請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17762完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖婉君(Wanjiun Liao) | |
| dc.contributor.author | Hsu Kao | en |
| dc.contributor.author | 高 序 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:43:09Z | - |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-13 | |
| dc.identifier.citation | [1] Cisco visual networking index: Global mobile data traffic forecast update, 2011-2016, Feb. 2012. [Online]. Available: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/ white paper c11-520862.pdf. [2] I. Hwang, B. Song, and S. S. Soliman, “A holistic view on hyper-dense heterogeneous and small cell networks,” IEEE Communications Magazine, vol. 51, no. 6, pp. 20-27, June 2013. [3] “Neighborhood small cells for hyper-dense deployments: taking HetNets to the next level,” Qualcomm Tech., Inc., Feb. 2013. [4] Study on small cell enhancements for E-UTRA and E-UTRAN; Higher layer aspects, 3GPP TR 36.842, Jan. 2014. [5] “The Impact of Small Cells on MME Signaling: Methods to Reduce and Optimize MME Core Signaling Caused by Small Cells,” Alcatel-Lucent Application Note, 2013. [6] T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, H. Tang, X. Shen, N. Yang, and N. Li, “Trends in small cell enhancements in LTE advanced, ” IEEE Communications Magazine, vol. 51, no. 2, pp. 98-105, Feb. 2013. [7] S. Sesia, I. Toufik, and M. Baker, LTE: the UMTS Long Term Evolution, New York: John Wiley Sons, 2009. [8] Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification, 3GPP TS 36.331, July 2015. [9] Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for support of radio resource management, 3GPP TS 36.133, Jan. 2014. [10] X. Gelabert, Z. Guohua, and P. Legg, “Mobility performance and suitability of macro cell power-off in LTE dense small cell HetNets,” in 2013 IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Sept. 2013. [11] Evolved Universal Terrestrial Radio Access (E-UTRA); Mobility enhancements in heterogeneous networks, 3GPP TR 36.839, Jan. 2014. [12] “Robust mobility in HetNet environment with DRX,” Nokia Corp., R2-133912, 2013. [13] “Mobility improvement for long DRX,” Broadcom Corp., R2-140423, 2014. [14] D. Lopez-Perez, I. Guvenc, and X. Chu, “Theoretical analysis of handover failure and ping-pong rates for heterogeneous networks,” in 2012 IEEE International Conference on Communications (ICC), Ottawa, Canada, June 2012. [15] X. Wang, X. Lei, R. Q. Hu, and Y. Qian, “Modeling of tracking area list-based location update scheme in Long Term Evolution,” in 2014 IEEE International Conference on Communications (ICC), June 2014. [16] S. M. Razavi, and D. Yuan, “Reducing signaling overhead by overlapping tracking area list in LTE,” in 2014 7th IFIP Wireless and Mobile Networking Conference (WMNC), May 2014. [17] General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access, 3GPP TS 23.401, Sep. 2014. [18] “Enabling hyper-dense small cell deployments with UltraSON,” Qualcomm Tech., Inc., Feb. 2014. [19] C. U. Saraydar, O. E. Kelly, and C. Rose, “One-dimensional location area design,” IEEE Transactions on Vehicular Technology, vol. 49, no. 5, pp. 1626-1632, Sep. 2000. [20] Z. Lei and C. Rose, “Wireless subscriber mobility management using adaptive individual location areas for PCS systems,” in 1998 IEEE International Conference on Communications (ICC), June 1998. [21] J. Ferragut and J. Mangues-Bafalluy, “A self-organized Tracking Area List mechanism for large-scale networks of femtocells,” in 2012 IEEE International Conference on Communications (ICC), June 2012. [22] S. Ikeda, N. Kami, and T. Yoshikawa, “A tracking area list configuration method to mitigate burst location updates,” in 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE), July 30-Aug. 1 2014. [23] S. M. Razavi, D. Yuan, F. Gunnarsson, and J. Moe, “Exploiting Tracking Area List for Improving Signaling Overhead in LTE,” in 2010 IEEE 71st Vehicular Technology Conference, May 2010. [24] F. Baccelli and B. Blaszczyszyn, “Stochastic geometry and wireless networks, volume I—theory,” Hanover, MA, USA: NOWPublishers, 2009. [25] J. Puttonen, E. Virtej, I. Keskitalo, and E. Malkamaki, “On LTE performance trade-off between connected and idle states with always-on type applications,” in 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, Australia, Sept. 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17762 | - |
