-120
23. Pujalte, I., Passagne, I., Brouillaud, B., Treguer, M., Durand, E., Ohayon-Courtes, C., and L'Azou, B. (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Particle and Fibre Toxicology 8, 10
24. Yang, R. S., Chang, L. W., Wu, J. P., Tsai, M. H., Wang, H. J., Kuo, Y. C., Yeh, T. K., Yang, C. S., and Lin, P. (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environmental health perspectives 115, 1339-1343
25. Warheit, D. B., Webb, T. R., Reed, K. L., Frerichs, S., and Sayes, C. M. (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230, 90-104
26. Gui, S., Zhang, Z., Zheng, L., Cui, Y., Liu, X., Li, N., Sang, X., Sun, Q., Gao, G., Cheng, Z., Cheng, J., Wang, L., Tang, M., and Hong, F. (2011) Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. Journal of hazardous materials 195, 365-370
27. Liao, M., and Liu, H. (2012) Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environmental toxicology and pharmacology 34, 67-80
28. Nurkiewicz, T. R., Porter, D. W., Hubbs, A. F., Stone, S., Chen, B. T., Frazer, D. G., Boegehold, M. A., and Castranova, V. (2009) Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicological sciences : an official journal of the Society of Toxicology 110, 191-203
29. LeBlanc, A. J., Cumpston, J. L., Chen, B. T., Frazer, D., Castranova, V., and Nurkiewicz, T. R. (2009) Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. Journal of toxicology and environmental health. Part A 72, 1576-1584
30. Higgins, D. F., Kimura, K., Bernhardt, W. M., Shrimanker, N., Akai, Y., Hohenstein, B., Saito, Y., Johnson, R. S., Kretzler, M., Cohen, C. D., Eckardt, K. U., Iwano, M., and Haase, V. H. (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. The Journal of clinical investigation 117, 3810-3820
31. Haase, V. H. (2006) Hypoxia-inducible factors in the kidney. American journal of physiology. Renal physiology 291, F271-281
32. Eckardt, K. U., Bernhardt, W. M., Weidemann, A., Warnecke, C., Rosenberger, C., Wiesener, M. S., and Willam, C. (2005) Role of hypoxia in the pathogenesis of renal disease. Kidney international. Supplement, S46-51
33. Rosenberger, C., Heyman, S. N., Rosen, S., Shina, A., Goldfarb, M., Griethe, W., Frei, U., Reinke, P., Bachmann, S., and Eckardt, K. U. (2005) Up-regulation of HIF in experimental acute renal failure: evidence for a protective transcriptional response to hypoxia. Kidney international 67, 531-542
34. Pialoux, V., Mounier, R., Brown, A. D., Steinback, C. D., Rawling, J. M., and Poulin, M. J. (2009) Relationship between oxidative stress and HIF-1 alpha mRNA during sustained hypoxia in humans. Free radical biology medicine 46, 321-326
35. Tanaka, T., and Nangaku, M. (2010) The role of hypoxia, increased oxygen consumption, and hypoxia-inducible factor-1 alpha in progression of chronic kidney disease. Current opinion in nephrology and hypertension 19, 43-50
36. Higgins, D. F., Biju, M. P., Akai, Y., Wutz, A., Johnson, R. S., and Haase, V. H. (2004) Hypoxic induction of Ctgf is directly mediated by Hif-1. American journal of physiology. Renal physiology 287, F1223-1232
37. Gross, M., Pfeiffer, M., Martini, M., Campbell, D., Slavin, J., and Potter, J. (1996) The quantitation of metabolites of quercetin flavonols in human urine. Cancer epidemiology, biomarkers prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 5, 711-720
38. Middleton, E., Jr., Kandaswami, C., and Theoharides, T. C. (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological reviews 52, 673-751
39. Stavric, B. (1994) Quercetin in our diet: from potent mutagen to probable anticarcinogen. Clinical biochemistry 27, 245-248
40. Formica, J. V., and Regelson, W. (1995) Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol 33, 1061-1080
