請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17644完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
| dc.contributor.author | Chi-Hung Luo | en |
| dc.contributor.author | 羅啟宏 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:27:23Z | - |
| dc.date.copyright | 2013-07-18 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-10 | |
| dc.identifier.citation | [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004).
[2] http://en.wikipedia.org/wiki/File:Graphen.jpg [3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 438, 197V200 (2005). [4] Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature 438, 201V204 (2005). [5] X. Du, T. Skachko, F. Duerr, A. Luican, E. Y. Andrei, Nature 462, 192195(2009). [6] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146(9-10), 351 (2008). [7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). [8] H. T. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, C. J.Chang, Science 335, 698V702 (2012). [9] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti,and A. Kis, Nat Nano 6, 147 (2011). [10] R. A. Bromley, R. B. Murray, A. D. Yo e, J. of Phys. C: Solid State Phys 5, 759 (1972). [11] T. Boker, R. Severin, A. Muller, C. Janowitz, R. Manzke, D. Vos, P. Kruger, A. Mazur, P. Pollmann, Physical Review B 64, 235305 (2001). [12] R. Coehoorn, C. Haas, J. Dijkstra, C. F. J. Flipse, R. A. de Groot, A. Wold, Physical Review B 35, 6195 (1987). [13] L. F. Mattheiss, Physical Review B 8, 3719 (1973). [14] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Physical Review Letters 105, 136805 (2010). [15] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010). [16] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat Nano 6, 147 (2011). [17] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319(5867), 1229 (2008). [18] S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011). [19] Yi-Hsien Lee, Xin-Quan Zhang, Wenjing Zhang, Mu-Tung Chang, Cheng-Te Lin, Kai-Di Chang, Ya-Chu Yu, Jacob Tse-Wei Wang , Chia-Seng Chang, Lain-Jong Li, and Tsung-Wu Lin, Adv. Mat. 24, 2320 (2012) [20] X. L. Li, Y. D. Li, Chem. Eur. J, 9, 2726 V 2731(2003). [21] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982). [22] R. Shankar, Principle of Quantum Mechanics. 2nd (1994). [23] C. Julian Chen, Introduction to Scanning Tunneling Microscopy. (1993). [24] J. Terso and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983). [25] J. Terso and D. R. Hamann, Phys. Rev. B 31, 805 (1985). [26] http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.htm [27] http://www.cs.unm.edu/ brayer/vision/fourier.html [28] J. Kibsgaard, J. V. Lauritsen, E. Laegsgaard, B. S. Clausen, H. Topsoe, F. Besenbacher, Journal of the American Chemical Society 128, 13950 (2006). [29] R. F. Frindt, Journal of Applied Physics 7, 1928 (1966). [30] F. Grey and J. Bohr, Europhys. Lett. 18, 717-722 (1992) [31] R. M. Feenstra and J. A. Stroscio, J. Vac. Sci. Technol. B 5, 923 (1987) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17644 | - |
| dc.description.abstract | 二硫化鉬是一個典型的層狀過渡性金屬硫化物的材料系列。我們研究以化學氣相沉積的二硫化鉬成長在高定向熱解石墨表面上。並且利用低溫電子穿隧顯微鏡解析原子結構及型態。而單層二硫化鉬與高定向熱解石墨的不同方位差異,有觀察到不同的莫爾條紋週期性。此外,我們發現當電子穿隧顯微鏡的探針非常接近單層二硫化鉬在熱解石墨表面上時,我們能直接地觀察到底下基板高定向熱解石墨的結構。所以,在某個掃描設定參數範圍裡,二硫化鉬就像電子化透明。並且利用掃描穿隧能譜測量二硫化鉬的狀態密度特徵。狀態密度顯示了單層與多層二硫化鉬的能隙關係,且當厚度越後能隙越小。狀態密度曲線也顯示了一些狀態在二硫化鉬的能隙裡。這現象是由尖誘導的能帶彎曲所引起當電子穿隧顯微鏡探針掃描半導體表面時。 | zh_TW |
| dc.description.abstract | Molybdenum disul de (MoS2) is a typical example from the layered transition-metal dichalcogenide family of materials. We investigated that MoS2 grown on a highly oriented pyrolytic graphite (HOPG) surface by chemical vapor deposition (CVD). We resolved the atomic-scale structure and morphology with low temperature scanning tunneling microscopy (LT-STM). Di erent periodicities in the moir e patterns are observed corresponding to orientation di erence between monolayer MoS2 and HOPG. Besides, we discovered that when the STM tip is very close monolayer MoS2 on HOPG, we could observe the structure of HOPG, directly. The MoS2 is electronically transparent in a certain setpoint range. Scanning tunneling spectroscopy (STS) was used to measure characteristics of density of state (DOS) of MoS2 . The
DOS shows the band gap of monolayer and multi-layer, which would be reduced when the layer is getting thicker. The DOS curve also shows some peaks inside the band gap of MoS2. This phenomenon results from tip-induced band bending (TIBB) when STM tip scans the semiconductor surface. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:27:23Z (GMT). No. of bitstreams: 1 ntu-102-R00222039-1.pdf: 5061554 bytes, checksum: 6b8f4a075783f245459a59ddf70eb0b8 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 1 Introduction...1
2 Experimental Apparatus...6 2.1 Experiment Preparation...6 2.1.1 Ultra-high Vacuum System...7 2.1.2 Chemical Vapor Deposition...9 2.1.3 Fabrication of Scanning Tunneling Microscopy Tip ...10 2.2 Scanning Tunneling Microscopy...11 2.2.1 Tunneling Effect...12 2.2.2 Setup of Scanning Tunneling Microscopy...15 2.2.3 Scanning Tunneling Spectroscopy...16 2.3 Data Analytical Process...19 2.3.1 Fourier Transform Measurement...19 2.3.2 Calibration of Scanning Tunneling Microscopy Image...21 3 Morphology of the Monolayer MoS2 on HOPG System...24 3.1 Monolayer MoS2 Nano-cluster on HOPG...24 3.2 Atomic-scale Structure of Monolayer MoS2 on HOPG...25 4 Morphology and Electric Property of Multi-layer MoS2 on HOPG System...30 4.1 Morphology of Multi-layer MoS2 on HOPG System...30 4.2 Electric Structure of Multi-layer MoS2 on HOPG System ...32 5 Discussion...35 5.1 Moire Pattern of Monolayer MoS2 on HOPG System...35 5.2 Setpoint Dependent Morphology of Monolayer MoS2 on HOPG System...36 5.3 Tip-induced Band Bending...39 6 Conclusion...43 Bibliography...45 | |
| dc.language.iso | en | |
| dc.title | 利用低溫掃描穿隧電子顯微鏡研究以化學氣相沉積生成的單層二硫化鉬之型態與電性結構 | zh_TW |
| dc.title | Low Temperature Scanning Tunneling Microscope Investigation of Morphology and Electronic Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李連忠(Lain-Jong Li),陳祺(Chi Chen) | |
| dc.subject.keyword | 二硫化鉬,過渡性金屬硫化物,化學氣相沉積,電子穿隧顯微鏡,莫爾條紋,掃描穿隧能譜,狀態密度,針尖誘導的能帶彎曲, | zh_TW |
| dc.subject.keyword | Molybdenum disulfide,Transition-metal dichalcogenide,Chemical vapor deposition,Scanning tunneling microscopy,Moire pattern,Scanning tunneling spectroscopy,Density of state,Tip-induced band bending, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-07-10 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