| dc.description.abstract | 超密度網路由於具延展性且佈建成本低廉,被視為達到高網路容量極具潛力的解決方案。然而,微型基地台的密化將降低細胞網路移動效能之強健性。當用戶設備以高速移動時,它會有不佳的移動性效能與高能量耗損,特別是它在長間斷接收周期中時。並且在這種場景下,傳呼和追蹤區域更新所導致對核心網路的負載將更高。在這篇論文中,我們探討如何智能地做移動性量測以及規劃追蹤區域表單。我們首先推導在兩種移動模型下,用戶設備從兩個同心圓的內圓走到外圓所花的時間之機率分布。我們分析無線電鏈路故障率及換手的時間點,並提出一個最小化功率消耗的量測頻率調整機制。我們也提出一個目標式以最小化網路信息負載,並且同時避免大量突發追蹤區域更新。我們提出了一個基於模擬退火的演算法、與一個運算快速的啟發式演算法,來為每個用戶移動設備選擇追蹤區域表單。我們的模擬結果顯示在超密度網路中,我們的機制及演算法能夠節省許多能量,並且達成低網路信息負載及更少的突發更新。 | zh_TW |
| dc.description.abstract | Ultra-dense network is considered a promising solution for high network capacity. It is favored for its scalability and cost effectiveness. However, small cell densification reduces the mobility robustness. When a user equipment is at high speeds, it may suffer from poor mobility performance and high power consumption, especially when it is in a long discontinuous reception cycle. In addition, the signaling load to the core network resulted from the paging and the tracking area update will be exacerbated in such scenario. In this thesis, we investigate how to perform mobility measurements and tracking area list planning intelligently. We first derive the probability distribution of the time it takes a user equipment to move from the inner to the outer co-centric circles for two mobility models. We analyze the radio link failure rate and the timing of handover, and then propose a mechanism to adjust measurement frequency to minimize the power consumption. We also formulate an objective to minimize the network signaling load with consideration of avoiding tracking area update signaling storm. We propose an algorithm to choose tracking area list for each user equipment based on simulated annealing, as well as a computationally efficient heuristic algorithm. Our simulation results demonstrate our mechanism and algorithms can save considerable amount of energy and achieve low network signaling load with few bursting updates in ultra-dense networks. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:43:09Z (GMT). No. of bitstreams: 1 ntu-104-R02942074-1.pdf: 748624 bytes, checksum: f6c2c43b96ef282bcd651310788c93af (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 i Abstract ii Contents iii List of Figures v List of Tables vi Chapter 1 Introduction 1 1.1 Background and Related Works 2 1.1.1 Discontinuous Reception (DRX) Cycle 2 1.1.2 Mobility Measurement and Handover (HO) 3 1.1.3 Oversleeping Problem 4 1.1.4 Area-partitioning and Tracking Area List 6 1.1.5 Reducing Signaling Cost 8 1.2 Contributions 10 1.3 Thesis Outline 11 Chapter 2 System Model 12 2.1 Network Scenario 12 2.2 HO Related Mobility Model 12 2.2.1 The Five Mobility Events 12 2.2.2 UE’s Mobility Related Energy Consumption 13 2.3 Definition of RLF Rate 14 2.4 UE State Model 15 2.5 Location Tracking Scheme 16 Chapter 3 Distribution of Staying Time 17 3.1 Straight Line Model 17 3.2 Random Walk Model 18 3.2.1 Direct Integration Method 21 3.2.2 Convolution Method 22 Chapter 4 Energy Efficient Mobility Measurement 24 4.1 Derivation of RLF Rate 24 4.2 A3 Event Prediction 27 4.3 Measurement Frequency Adjustment 30 Chapter 5 Reducing Signaling Load and Bursting 32 5.1 Problem Formulation 32 5.1.1 Notations and Scenario 32 5.1.2 Single-UE Objective 33 5.1.3 Multi-UE Objective 36 5.2 Simulated Annealing 39 5.3 Update Time Avoidance 43 Chapter 6 Simulation Results 45 6.1 Energy Efficient Mobility Measurement 45 6.2 Reducing Signaling Load and Bursting 48 Chapter 7 Conclusions 52 Reference 53 | |
| dc.language.iso | en | |
| dc.title | 在超密度小型基地台網路中兼顧用戶設備能源效率及網路負載之移動性管理 | zh_TW |
| dc.title | Mobility Management Considering User Equipment’s Energy Efficiency and Network Load in Ultra-Dense Small Cell Network | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 逄愛君(Ai-Chun Pang),謝宏昀(Hung-Yun Hsieh),林宗男(Tsungnan Lin) | |
| dc.subject.keyword | 長期演進技術,超密度網路,移動性管理,移動性量測,無線電鏈路故障,追蹤區域表單,位置管理, | zh_TW |
| dc.subject.keyword | Long-Term Evolution (LTE),Ultra-dense Network,Mobility Management,Mobility Measurement,Radio Link Failure (RLF),Tracking Area List (TAL),Location Management, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2015-08-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 731.08 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