41. Rice-Evans, C. A., Miller, N. J., and Paganga, G. (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology medicine 20, 933-956
42. Wang, L., Tu, Y. C., Lian, T. W., Hung, J. T., Yen, J. H., and Wu, M. J. (2006) Distinctive antioxidant and antiinflammatory effects of flavonols. Journal of agricultural and food chemistry 54, 9798-9804
43. Boots, A. W., Kubben, N., Haenen, G. R., and Bast, A. (2003) Oxidized quercetin reacts with thiols rather than with ascorbate: implication for quercetin supplementation. Biochemical and biophysical research communications 308, 560-565
44. Metodiewa, D., Jaiswal, A. K., Cenas, N., Dickancaite, E., and Segura-Aguilar, J. (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free radical biology medicine 26, 107-116
45. Rietjens, I. M., Boersma, M. G., van der Woude, H., Jeurissen, S. M., Schutte, M. E., and Alink, G. M. (2005) Flavonoids and alkenylbenzenes: mechanisms of mutagenic action and carcinogenic risk. Mutation research 574, 124-138
46. Sahu, S. C., and Washington, M. C. (1991) Quercetin-induced lipid peroxidation and DNA damage in isolated rat-liver nuclei. Cancer letters 58, 75-79
47. Kaldas, M. I., Walle, U. K., van der Woude, H., McMillan, J. M., and Walle, T. (2005) Covalent binding of the flavonoid quercetin to human serum albumin. Journal of agricultural and food chemistry 53, 4194-4197
48. Caria, H., Chaveca, T., Laires, A., and Rueff, J. (1995) Genotoxicity of quercetin in the micronucleus assay in mouse bone marrow erythrocytes, human lymphocytes, V79 cell line and identification of kinetochore-containing (CREST staining) micronuclei in human lymphocytes. Mutation research 343, 85-94
49. Gulati, N., Laudet, B., Zohrabian, V. M., Murali, R., and Jhanwar-Uniyal, M. (2006) The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer research 26, 1177-1181
50. Pratheeshkumar, P., Budhraja, A., Son, Y. O., Wang, X., Zhang, Z., Ding, S., Wang, L., Hitron, A., Lee, J. C., Xu, M., Chen, G., Luo, J., and Shi, X. (2012) Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. PloS one 7, e47516
51. Boutin, J. A. (1994) Tyrosine protein kinase inhibition and cancer. The International journal of biochemistry 26, 1203-1226
52. Ferry, D. R., Smith, A., Malkhandi, J., Fyfe, D. W., deTakats, P. G., Anderson, D., Baker, J., and Kerr, D. J. (1996) Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clinical cancer research : an official journal of the American Association for Cancer Research 2, 659-668
53. Schwartz, A., Sutton, S. L., and Middleton, E., Jr. (1982) Quercetin inhibition of the induction and function of cytotoxic T lymphocytes. Immunopharmacology 4, 125-138
54. Ishizawa, K., Izawa-Ishizawa, Y., Ohnishi, S., Motobayashi, Y., Kawazoe, K., Hamano, S., Tsuchiya, K., Tomita, S., Minakuchi, K., and Tamaki, T. (2009) Quercetin glucuronide inhibits cell migration and proliferation by platelet-derived growth factor in vascular smooth muscle cells. Journal of pharmacological sciences 109, 257-264
55. Wang, F. M., Yao, T. W., and Zeng, S. (2003) Determination of quercetin and kaempferol in human urine after orally administrated tablet of ginkgo biloba extract by HPLC. Journal of pharmaceutical and biomedical analysis 33, 317-321
56. Wang, F. M., Yao, T. W., and Zeng, S. (2003) Disposition of quercetin and kaempferol in human following an oral administration of Ginkgo biloba extract tablets. European journal of drug metabolism and pharmacokinetics 28, 173-177
57. Ueno, I., Nakano, N., and Hirono, I. (1983) Metabolic fate of [14C] quercetin in the ACI rat. The Japanese journal of experimental medicine 53, 41-50
58. Chan, P. H. (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 21, 2-14
59. Liang, D., Dawson, T. M., and Dawson, V. L. (2004) What have genetically engineered mice taught us about ischemic injury? Current molecular medicine 4, 207-225
60. Liang, G., Pu, Y., Yin, L., Liu, R., Ye, B., Su, Y., and Li, Y. (2009) Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress. Journal of toxicology and environmental health. Part A 72, 740-745
61. Sturrock, A. M., Hunter, E., Milton, J. A., and Trueman, C. N. (2013) Analysis methods and reference concentrations of 12 minor and trace elements in fish blood plasma. Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements 27, 273-285
62. Rayamajhi, M., Redente, E. F., Condon, T. V., Gonzalez-Juarrero, M., Riches, D. W., and Lenz, L. L. (2011) Non-surgical intratracheal instillation of mice with analysis of lungs and lung draining lymph nodes by flow cytometry. Journal of visualized experiments : JoVE
63. Bernhardt, W. M., Campean, V., Kany, S., Jurgensen, J. S., Weidemann, A., Warnecke, C., Arend, M., Klaus, S., Gunzler, V., Amann, K., Willam, C., Wiesener, M. S., and Eckardt, K. U. (2006) Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. Journal of the American Society of Nephrology : JASN 17, 1970-1978
64. Shi, S., Zhang, P., Cheng, Q., Wu, J., Cui, J., Zheng, Y., Bai, X. Y., and Chen, X. (2013) Immunohistochemistry of deparaffinised sections using antigen retrieval with microwave combined pressure cooking versus immunofluorescence in the assessment of human renal biopsies. Journal of clinical pathology 66, 374-380
65. Long, T. C., Tajuba, J., Sama, P., Saleh, N., Swartz, C., Parker, J., Hester, S., Lowry, G. V., and Veronesi, B. (2007) Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environmental health perspectives 115, 1631-1637
66. Gurr, J. R., Wang, A. S., Chen, C. H., and Jan, K. Y. (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213, 66-73
67. Nurkiewicz, T. R., Porter, D. W., Barger, M., Millecchia, L., Rao, K. M., Marvar, P. J., Hubbs, A. F., Castranova, V., and Boegehold, M. A. (2006) Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environmental health perspectives 114, 412-419
68. Kitada, M., Kume, S., Imaizumi, N., and Koya, D. (2011) Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 60, 634-643
69. Yang, Z. Z., Zhang, A. Y., Yi, F. X., Li, P. L., and Zou, A. P. (2003) Redox regulation of HIF-1alpha levels and HO-1 expression in renal medullary interstitial cells. American journal of physiology. Renal physiology 284, F1207-1215
70. Kobayashi, H., Gilbert, V., Liu, Q., Kapitsinou, P. P., Unger, T. L., Rha, J., Rivella, S., Schlondorff, D., and Haase, V. H. (2012) Myeloid cell-derived hypoxia-inducible factor attenuates inflammation in unilateral ureteral obstruction-induced kidney injury. Journal of immunology 188, 5106-5115
71. Haase, V. H. (2009) Pathophysiological Consequences of HIF Activation: HIF as a modulator of fibrosis. Annals of the New York Academy of Sciences 1177, 57-65
72. Ma, H., Brennan, A., and Diamond, S. A. (2012) Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environmental toxicology and chemistry / SETAC 31, 2099-2107
73. Goven, D., Boutten, A., Lecon-Malas, V., Marchal-Somme, J., Soler, P., Boczkowski, J., and Bonay, M. (2010) Induction of heme oxygenase-1, biliverdin reductase and H-ferritin in lung macrophage in smokers with primary spontaneous pneumothorax: role of HIF-1alpha. PloS one 5, e10886
74. Yeligar, S. M., Machida, K., and Kalra, V. K. (2010) Ethanol-induced HO-1 and NQO1 are differentially regulated by HIF-1alpha and Nrf2 to attenuate inflammatory cytokine expression. The Journal of biological chemistry 285, 35359-35373
75. Morishige, T., Yoshioka, Y., Tanabe, A., Yao, X., Tsunoda, S., Tsutsumi, Y., Mukai, Y., Okada, N., and Nakagawa, S. (2010) Titanium dioxide induces different levels of IL-1beta production dependent on its particle characteristics through caspase-1 activation mediated by reactive oxygen species and cathepsin B. Biochemical and biophysical research communications 392, 160-165
76. Park, E. J., Yoon, J., Choi, K., Yi, J., and Park, K. (2009) Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 260, 37-46
77. Sayes, C. M., Wahi, R., Kurian, P. A., Liu, Y., West, J. L., Ausman, K. D., Warheit, D. B., and Colvin, V. L. (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicological sciences : an official journal of the Society of Toxicology 92, 174-185
78. Grassian, V. H., O'Shaughnessy P, T., Adamcakova-Dodd, A., Pettibone, J. M., and Thorne, P. S. (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environmental health perspectives 115, 397-402
79. Working Group of the International Ig, A. N. N., the Renal Pathology, S., Cattran, D. C., Coppo, R., Cook, H. T., Feehally, J., Roberts, I. S., Troyanov, S., Alpers, C. E., Amore, A., Barratt, J., Berthoux, F., Bonsib, S., Bruijn, J. A., D'Agati, V., D'Amico, G., Emancipator, S., Emma, F., Ferrario, F., Fervenza, F. C., Florquin, S., Fogo, A., Geddes, C. C., Groene, H. J., Haas, M., Herzenberg, A. M., Hill, P. A., Hogg, R. J., Hsu, S. I., Jennette, J. C., Joh, K., Julian, B. A., Kawamura, T., Lai, F. M., Leung, C. B., Li, L. S., Li, P. K., Liu, Z. H., Mackinnon, B., Mezzano, S., Schena, F. P., Tomino, Y., Walker, P. D., Wang, H., Weening, J. J., Yoshikawa, N., and Zhang, H. (2009) The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney international 76, 534-545
80. Gui, S., Li, B., Zhao, X., Sheng, L., Hong, J., Yu, X., Sang, X., Sun, Q., Ze, Y., Wang, L., and Hong, F. (2013) Renal injury and Nrf2 modulation in mouse kidney following chronic exposure to TiO(2) nanoparticles. Journal of agricultural and food chemistry 61, 8959-8968
81. Hong, F., Hong, J., Wang, L., Zhou, Y., Liu, D., Xu, B., Yu, X., and Sheng, L. (2015) Chronic exposure to nanoparticulate TiO2 causes renal fibrosis involving activation of the Wnt pathway in mouse kidney. Journal of agricultural and food chemistry 63, 1639-1647
82. Gui, S., Sang, X., Zheng, L., Ze, Y., Zhao, X., Sheng, L., Sun, Q., Cheng, Z., Cheng, J., Hu, R., Wang, L., Hong, F., and Tang, M. (2013) Intragastric exposure to titanium dioxide nanoparticles induced nephrotoxicity in mice, assessed by physiological and gene expression modifications. Particle and Fibre Toxicology 10, 4
83. Chen, J., Dong, X., Zhao, J., and Tang, G. (2009) In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. Journal of applied toxicology : JAT 29, 330-337
84. Oberdorster, G., Oberdorster, E., and Oberdorster, J. (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental health perspectives 113, 823-839
85. Oberdorster, G., Ferin, J., and Lehnert, B. E. (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environmental health perspectives 102 Suppl 5, 173-179
86. Shi, H., Magaye, R., Castranova, V., and Zhao, J. (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Particle and fibre toxicology 10, 15
87. Wang, J., Chen, C., Liu, Y., Jiao, F., Li, W., Lao, F., Li, Y., Li, B., Ge, C., Zhou, G., Gao, Y., Zhao, Y., and Chai, Z. (2008) Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicology letters 183, 72-80
88. Wang, J., Liu, Y., Jiao, F., Lao, F., Li, W., Gu, Y., Li, Y., Ge, C., Zhou, G., Li, B., Zhao, Y., Chai, Z., and Chen, C. (2008) Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles. Toxicology 254, 82-90
89. Bermudez, E., Mangum, J. B., Asgharian, B., Wong, B. A., Reverdy, E. E., Janszen, D. B., Hext, P. M., Warheit, D. B., and Everitt, J. I. (2002) Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicological sciences : an official journal of the Society of Toxicology 70, 86-97
90. Yazdi, A. S., Guarda, G., Riteau, N., Drexler, S. K., Tardivel, A., Couillin, I., and Tschopp, J. (2010) Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proceedings of the National Academy of Sciences of the United States of America 107, 19449-19454
91. Hervouet, E., Cizkova, A., Demont, J., Vojtiskova, A., Pecina, P., Franssen-van Hal, N. L., Keijer, J., Simonnet, H., Ivanek, R., Kmoch, S., Godinot, C., and Houstek, J. (2008) HIF and reactive oxygen species regulate oxidative phosphorylation in cancer. Carcinogenesis 29, 1528-1537
92. Zhou, J., Fandrey, J., Schumann, J., Tiegs, G., and Brune, B. (2003) NO and TNF-alpha released from activated macrophages stabilize HIF-1alpha in resting tubular LLC-PK1 cells. American journal of physiology. Cell physiology 284, C439-446
93. Basu, R. K., Hubchak, S., Hayashida, T., Runyan, C. E., Schumacker, P. T., and Schnaper, H. W. (2011) Interdependence of HIF-1alpha and TGF-beta/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. American journal of physiology. Renal physiology 300, F898-905
94. Czibik, G., Sagave, J., Martinov, V., Ishaq, B., Sohl, M., Sefland, I., Carlsen, H., Farnebo, F., Blomhoff, R., and Valen, G. (2009) Cardioprotection by hypoxia-inducible factor 1 alpha transfection in skeletal muscle is dependent on haem oxygenase activity in mice. Cardiovascular research 82, 107-114
95. Sikorski, E. M., Hock, T., Hill-Kapturczak, N., and Agarwal, A. (2004) The story so far: Molecular regulation of the heme oxygenase-1 gene in renal injury. American journal of physiology. Renal physiology 286, F425-441
96. Bolisetty, S., Traylor, A. M., Kim, J., Joseph, R., Ricart, K., Landar, A., and Agarwal, A. (2010) Heme oxygenase-1 inhibits renal tubular macroautophagy in acute kidney injury. Journal of the American Society of Nephrology : JASN 21, 1702-1712
97. Hill-Kapturczak, N., Truong, L., Thamilselvan, V., Visner, G. A., Nick, H. S., and Agarwal, A. (2000) Smad7-dependent regulation of heme oxygenase-1 by transforming growth factor-beta in human renal epithelial cells. The Journal of biological chemistry 275, 40904-40909
98. Day, A. J., and Williamson, G. (1999) Human metabolism of dietary quercetin glycosides. Basic life sciences 66, 415-434
99. Day, A. J., Mellon, F., Barron, D., Sarrazin, G., Morgan, M. R., and Williamson, G. (2001) Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free radical research 35, 941-952
100. Geetha, T., Malhotra, V., Chopra, K., and Kaur, I. P. (2005) Antimutagenic and antioxidant/prooxidant activity of quercetin. Indian journal of experimental biology 43, 61-67
101. Nieman, D. C., Henson, D. A., Davis, J. M., Angela Murphy, E., Jenkins, D. P., Gross, S. J., Carmichael, M. D., Quindry, J. C., Dumke, C. L., Utter, A. C., McAnulty, S. R., McAnulty, L. S., Triplett, N. T., and Mayer, E. P. (2007) Quercetin's influence on exercise-induced changes in plasma cytokines and muscle and leukocyte cytokine mRNA. Journal of applied physiology 103, 1728-1735
102. Rivera, L., Moron, R., Sanchez, M., Zarzuelo, A., and Galisteo, M. (2008) Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity 16, 2081-2087
103. Varma, S. D., Mizuno, A., and Kinoshita, J. H. (1977) Diabetic cataracts and flavonoids. Science 195, 205-206
104. Vessal, M., Hemmati, M., and Vasei, M. (2003) Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comparative biochemistry and physiology. Toxicology pharmacology : CBP 135C, 357-364
105. Kahraman, A., Erkasap, N., Serteser, M., and Koken, T. (2003) Protective effect of quercetin on renal ischemia/reperfusion injury in rats. Journal of nephrology 16, 219-224
106. Inal, M., Altinisik, M., and Bilgin, M. D. (2002) The effect of quercetin on renal ischemia and reperfusion injury in the rat. Cell biochemistry and function 20, 291-296
107. Singh, D., Chander, V., and Chopra, K. (2004) The effect of quercetin, a bioflavonoid on ischemia/reperfusion induced renal injury in rats. Archives of medical research 35, 484-494
108. Dharnidharka, V. R., Kwon, C., and Stevens, G. (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. American journal of kidney diseases : the official journal of the National Kidney Foundation 40, 221-226
109. Grubb, A. O. (2000) Cystatin C--properties and use as diagnostic marker. Advances in clinical chemistry 35, 63-99
110. Ischiropoulos, H. (1998) Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Archives of biochemistry and biophysics 356, 1-11
111. Pacher, P., Beckman, J. S., and Liaudet, L. (2007) Nitric oxide and peroxynitrite in health and disease. Physiological reviews 87, 315-424
112. Kleinman, H. K., Klebe, R. J., and Martin, G. R. (1981) Role of collagenous matrices in the adhesion and growth of cells. The Journal of cell biology 88, 473-485
113. Kleinman, H. K., Luckenbill-Edds, L., Cannon, F. W., and Sephel, G. C. (1987) Use of extracellular matrix components for cell culture. Analytical biochemistry 166, 1-13
114. Lelong, I. H., Petegnief, V., and Rebel, G. (1992) Neuronal cells mature faster on polyethyleneimine coated plates than on polylysine coated plates. Journal of neuroscience research 32, 562-568
115. Ruegg, U. T., and Hefti, F. (1984) Growth of dissociated neurons in culture dishes coated with synthetic polymeric amines. Neuroscience letters 49, 319-324
116. Sun, Z., Liu, B., Ruan, X., and Liu, Q. (2014) An enhanced immune response against G250, induced by a heterologous DNA primeprotein boost vaccination, using polyethyleneimine as a DNA vaccine adjuvant. Molecular medicine reports 10, 2657-2662
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17780-
dc.description.abstract第一部分:奈米鈦之腎臟毒理學研究
科技文明愈是進步,毒理的傷害就越貼進人類生活。奈米(nanometer,nm)的定義,是規範物質的直徑大小,或是任何一面截面積在100nm以下。過去研究發現毒理的表現則與直徑大小相關,直徑越小,接觸的表面積相對增加,則毒理作用就愈明顯。奈米鈦(Nano-Titanium Dioxide, Nano-TiO2)是一種低溶解度的白色粉末,由國際癌症研究中心 (The International Agency for Research on Cancer; IARC) 將其歸類在2B組(具有致癌的風險性)。常見的曝露方式是由呼吸道吸入,皮膚接觸或是經由口腔誤食入,再藉由顆粒性白血球吞噬或因其大小直徑足以自由通透細胞而進入血流循環,藉由血液循環分佈至全身沉積在各個器官產生不同程度的傷害。奈米鈦是金屬元素,不溶解,經由血液循環至組織、器官後,具有累積的現象,進而衍生發炎或是細胞訊息傳遞的機制。以呼吸道曝露模式,過去主要使用氣管滴注及固定氣體噴霧等方式模擬。當奈米鈦經由呼吸道曝露後,肺臟為其第一標的器官,會引起肺臟吞噬細胞的移行及浸潤,促使杯狀細胞分泌黏液,造成細胞發炎及肺臟纖維化,進而促成為結節、斑痕化,最後形成腫瘤及癌症。腎臟為身體的排泄器官,凡身體各器官代謝後的產物,都需藉由腎臟形成尿液排出體外,因此推斷腎臟同為奈米鈦之標的器官,但截至目前奈米鈦是否對腎臟造成傷害及其相關機制,尚未明瞭其啟動的機轉。本研究是利用鼷鼠曝露於三種不同的濃度的奈米鈦(0.1毫克、0.25毫克、0.5毫克),曝露方式以滴注方式,每週一次,連續四週(1)。四週後犧牲,收集鼷鼠之血液及肝、腎、脾、肺等器官。由實驗結果顯示;曝露奈米鈦沉積而產生活性氧化物質(ROS, Reactive oxygen species)傷害近端腎小管,使得小管內層刷狀毛脫落,細胞凋亡,進而造成腎臟功能的損壞。我們以掃描式電子顯微鏡發現於近端腎小管細胞的細胞質內有鈦元素沉澱現象,血液中尿素氮(blood uria nitrogen,BUN)濃度增加。而活性氧化物質的阿爾發型誘發性缺氧因子(hypoxia inducible factor-1α, HIF-1α) 表現,促使下游的血紅素氧化酶(Heme Oxygenase -1,HO-1) 及貝他型轉化誘導因子(transforming growth factor-β, TGFβ)表現,造成纖維蛋白堆積。若給予活性氧物質清除者乙醯基半胱胺酸(N-acetylcysteine, NAC)及誘導型一氧化氮合成酶抑制劑(iNOS inhibitor):氨基胍碳酸氫鹽(aminoguanidine),則可有效減輕奈米氧化鈦所造成之腎臟損傷。根據本研究發現,奈米鈦會經血液循環於腎臟累積,誘發活性氧物質產生並進一步造成氧化傷害。未來也許可以應用此訊息傳遞路徑減少氧化鈦所造成之腎臟傷害。
第二部份:奈米化槲皮素之急性腎損傷療效與毒性評估
槲皮素(Quercetin)是一種自然界中存在的可食用黃酮醇(flavonol),是類黃酮家族(flavonoid family)的成員。槲皮素是多環酚類 (polyphenol)的架構,其主要的結構是中間具有苯環的相連接。於食物中通常是與單醣、寡醣體(Mono-, or Oligo -saccharide)相結合而形成醣苷鍵(Glycosidic bond),增加水溶性。一般可經由食物攝取而獲得的有蘋果、洋蔥、西洋芹及可可亞等食物中均含有。身體中或是腸道中細菌所產生的β-glycosidase可幫助水解成不同的甲基化或是硫化基的型式。槲皮素可經由肝臟的代謝、腸道的吸收、及腎臟的排泄而增進人類的使用。槲皮素具有抗發炎、抗氧化、甚至也有研究報導具有抗癌的功效,所以每日所攝取的量會因食物的種類及數量不同而異。由於是歸類為食物補充品,其建議攝取量為;每日每人200至1200毫克(200-1200 mg/day)。身體中所產生的過氧化氫(H2O2)或是自由基(free radical),可經由槲皮素做結合、清除。由於槲皮素不易溶於水,需以有機類溶劑增加其溶解度,往往會造成攝取的不便及毒性的傷害。本實驗嘗試以新合成的化合物奈米化槲皮素-線性聚乙烯亞胺合成物〔(nano-scale quercetin- PEI )〕來改善增加槲皮素的水溶解度。對於新合成奈米化的槲皮素,雖增加了水溶性的功能,但對於線性聚乙烯亞胺的接合進入生物體,是否會引起毒性的反應或併發症則是未知,因此必須研究其生物的相容性與價值。因黃酮醇(槲皮素)俱有光化學效應(phytochemical reaction),其代謝的中間產物與細胞結合是否會造成傷害?也需進一步的研究證實。實驗設計是以單一劑量的急毒性及連續口服28天的亞急毒性的測試。單一劑量急毒性是以5公克/每公斤的濃度換算,以餵食管的方式注入動物口腔。而在亞急毒性則是分為三種不同濃度,分別為;低(150毫克/每公斤)、中(500毫克/每公斤)及高( 1000毫克/每公斤)劑量,連續餵食28天。期間觀察動物的行為狀態、活動力、外觀皮膚、毛髮是否脫落、眼睛出血、飲食、排泄物是否異常,及死亡率等。急毒性組於14 天後犧牲,觀察內臟器官是否重量改變,充血、發炎、壞死等現象。亞急毒性組攜牲後,收集血液、及心、肝、脾、肺、腎,睪丸、子宮、卵巢等器官。然而,在抗氧化傷害測試,以腎臟做缺血/再灌流模式(ischemia / reperfusion)。將鼷鼠單側的腎臟血管用血管夾夾住,缺血時間設定為25分鐘,再將夾子鬆開,讓血流再灌流通過。於實驗期間將另一側的腎臟作摘除的動作。經由實驗的觀察;對於急毒性結果,動物沒有發生死亡,皮膚毛髮外觀無改變,及行為活動力降低等現象。而在28天亞急毒性的結果;動物也沒有死亡,皮膚毛髮沒有脫落,眼睛無充血及行為活動力也無異常。犧牲後體重沒有差異,內臟器官絕對及相對重量比較上也沒有統計學上的改變。血液學常規檢查及臨床生化學檢查也沒有統計上的差異。組織切片H E染色,於高劑量組別各器官形態上均沒有明顯的損傷與變化。所以對於新合成奈米化槲皮素應用在動物體的毒性測試顯示;不具有生物毒性的反應。另外,對於臨床的急性腎臟缺血性/再灌流模式,其結果在尿素氮(blood uria nitrogen, BUN)及肌酸酐(creatinine)的數據與對照組比較,均有顯著的下降。且Cystatine C與其估計之腎絲球廓清率(Estimated Glomerular filtration ratio, eGFR)在使用奈米化槲皮素後也有改善,具有統計上的意義。蘇木精-伊紅染色(hematoxylin and eosin stain, H E stain)組織染色與血清檢測雖有變化,但不具有劑量上的相對效應。為提升吸收效率及增加對水的溶解率而新合成的化合物,經由急毒性及亞急毒性的測試,對於生物體的使用是不具有生物性的毒性反應。
 
zh_TW
dc.description.abstractPart I: To Evaluate Renal Function in Toxicological study of Nano -Titanium Dioxide (Nano-TiO2)
The more advanced science and civilization, the more toxicity closed in ours daily life. Nanometer definition is; below the 100nm in any section of the particle surfaces. The toxicity value and the particle diameter are opposite, the more advanced toxicity is related to the particle size smaller in diameter, which increased the contact surfaces. Nano-Titanium Dioxide (Nano-TiO2) is a low solubility white powder. The International Agency for Research on Cancer (IRAC), therefore, has classified TiO2 as group 2B carcinogen (possibly carcinogenic to human). The most exposure way of nano-TiO2 is by respiratory tract, skin contact or oral feeding. It can pass the cell membrane, induce target organ injury, and enter into blood circulation that induced the inflammatory signal by accumulation. The intra-tracheal instillation and gas spray were the conventional way for studying of nano-TiO2 model. Lung injury is the target commonly inflammation result. It induced alveoli macrophage migration, phargocytosis, goblet cell secretion and developed nodules, scaring, fibrosis into carcinogenesis of the particles exposure. Kidney are metabolic and excretion organ, also a target of nano-TiO2, but induced pathologic injury were still controversy. We used different concentration of nano-TiO2 (0.1mg , 0.25mg and 0.5 mg) by intra- tracheal instillation weekly course . After 4 weeks later, we collect whole blood for blood routine and biochemistry test. Liver, spleen, lung, and kidney organs for histopathology staining. As result shown that TEM (Transmission Electronic Microscopy) figure shown nano-TiO2 had deposited in renal proximal tubular cell cytoplasm. In hematoxylin and eosin (H E staining), tubular lumen brush border loss and cast formation. In biochemistry test, blood urea nitrogen (BUN) increased. In Immunohistochemistry stain (IHC stain), cell signaling HIF-1α (hypoxia induced factor-1α), HO-1 (heme oxygenase-1), and TGF-β (transforming growth factor-β) were activated, and developed collagen-I accumulation. We tried to use the ROS (reactive oxygen species) scavenger NAC (N-acetylcysteine) and iNOS inhibitor (aminoguanidine, AQ) for decreased ROS-induced renal injury, and it had decreased in IHC staining. Conclusion: In the present study, the nano-TiO2 particle will trans-through lung alveoli into the circulation system by respiratory tract exposure. It will induced the inflammation and oxidative stress by nanoparticle deposit in target organs.
Part II: Toxic assessment and therapeutic effects of nano-scale quercetin PEI in acute kidney injury
Quercetin is a naturally food supplement of flavonol, which is a member of the flavonoid family of compounds. The basic structure of quercetin is consisting of two benzene rings linked a heterocyclic pyran or pyrone ring. Quercetin is bound to mono- or oligosaccharides via a glycosidic bond on the oxygen-containing ring for increasing aqueous solubility. In our daily uptake, the sources of quercetin are usually from apple、cooked onion、cocoa and raw celery. Both mammalian-encoded enzyme or intestinal microflora produced β-glycosidase hydrolysis quercetin into the metabolites such as methylated or sulfated forms. In the present studied showed that quercetin has anti-oxidant, anti-inflammatory, even the anti-carcinogenic effects. The daily recommended dosages is 200-1200 mg/day. Although, it can scavanged the superoxide and free redical, it also induced the toxicity by organic solvent for solubility, which could caused inconvenience and harmful injury. We try to synthesis a new compound of nano-scale quercetin- PEI (polyethyleneimine) to increase water solubility. It's also need to evaluate the toxicity and side-effect. The experimental model are acute and sub-acute toxicity models. The concentration for acute toxicity test is 5g/kg by oral gavage once time, and for sub-acute group are 150mg/kg/day, 500mg/kg/day and 1000mg/kg/day for 28 days consecutively. In period time, we observed the skin, hair, eyeball bleeding, food feeding, activity, and motality. After 14 and 28 days, animal were sacrificed and blood, visceral organs, such as heart, liver, spleen, lung, kidney, testis, uterus and ovary were collected. Biochemical and histopathology test were used to evaluate the toxicity of quercetin-PEI. Moreover, we also want to investigate the effects of quercetin-PEI in kidney, so we choose the renal ischemia/reperfusion (I/R) model to evaluate the therapeutic possibility of quercetin-PEI. In H E stain, Quercetin-PEI could reversed renal I/R induced tubule dilation, cast formation and cell death. The values of BUN, creatinine, Cystatin C and eGFR which represent kidney function were also reversed by queretin-PEI. Similar results were shown in the lipid peroxidation and the expression of COX-2. Taken together, our results showed that quercetin-PEI could reversed acute renal injury and its no-observed-adverse-effect level (NOEAL) is 1000 mg/kg/day.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:43:26Z (GMT). No. of bitstreams: 1
ntu-104-D97447003-1.pdf: 4830996 bytes, checksum: 9cde61810dee5e9c174d4df507d92a96 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
口試委員審定書 I
中文摘要 IV
英文摘要 VIII
縮寫表 XI
目錄 XIII
第一章 緒論 1
第一節 奈米鈦之腎臟毒理學研究 1
第二節 奈米化槲皮素急性腎損傷之療效及毒性評估 5
第二章 研究假設與方向 9
第三章 材料與步驟 10
第一節 奈米鈦分子之腎臟毒理學研究 10
第二節 奈米化槲皮素-線性聚乙烯亞胺合成物對於減緩腎臟 缺血-再灌流之能力及毒性評估 17
第三節 統計分析 21
第四章 結果 22
第一節 奈米鈦分子腎臟毒理學之研究 22
第二節 奈米化槲皮素之急性腎損傷療效及毒性評估 26
第五章 討論 30
第一節 奈米鈦分子之腎臟毒理學研究 : 30
第二節 奈米化槲皮素之急性腎損傷療效與毒性評估: 34
第六章 結論與展望 40
第七章 參考文獻 42
第八章 圖解與說明 54
第一節奈米鈦分子引起器官組織變化 54
第二節 奈米化槲皮素之急性腎損傷療效與毒性評估 66
第九章 附錄 80
dc.language.isozh-TW
dc.title奈米鈦分子之腎臟毒理學研究及奈米化槲皮素之急性腎損傷療效與毒性評估zh_TW
dc.titleThe Renal Toxicity Study of Nano-Titanium Dioxide and the Therapeutic Effects and the Toxicity Assessment of Nano-scale Quercetin-Polyethyleneimine (PEI) Synthetic Compounden
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee彭福佐(Fu-Chuo Peng),姜至剛(Chih-Kang Chiang),黃俊發(Chun-Fa Huang),陳雅雯(Ya-Wen Chen)
dc.subject.keyword奈米鈦,近端腎小管,阿爾發型誘發性缺氧因子,血紅素氧和?,貝他型轉化誘導因子,槲皮素,聚乙烯亞胺,胱胺酸,估計之腎絲球廓清率,缺血/再灌流,zh_TW
dc.subject.keywordNano-Titanium Dioxide,proximal tubular cell,HIF-1α,HO-1,TGF-β,quercetin,polyethyleneimine,Cystatin C,eGFR,ischemia/reperfusion,en
dc.relation.page80
dc.rights.note未授權
dc.date.accepted2015-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved